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‘ PC Graphics Timeline

= Challenges:
— Render infinitely complex scenes
— And extremely high resolution
— In 1/60% of one second (60 frames per second)

= Graphics hardware has evolved from a simple hardwired
pipeline to a highly programmable multiword processor

DirectX 6 DirectX 7 DirectX 8 DirectX 9 DirectX 9.0c DirectX 9.0c DirectX 10

DirectX 5  Multitexturing T&L TextureStageState SM 1.x SM 2.0 SM 3.0 SM 3.0 SM 4.0
Riva 128 Riva TNT GeForce 256 GeForce 3 Cg GeForceFX GeForce 6 GeForce 7 GeForce 8
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I Graphics in the PC Architecture

= QuickPath (QPI)
between processor and
Northbridge (X58)

— Memory Control in CPU i
= Northbridge (IOH) e
handles PCI Express -

— PCIe 2.0 x16 bandwidth
at 16 GB/s (8 GB in
each direction) B e ™

= Southbridge (ICH10) ot
handles all other e
peripherals

DDR3 memory 8.5 Gb/s
DDR3 memory 8.5 Gb/s
DDR3 memory 8.5 Gb/s

Intel® Core™ i7 Processor
famiy
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I High-end Hardware

= nVIDIA Fermi Architecture

" The latest generation GPU,
codenamed GF100

= 3,1 billion transistors

= 512 Processing cores (SP)
— IEEE 754-2008 Capable
— Shared coherent L2 cache
— Full C++ Support
— Up to 16 concurrent kernels
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I Lab Hardware

= nVidia GeForce GTX 280
= Based on the GT200 chip
— 1400 million transistors

— 240 Processing cores (SP)
at 1476MHz

— 1024 MB Memory with 159
GB/sec bandwidth

= nVidia GeForce 8800GT
= Based on the G92 chip
— 754 million transistors

— 112 Processing cores (SP)
at 1500MHz

— 256 MB Memory with
57.6GB/sec bandwidth
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eForce GF100 Architecture

CUDA Core
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NVIDIA GF100 vs. GT200 Architecture

Global Block Scheduler

Fermi

GDDR5 GDDR5 GDDR5 GDDRS GDDR5 GDDRS5
Memory Memory Memory Memory Memory Memory
Controller| | Coniroller | | Controller | | Controller | | Coniroller | | Controller

Global Block Scheduler

TPC 0 | GT200
v ] y
SM Controller 0 SM Controller 1 SM Controller 9

fofloloe] - elfoe] o]
== =

PCl-Express 2.0 x16

GDDR3 GDDR3 GDDR3 || GDDR3 GDDR3 || GDDR3 GDDR3 GDDR3
Memory Memory Memory Memory Memory || Memory Memory Memory
Controller] | Controller | | Controller] | Controller | | Controller | | Controller | L Controller | | Controller
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TPC... SM... SP... Some more details...

TPC

Texture Processing Cluster

S M TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Multiprocessor

In CUDA: Multiprocessor,
and fundamental unit for
a thread block

TEX

Texture Unit

SP [/

Stream Processor e -

Scalar ALU for single \
CUDA thread SM

SFU

Super Function Unit

| Texture Processor Cluster | Streaming Multiprocessor
Linstruction 1] [ Datall |

Instruction Fetch/Dispatch

SM

SFU SFU

'/ University of Oslo INF5063, P&l Halvorsen, Carsten Griwodz, Havard Espeland, Hakon Stensland research laboratory



ISP: The basic processing block

* The nVIDIA Approach:
A Comparison of Building Blocks

- A Stream Processor Works NVIDIA GT200 AMD RV770
on a single operation “

= AMD GPU’s work on up
to five operations

" Now, let’s take a step
back for a closer look!
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I Streaming Multiprocessor (SM)

University of Oslo

Streaming Multiprocessor (SM)
= 8 Streaming Processors (SP)
= 2 Super Function Units (SFU)

Multi-threaded instruction
dispatch
= 1 to 1024 threads active

= Try to Cover latency of
texture/memory loads

Local register file (RF)
16 KB shared memory

DRAM texture and memory
access

Streaming Multiprocessor (SM)

Instruction Fetch

Thread / Instruction Dispatch

| oad Texture =——t—

L1 Fill=—
|
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‘ SM Regqister File

= Register File (RF)

—~ 32KB 18
— Provides 4 operands/clock |
= TEX pipe can also read/write Register File
— 3 SMs share 1 TEX [ v
= Load/Store pipe can also read/write l 0 em
Register File v v v
Operand Select
MVAD SFU

%, [
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‘ Constants

=  Immediate address constants s
= Indexed address constants |

= Constants stored in memory, and cached
on chip !
— L1 cache is per Streaming Multiprocessor ¥ R Shareg

A\ A% v

Operand Select

v v
MAD SFU
v
v
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‘ Shared Memory

Each Stream Multiprocessor has s
16KB of Shared Memory ]

16 banks of 32bit words

CUDA uses Shared Memory as [——
shared storage visible to all threads =~ * &
in a thread block operan seect.
Read and Write access | |
MAD SFU
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‘ Execution Pipes

= Scalar MAD pipe

— Float Multiply, Add, etc. 18
— Integer ops,
B Conversions Multit:readed
— OnIy one instruction per clock Instruction Buffer
= Scalar SFU pipe v
— Special functions like Sin, Cos, Log, etc. % R || cs | shares
* Only one operation per four clocks i S
= TEX pipe (external to SM, shared by all Operand Select
SM’s in a TPC)
= Load/Store pipe ’ :
— CUDA has both global and local memory
access through Load/Store v
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GPGPU

Foils adapted from nVIDIA



\ What is really GPGPU? [1:lGPU

* General Purpose computation using GPU
in other applications than 3D graphics
— GPU can accelerate parts of an application

= Parallel data algorithms using the GPUs properties
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism
— Fast floating point (FP) operations

= Applications for GPGPU
— Game effects (physics) nVIDIA PhysX
— Image processing (Photoshop CS4)
— Video Encoding/Transcoding (Elemental RapidHD)
— Distributed processing (Stanford Folding@Home)
— RAID6, AES, MatLab, etc.
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Previous GPGPU use, and limitations

= Working with a Graphics API

— Special cases with an API like Microsoft
Direct3D or OpenGL

= Addressing modes
— Limited by texture size l
= Shader capabilities
— Limited outputs of the available shader B peoewevor
programs l
= Instruction sets
— No integer or bit operations .

= Communication is limited
— Between pixels

B
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\ nVIDIA CUDA OO

= “Compute Unified Device Architecture”

* General purpose programming model
— User starts several batches of threads on a GPU

— GPU is in this case a dedicated super-threaded, massively data
parallel co-processor

= Software Stack
— Graphics driver, language compilers (Toolkit), and tools (SDK)

= Graphics driver loads programs into GPU
— All drivers from nVIDIA now support CUDA
— Interface is designed for computing (no graphics ©)
— “Guaranteed” maximum download & readback speeds
— Explicit GPU memory management
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‘ Outline

* The CUDA Programming Model
— Basic concepts and data types

= The CUDA Application Programming Interface
— Basic functionality

= An example application:
— The good old Motion JPEG implementation!
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‘ The CUDA Programming Model

* The GPU is viewed as a compute device that:
— Is a coprocessor to the CPU, referred to as the host
— Has its own DRAM called device memory
— Runs many threads in parallel

= Data-parallel parts of an application are

executed on the device as kernels, which run in
parallel on many threads

= Differences between GPU and CPU threads

— GPU threads are extremely lightweight
e Very little creation overhead

— GPU needs 1000s of threads for full efficiency

* Multi-core CPU needs only a few
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I Thread Batching: Grids and Blocks

= A kernel is executed as a Fos! Device
grid of thread blocks Grid 1
— All threads share data Kernel »  Block  Block  Block
memory space ! 00 = (10 (20
= A thread block is a batch of B(I)o;ck;g/' Block Block
threads that can cooperate 04 1] &9 1} @D
with each other by: A eria g n
— Synchronizing their execution cemel LAy [T7
» Non synchronous execution 2
is very bad for performance! S AT T
— Efficiently sharing data Block (1, 1)
through a low latency shared -
memory
= Two threads from two —

different blocks cannot
cooperate

L
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I CUDA Device Memory Space Overview

(Device) Grid

= Each thread can:
— R/W per-thread registers Slock (0.0 Block {1, 0)

— R/W per-thread local memory

— R/W per-block shared memory
— R/W per-grid global memory
— Read only per-grid constant Thread (0, 0)| Thread (1, 0)| | Thread (0, 0) Thread (1, 0)
memory
— Read only per-grid texture i i i i
memory
= The host can R/W global, ™

constant, and texture
memories
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IGIobaIz Constant, and Texture Memories

= Global memory: S

— Main means of
communicating K/W

Data between host and
device
— Contents visible to all ’) ’| " "

th reads Thread (0, 0) ' Thread (1, 0) | | Thread (0, 0) ' Thread (1, 0)

= Texture and Constant
Memories: i i i i
— Constants iniialized by

Hoot
host

— Contents visible to all
threads

Block (0, 0) Block (1, 0)
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‘Terminologx Recap

device = GPU = Set of multiprocessors

Multiprocessor = Set of processors & shared memory

Kernel = Program running on the GPU
Grid = Array of thread blocks that execute a kernel

Thread block = Group of SIMD threads that execute a
kernel and can communicate via shared memory

Local Off-chip No Read/write One thread

Shared On-chip N/A - resident | Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host
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‘ Access Times

Register — Dedicated HW — Single cycle

Shared Memory — Dedicated HW — Single cycle
Local Memory — DRAM, no cache — “Slow”
Global Memory — DRAM, no cache — “Slow”

Constant Memory — DRAM, cached, 1...10s...100s of
cycles, depending on cache locality

Texture Memory — DRAM, cached, 1...10s...100s of
cycles, depending on cache locality
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l CUDA — API



“ CUDA Highlights

* The API is an extension to the ANSI C
programming language
== |LOW learning curve than OpenGL/Direct3D

= The hardware is designed to enable lightweight
runtime and driver

== High performance

‘;‘s' F{A;,'__— ;
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'CUDA Device Memory Allocation

= cudaMalloc()

— Allocates object in the
device Global Memory

— Requires two parameters
» Address of a pointer to the ’ ’ ’ ’
allocated object
Thread (O, | Thread (1, | || Thread (0, | Thread (1,
» Size of allocated object 0 ) 0 0)

" cudaFree()

— Frees object from device Host
Global Memory
 Pointer to the object

(Device) Grid

Block (0, 0) Block (1, 0)
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‘ CUDA Device Memory Allocation

Code example:
Allocate a 64 * 64 single precision float array
Attach the allocated storage to Md.elements

“d” is often used to indicate a device data
structure

BLOCK SIZE = 64,
Matrix Md
Int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float);

cudaMalloc((void**)&Md.elements, size);
cudaFree(Md.elements);
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'CUDA Host-Device Data Transfer

= cudaMemcpy()
— memory data transfer

(Device) Grid

Block (0, 0) Block (1, 0)
— Requires four parameters
» Pointer to source
» Pointer to destination ’ ’ ’ ’
* Number of bytes copied Thread (0,|| Thread (1 || Thread (0, | Thread (1.
0) 0) 0) 0)

» Type of transfer
= Host to Host
= Host to Device
= Device to Host

e
= Device to Device 4_,.

= Asynchronous operations e

1

Heoe

available (Streams)
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‘ CUDA Host-Device Data Transfer

* Code example:
— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md.elements, M.elements, size,
cudaMemcpyHostToDevice);

cudaMemcpy(M.elements, Md.elements, size,
cudaMemcpyDeviceToHost);
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‘ CUDA Function Declarations

Executed on| Only callable
the: from the:
~ device  float DeviceFunc () device device
~ global  wvoid KernelFunc () device host
~ host  float HostFunc/() host host

" global defines a kernel function
— Must return void

" device and host can be used
together

Y L
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‘ CUDA Function Declarations

- device functions cannot have their
address taken

Limitations for functions executed on the
device:

NO recursion

No static variable declarations inside the function
No variable number of arguments
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Some Information on the Toolkit




‘ Compilation

= Any source file containing CUDA language
extensions must be compiled with nvcc

" nvcc is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, etc.

" nvcc can output:

— Either C code

» That must then be compiled with the rest of the
application using another tool

— Or object code directly

1
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‘ Linking & Profiling

Any executable with CUDA code requires two dynamic
libraries:

The CUDA runtime library (cudart)

The CUDA core library (cuda)

Several tools are available to optimize your application
nVIDIA CUDA Visual Profiler
NVIDIA Occupancy Calculator

Windows users: NVIDIA Parallel Nsight for Visual
Studio

{/.‘;:’_"‘_”A}}{“
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‘ Debugging Using Device Emulation

" An executable compiled in device emulation
mode (nvcc -deviceemu):
— No need of any device and CUDA driver

= When running in device emulation mode, one
can:

— Use host native debug support (breakpoints, inspection, etc.)
— Call any host function from device code

— Detect deadlock situations caused by improper usage of
__syncthreads

= nVIDIA CUDA GDB
= printf is now available on the device! (cuPrintf)

) 1
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‘ Before you start...

Four lines have to be added to your group users
.bash_profile or .bashrc file

PATH=$PATH:/usr/local/cuda/bin
LD LIBRARY_PATH=$LD LIBRARY_PATH:/usr/local/cuda/lib

export PATH
export LD_LIBRARY_PATH

SDK is downloaded in the fopt/ folder
Copy and build in your users home directory
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I Some usefull resources

nVIDIA CUDA Programming Guide 3.2

http://developer.download.nvidia.com/compute/cuda/3 2/toolKi
t/docs/CUDA C Programming Guide.pdf

nVIDIA CUDA C Programming Best Practices Guide
http://developer.download.nvidia.com/compute/cuda/3 2/toolKi
t/docs/CUDA C Best Practices Guide.pdf

nVIDIA CUDA Reference Manual 3.2

http://developer.download.nvidia.com/compute/cuda/3 2/toolKi
t/docs/CUDA_Toolkit Reference Manual.pdf
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| Example:

Motion JPEG Encoding



‘14 different MJPEG encoders on GPU

University of Oslo

100

90
80
70
60
5(:--:
40

30

Average frame encode time (ms)

20

“lonnn il 1

I I I I I | I

Nvidia GeForce GPU

Problems:

» Only used global memory

» To much synchronization between threads
* Host part of the code not optimized
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‘Profiling a Motion JPEG encoder on x86

* A small selection of DCT

algorithms:

- 2D-Plain: Standard forward 2D
DCT

- 1D-Plain: Two consecutive 1D , |
transformations with transpose = DAAN i g Sﬂﬁrﬂze
in between and after 1D-Plain prezezzzzd k1 EVLC

. - 4 DCT

- 1D-AAN: Optimized version of =~ ™o 22288 | |

1D_P|a|n 2D-Plain &

I | | 1 I I |
0 200 400 600 800 1000 1200 1400 1600
Average frame encode time (ms)

«  2D-Matrix: 2D-Plain
implemented with matrix
multiplication

* Single threaded application
profiled on a Intel Core i5
750

Y
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‘Ogtimizing for GPU, use the memory correctly!!

* Several different types

of memory on GPU:

* Global memory

‘ ConStant memory Constant uncoalesced Wﬂr&w

° Texture memory Global uncoalesced |[FrrFrrrdriradadia s s i s a s s i T i s d o g s T s g d i

Texture coalesced

° Sha FEd memory Constant caching

Texture uncoalesced

LI ] ]
L o

Global coalesced [

° FIrSt Command ment 0 5 10 15 20 25 30 35
when using the GPUSs. Time (ms)

- Select the correct
memory space, AND
use it correctly!

* University of Oslo INF5063, P&l Halvorsen, Carsten Griwodz, Havard Espeland, Hakon Stensland [ .research laboratory |




‘How about using a better algorithm??

* Used CUDA Visual
Profiler to isolate DCT
performance

* 2D-Plain Optimized is
optlmlzed for GPU:
Shared memory

Coalesced memory access _

. 2D PlaiN e e A )
Loop unrolling ———
aranch .’ 0o 1 2 3 4 5 6 7 8 9
ranch prevention Average DCT GPU time per frame (ms)
Asynchronous transfers

* Second Commandment
when using the GPUs:

Choose an algorithm suited
for the architecture!

\ ] ||
2D-Matrix [ttt

1D-AAN (i i sy

2D-Plain Opimized peladitasasis

Y [
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‘ Effect of offloading VLC to the GPU

* VLC (Variable Length
Coding) can also be

offloaded:
» One thread per macro
block
. VLC CPU /
- CPU does bitstream |, -, 1
merge 0 2 4 6 8 10 12 14 16 18 20 22

Average frame encode time (ms)

* Even though algorithm is
not perfectly suited for the
architecture, offloading
effect is still important!
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