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PC Graphics Timeline 

§  Challenges: 
−  Render infinitely complex scenes 
−  And extremely high resolution 
−  In 1/60th of one second (60 frames per second) 

§  Graphics hardware has evolved from a simple hardwired 
pipeline to a highly programmable multiword processor 

1998! 1999! 2000! 2001! 2002! 2003! 2004!

DirectX 6!
Multitexturing!

Riva TNT!
DirectX 8!
SM 1.x!

GeForce 3! Cg!
DirectX 9!
SM 2.0!

GeForceFX!
DirectX 9.0c!

SM 3.0!
GeForce 6!DirectX 5!

Riva 128!
DirectX 7!

T&L TextureStageState!
GeForce 256!

2005! 2006!

GeForce 7! GeForce 8!SM 3.0! SM 4.0!DirectX 9.0c! DirectX 10!
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Graphics in the PC Architecture 

§  DMI (Direct Media 
Interface) between 
processor and chipset 
− Memory Control now 

integrated in CPU 
§  The old “Northbridge” 

integrated onto CPU 
− PCI Express 3.0 x16 

bandwidth at 32 GB/s 
(16 GB in each direction) 

§  Southbridge (X79) 
handles all other 
peripherals 
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GPUs not always for Graphics 

§  GPUs are now common in HPC 
§  Largest supercomputer in 

November 2012 will be the Titan 
at Oak Ridge National Laboratory 
−  18688 16-core Opteron processors 
−  16688 Nvidia Kepler GPU’s 
−  Target: 20+ petaflops 

§  Before: Dedicated compute card 
released after grapics model 

§  Now: Nvidia’s high-end Kepler GPU 
is currently only produced as 
compute product 

GeForce GTX 690 

Tesla K10 
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High-end Hardware 
§  nVIDIA Kepler Architecture 
§  The latest generation GPU, 

codenamed GK110 

 
§  7,1 billion transistors 
§  2688 Processing cores (SP) 
−  IEEE 754-2008 Capable 
−  Shared coherent L2 cache 
−  Full C++ Support 
− Up to 32 concurrent kernels 
−  6 GB memory with ECC 
−  Supports GPU virtualization 
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§  nVidia Quadro 600 
−  GPU-5, GPU-6, GPU7, GPU-8 
−  Fermi Architecture 

§  Based on the GF108(GL) chip 
−  585 million transistors 
−  96 Processing cores (CC)   

at 1280MHz 
−  1024 MB Memory with 25,6 

GB/sec bandwidth 
−  Compute version 2.1 

Lab Hardware #1 
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Lab Hardware #2 

§  nVidia GeForce GTX 650 
−  Clinton, Bush, Kennedy 
−  Kepler Architecture 

§  Based on the GK107 chip 
−  1300 million transistors 
−  384 Processing cores (SP) at 1058 

MHz 
−  1024 MB Memory with 80 GB/sec 

bandwidth 
−  Compute version 3.0 
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GeForce GK110 Architecture 
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nVIDIA GF100 vs. GT200 Architecture 



INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo 

TPC… SM… SP… Some more details… 

§  TPC 
−  Texture Processing Cluster 

§  SM 
−  Streaming Multiprocessor 
−  In CUDA: Multiprocessor, 

and fundamental unit for 
a thread block 

§  TEX 
−  Texture Unit 

§  SP 
−  Stream Processor 
−  Scalar ALU for single 

CUDA thread 

§  SFU 
−  Super Function Unit 

TPC TPC TPC TPC TPC TPC TPC TPC 

TEX 

SM 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 Data L1 

Texture Processor Cluster Streaming Multiprocessor 

SM 
Shared Memory 

SM 

SM 
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SP: The basic processing block 

§  The nVIDIA Approach: 
− A Stream Processor works 

on a single operation 

§  AMD GPU’s work on up 
to five or four 
operations, new 
architecture in works. 

§  Now, let’s take a step 
back for a closer look! 
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Streaming Multiprocessor (SM) – 1.0 

  §  Streaming Multiprocessor (SM) 
§  8 Streaming Processors (SP) 
§  2 Super Function Units (SFU) 

§  Multi-threaded instruction dispatch 
§  1 to 1024 threads active 
§  Try to Cover latency of texture/

memory loads 

§  Local register file (RF) 
§  16 KB shared memory 
§  DRAM texture and memory access 
§  2 operations per cycle 
§  GeForce 8800 GTX 
 

Streaming Multiprocessor  ( SM ) 

Store to  

SP 0 RF 0 
SP 1 RF 1 
SP 2 RF 2 
SP 3 RF 3 

SP 4 RF 4 
SP 5 RF 5 
SP 6 RF 6 
SP 7 RF 7 

Constant L 1  Cache 
Load from Memory 

S 
F 
U 

S 
F 
U 

Instruction Fetch 
Instruction L 1  Cache 

Thread  /  Instruction Dispatch 

Shared Memory 

Store to Memory 
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Streaming Multiprocessor (SM) – 2.0 

§  Streaming Multiprocessor (SM) on 
the Fermi Architecture 
§  32 CUDA Cores (CC) 
§  4 Super Function Units (SFU) 

§  Dual schedulers and dispatch 
units 
§  1 to 1536 threads active 
§  Try to optimize register usage 

vs. number of active threads 

§  Local register (32k) 
§  64 KB shared memory 
§  DRAM texture and memory 

access 
§  2 operations per cycle 
§  GeForce GTX 480 
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Streaming Multiprocessor (SMX) – 3.0 

§  Streaming Multiprocessor (SMX) 
on Kepler 
§  192 CUDA Cores (Core) 
§  64 DP CUDA Cores (DP Core) 
§  32 Super Function Units (SFU) 

§  Four schedule and dispatch units 
§  1 to 2048 active threads 
§  Software controlled scheduling 

§  Local register (64k) 
§  64 KB shared memory 
§  1 operation per cycle 
§  GeForce GTX 680 
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SM Register File 

§  Register File (RF) 
−  32 KB 
−  Provides 4 operands/clock 

§  TEX pipe can also read/write Register File 
−  3 SMs share 1 TEX 

§  Load/Store pipe can also read/write 
Register File 

I $ 
L 1 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 
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Constants 

§  Immediate address constants 
§  Indexed address constants 
§  Constants stored in memory, and cached 

on chip 
−  L1 cache is per Streaming Multiprocessor 

I $ 
L 1 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 
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Shared Memory 

§  Each Stream Multiprocessor has 
16KB of Shared Memory 
−  16 banks of 32bit words 

§  CUDA uses Shared Memory as 
shared storage visible to all threads 
in a thread block 
−  Read and Write access 

I $ 
L 1 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 
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Execution Pipes 

§  Scalar MAD pipe 
−  Float Multiply, Add, etc. 
−  Integer ops,  
−  Conversions 
−  Only one instruction per clock 

§  Scalar SFU pipe 
−  Special functions like Sin, Cos, Log, etc. 

•  Only one operation per four clocks  

§  TEX pipe (external to SM, shared by all 
SM’s in a TPC) 

§  Load/Store pipe 
−  CUDA has both global and local memory 

access through Load/Store 

I $ 
L 1 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 



GPGPU 

Foils adapted from nVIDIA 
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What is really GPGPU? 

§  General Purpose computation using GPU 
in other applications than 3D graphics 
− GPU can accelerate parts of an application 

§  Parallel data algorithms using the GPUs properties 
−  Large data arrays, streaming throughput 
−  Fine-grain SIMD parallelism 
−  Fast floating point (FP) operations 

§  Applications for GPGPU 
− Game effects (physics): nVIDIA PhysX, Bullet Physics, etc.  
−  Image processing: Photoshop CS4, CS5, etc. 
−  Video Encoding/Transcoding: Elemental RapidHD, etc. 
− Distributed processing: Stanford Folding@Home, etc. 
−  RAID6, AES, MatLab, BitCoin-mining, etc. 
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Previous GPGPU use, and limitations 

§  Working with a Graphics API 
−  Special cases with an API like Microsoft 

Direct3D or OpenGL 

§  Addressing modes 
−  Limited by texture size 

§  Shader capabilities 
−  Limited outputs of the available shader 

programs 

§  Instruction sets 
− No integer or bit operations 

§  Communication is limited 
−  Between pixels 

Input Registers 

Fragment Program 

 

 

Output Registers 

Constants 

Texture 

Temp Registers 

per thread 
per Shader 
per Context 

        FB       Memory 
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nVIDIA CUDA 

§  “Compute Unified Device Architecture” 
§  General purpose programming model 
− User starts several batches of threads on a GPU 
− GPU is in this case a dedicated super-threaded, massively data 

parallel co-processor 
 

§  Software Stack 
− Graphics driver, language compilers (Toolkit), and tools (SDK) 
 

§  Graphics driver loads programs into GPU 
−  All drivers from nVIDIA now support CUDA 
−  Interface is designed for computing (no graphics J) 
−  “Guaranteed” maximum download & readback speeds 
−  Explicit GPU memory management 
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Khronos Group OpenCL 

§  Open Computing Language 
§  Framework for programing heterogeneous processors 
−  Version 1.0 released with Apple OSX 10.6 Snow Leopard 
−  Current version is version OpenCL 1.1 

§  Two programing models. One suited for GPUs and one suited 
for Cell-like processors. 
− GPU programing model is very similar to CUDA 

§  Software Stack: 
− Graphics driver, language compilers (Toolkit), and tools (SDK). 
−  Lab machines with nVIDIA hardware support both CUDA & OpenCL. 
− OpenCL also supported on all new AMD cards (must run on lab machine). 

§  You decide what to use for the home exam! 
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Outline 

§  The CUDA Programming Model  
−  Basic concepts and data types 
 

§  An example application: 
−  The good old Motion JPEG implementation! 

§  Thursday: 
−  More details on the CUDA programming API 
−  Make an example program!  
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The CUDA Programming Model 

§  The GPU is viewed as a compute device that: 
−  Is a coprocessor to the CPU, referred to as the host 
−  Has its own DRAM called device memory 
−  Runs many threads in parallel 

§  Data-parallel parts of an application are 
executed on the device as kernels, which run in 
parallel on many threads 

§  Differences between GPU and CPU threads  
−  GPU threads are extremely lightweight 

•  Very little creation overhead 

−  GPU needs 1000s of threads for full efficiency 
•  Multi-core CPU needs only a few 
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Thread Batching: Grids and Blocks 

§  A kernel is executed as a 
grid of thread blocks 
−  All threads share data 

memory space 

§  A thread block is a batch of 
threads that can cooperate 
with each other by: 
−  Synchronizing their execution 

•  Non synchronous execution 
is very bad for performance! 

−  Efficiently sharing data 
through a low latency shared 
memory 

§  Two threads from two 
different blocks cannot 
cooperate 

Host 

Kernel 
1 

Kernel 
2 

Device 

Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 
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CUDA Device Memory Space Overview 

§  Each thread can: 
−  R/W per-thread registers 
−  R/W per-thread local memory 
−  R/W per-block shared memory 
−  R/W per-grid global memory 
−  Read only per-grid constant 

memory 
−  Read only per-grid texture 

memory 

§  The host can R/W global, 
constant, and texture 
memories 

(Device) Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host 
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Global, Constant, and Texture Memories 

§  Global memory: 
− Main means of 

communicating R/W 
Data between host and 
device 
− Contents visible to all 

threads 

§  Texture and Constant 
Memories: 
− Constants initialized by 

host  
− Contents visible to all 

threads 

(Device) Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host 
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Terminology Recap 

§  device = GPU = Set of multiprocessors  
§  Multiprocessor = Set of processors & shared memory 
§  Kernel = Program running on the GPU 
§  Grid = Array of thread blocks that execute a kernel 
§  Thread block = Group of SIMD threads that execute a 

kernel and can communicate via shared memory 

Memory Location Cached Access Who 
Local Off-chip No Read/write One thread 
Shared On-chip N/A - resident Read/write All threads in a block 
Global Off-chip No Read/write All threads + host 
Constant Off-chip Yes Read All threads + host 
Texture Off-chip Yes Read All threads + host 
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Access Times 

§  Register – Dedicated HW – Single cycle 
§  Shared Memory – Dedicated HW – Single cycle  
§  Local Memory – DRAM, no cache – “Slow” 
§  Global Memory – DRAM, no cache – “Slow” 
§  Constant Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 
§  Texture Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 



INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo 

The CUDA Programming Model 

§  The GPU is viewed as a compute device that: 
−  Is a coprocessor to the CPU, referred to as the host 
−  Has its own DRAM called device memory 
−  Runs many threads in parallel 

§  Data-parallel parts of an application are 
executed on the device as kernels, which run in 
parallel on many threads 

§  Differences between GPU and CPU threads  
−  GPU threads are extremely lightweight 

•  Very little creation overhead 

−  GPU needs 1000s of threads for full efficiency 
•  Multi-core CPU needs only a few 
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Terminology Recap 

§  device = GPU = Set of multiprocessors  
§  Multiprocessor = Set of processors & shared memory 
§  Kernel = Program running on the GPU 
§  Grid = Array of thread blocks that execute a kernel 
§  Thread block = Group of SIMD threads that execute a 

kernel and can communicate via shared memory 

Memory Location Cached Access Who 
Local Off-chip No Read/write One thread 
Shared On-chip N/A - resident Read/write All threads in a block 
Global Off-chip No Read/write All threads + host 
Constant Off-chip Yes Read All threads + host 
Texture Off-chip Yes Read All threads + host 
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Access Times 

§  Register – Dedicated HW – Single cycle 
§  Shared Memory – Dedicated HW – Single cycle  
§  Local Memory – DRAM, no cache – “Slow” 
§  Global Memory – DRAM, no cache – “Slow” 
§  Constant Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 
§  Texture Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 



Some Information on the Toolkit 
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Compilation 

§  Any source file containing CUDA language 
extensions must be compiled with nvcc 

§  nvcc is a compiler driver 
−  Works by invoking all the necessary tools and 

compilers like cudacc, g++, etc. 

§  nvcc can output: 
−  Either C code 

•  That must then be compiled with the rest of the 
application using another tool 

−  Or object code directly 
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Linking & Profiling 

§  Any executable with CUDA code requires two dynamic 
libraries: 
− The CUDA runtime library (cudart) 
− The CUDA core library (cuda) 

§  Several tools are available to optimize your application 
− nVIDIA CUDA Visual Profiler 
− nVIDIA Occupancy Calculator 

§  NVIDIA Parallel Nsight for Visual Studio and 
Eclipse 
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Debugging Using Device Emulation 
§  An executable compiled in device emulation 

mode (nvcc -deviceemu): 
−  No need of any device and CUDA driver 
 

§  When running in device emulation mode, one 
can: 
−  Use host native debug support (breakpoints, inspection, etc.) 
−  Call any host function from device code 
−  Detect deadlock situations caused by improper usage of 

__syncthreads 

§  nVIDIA CUDA GDB (available on clinton, bush 
and kennedy) 

 

§  printf is now available on the device! (cuPrintf) 
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Before you start… 

§  Four lines have to be added to your group 
users  .bash_profile or .bashrc file 

PATH=$PATH:/usr/local/cuda-5.0/bin 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-5.0/

lib64:/lib 
 
export PATH 
export LD_LIBRARY_PATH 
 

§  Code samples is installed with CUDA 
§  Copy and build in your users home directory 
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Some usefull resources 
 nVIDIA CUDA Programming Guide 5.0 
 http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf 

 

 nVIDIA OpenCL Programming Guide
 http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/
OpenCL_Programming_Guide.pdf 

 
 

 nVIDIA CUDA C Best Practices Guide 
 http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf 

 

 Tuning CUDA Applications for Kepler 
 http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html 

  
  Tuning CUDA Applications for Fermi 
 
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/
Fermi_Tuning_Guide.pdf 



Example: 

Motion JPEG Encoding 
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14 different MJPEG encoders on GPU 

Nvidia GeForce GPU 

Problems: 
•  Only used global memory 
•  To much synchronization between threads 
•  Host part of the code not optimized 
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Profiling a Motion JPEG encoder on x86 

•  A small selection of DCT 
algorithms: 
•  2D-Plain: Standard forward 2D 

DCT 
•  1D-Plain: Two consecutive 1D 

transformations with transpose 
in between and after 

•  1D-AAN: Optimized version of 
1D-Plain 

•  2D-Matrix: 2D-Plain 
implemented with matrix 
multiplication 

•  Single threaded application 
profiled on a Intel Core i5 
750 
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Optimizing for GPU, use the memory correctly!! 

•  Several different types 
of memory on GPU: 
•  Global memory 
•  Constant memory 
•  Texture memory 
•  Shared memory 

•  First Commandment 
when using the GPUs: 
•  Select the correct 

memory space, AND 
use it correctly! 
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How about using a better algorithm?? 

•  Used CUDA Visual 
Profiler to isolate DCT 
performance 

•  2D-Plain Optimized is 
optimized for GPU: 
•  Shared memory 
•  Coalesced memory access 
•  Loop unrolling 
•  Branch prevention 
•  Asynchronous transfers 

•  Second Commandment 
when using the GPUs: 
•  Choose an algorithm suited 

for the architecture! 
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Effect of offloading VLC to the GPU 

•  VLC (Variable Length 
Coding) can also be 
offloaded: 
•  One thread per macro 

block 
•  CPU does bitstream 

merge 
•  Even though algorithm is 

not perfectly suited for the 
architecture, offloading 
effect is still important! 



Example: Hello World 
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// Hello World CUDA - INF5063!
!
// #include the entire body of the cuPrintf code (availible in the SDK)!
#include "util/cuPrintf.cu"!
#include <stdio.h>!
!
!
__global__ void device_hello(void)!
{!
  cuPrintf("Hello, world from the GPU!\n");!
}!
!
!
int main(void)!
{!
  // greet from the CPU!
  printf("Hello, world from the CPU!\n");!
!
  // init cuPrintf!
  cudaPrintfInit();!
!
  // launch a kernel with a single thread to say hi from the device!
  device_hello<<<1,1>>>();!
!
  // display the device's greeting!
  cudaPrintfDisplay();!
!
  // clean up after cuPrintf!
  cudaPrintfEnd();!
!
  return 0;!
}!

Example: Hello World 


