
INF5063 – GPU & CUDA

Håkon Kvale Stensland
iAD-lab, Department for Informatics

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Basic 3D Graphics Pipeline

Application

Scene Management

Geometry

Rasterization

Pixel Processing

ROP/FBI/Display

Frame
Buffer

Memory

Host

GPU

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

PC Graphics Timeline

§  Challenges:
−  Render infinitely complex scenes
−  And extremely high resolution
−  In 1/60th of one second (60 frames per second)

§  Graphics hardware has evolved from a simple hardwired
pipeline to a highly programmable multiword processor

1998! 1999! 2000! 2001! 2002! 2003! 2004!

DirectX 6!
Multitexturing!

Riva TNT!
DirectX 8!
SM 1.x!

GeForce 3! Cg!
DirectX 9!
SM 2.0!

GeForceFX!
DirectX 9.0c!

SM 3.0!
GeForce 6!DirectX 5!

Riva 128!
DirectX 7!

T&L TextureStageState!
GeForce 256!

2005! 2006!

GeForce 7! GeForce 8!SM 3.0! SM 4.0!DirectX 9.0c! DirectX 10!

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Graphics in the PC Architecture

§  DMI (Direct Media
Interface) between
processor and chipset
− Memory Control now

integrated in CPU
§  The old “Northbridge”

integrated onto CPU
− PCI Express 3.0 x16

bandwidth at 32 GB/s
(16 GB in each direction)

§  Southbridge (X79)
handles all other
peripherals

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

GPUs not always for Graphics

§  GPUs are now common in HPC
§  Largest supercomputer in

November 2012 will be the Titan
at Oak Ridge National Laboratory
−  18688 16-core Opteron processors
−  16688 Nvidia Kepler GPU’s
−  Target: 20+ petaflops

§  Before: Dedicated compute card
released after grapics model

§  Now: Nvidia’s high-end Kepler GPU
is currently only produced as
compute product

GeForce GTX 690

Tesla K10

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

High-end Hardware
§  nVIDIA Kepler Architecture
§  The latest generation GPU,

codenamed GK110

§  7,1 billion transistors
§  2688 Processing cores (SP)
−  IEEE 754-2008 Capable
−  Shared coherent L2 cache
−  Full C++ Support
− Up to 32 concurrent kernels
−  6 GB memory with ECC
−  Supports GPU virtualization

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

§  nVidia Quadro 600
−  GPU-5, GPU-6, GPU7, GPU-8
−  Fermi Architecture

§  Based on the GF108(GL) chip
−  585 million transistors
−  96 Processing cores (CC)

at 1280MHz
−  1024 MB Memory with 25,6

GB/sec bandwidth
−  Compute version 2.1

Lab Hardware #1

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Lab Hardware #2

§  nVidia GeForce GTX 650
−  Clinton, Bush, Kennedy
−  Kepler Architecture

§  Based on the GK107 chip
−  1300 million transistors
−  384 Processing cores (SP) at 1058

MHz
−  1024 MB Memory with 80 GB/sec

bandwidth
−  Compute version 3.0

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

GeForce GK110 Architecture

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

nVIDIA GF100 vs. GT200 Architecture

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

TPC… SM… SP… Some more details…

§  TPC
−  Texture Processing Cluster

§  SM
−  Streaming Multiprocessor
−  In CUDA: Multiprocessor,

and fundamental unit for
a thread block

§  TEX
−  Texture Unit

§  SP
−  Stream Processor
−  Scalar ALU for single

CUDA thread

§  SFU
−  Super Function Unit

TPC TPC TPC TPC TPC TPC TPC TPC

TEX

SM

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor

SM
Shared Memory

SM

SM

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

SP: The basic processing block

§  The nVIDIA Approach:
− A Stream Processor works

on a single operation

§  AMD GPU’s work on up
to five or four
operations, new
architecture in works.

§  Now, let’s take a step
back for a closer look!

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Streaming Multiprocessor (SM) – 1.0

 §  Streaming Multiprocessor (SM)
§  8 Streaming Processors (SP)
§  2 Super Function Units (SFU)

§  Multi-threaded instruction dispatch
§  1 to 1024 threads active
§  Try to Cover latency of texture/

memory loads

§  Local register file (RF)
§  16 KB shared memory
§  DRAM texture and memory access
§  2 operations per cycle
§  GeForce 8800 GTX

Streaming Multiprocessor (SM)

Store to

SP 0 RF 0
SP 1 RF 1
SP 2 RF 2
SP 3 RF 3

SP 4 RF 4
SP 5 RF 5
SP 6 RF 6
SP 7 RF 7

Constant L 1 Cache
Load from Memory

S
F
U

S
F
U

Instruction Fetch
Instruction L 1 Cache

Thread / Instruction Dispatch

Shared Memory

Store to Memory

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Streaming Multiprocessor (SM) – 2.0

§  Streaming Multiprocessor (SM) on
the Fermi Architecture
§  32 CUDA Cores (CC)
§  4 Super Function Units (SFU)

§  Dual schedulers and dispatch
units
§  1 to 1536 threads active
§  Try to optimize register usage

vs. number of active threads

§  Local register (32k)
§  64 KB shared memory
§  DRAM texture and memory

access
§  2 operations per cycle
§  GeForce GTX 480

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Streaming Multiprocessor (SMX) – 3.0

§  Streaming Multiprocessor (SMX)
on Kepler
§  192 CUDA Cores (Core)
§  64 DP CUDA Cores (DP Core)
§  32 Super Function Units (SFU)

§  Four schedule and dispatch units
§  1 to 2048 active threads
§  Software controlled scheduling

§  Local register (64k)
§  64 KB shared memory
§  1 operation per cycle
§  GeForce GTX 680

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

SM Register File

§  Register File (RF)
−  32 KB
−  Provides 4 operands/clock

§  TEX pipe can also read/write Register File
−  3 SMs share 1 TEX

§  Load/Store pipe can also read/write
Register File

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Constants

§  Immediate address constants
§  Indexed address constants
§  Constants stored in memory, and cached

on chip
−  L1 cache is per Streaming Multiprocessor

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Shared Memory

§  Each Stream Multiprocessor has
16KB of Shared Memory
−  16 banks of 32bit words

§  CUDA uses Shared Memory as
shared storage visible to all threads
in a thread block
−  Read and Write access

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Execution Pipes

§  Scalar MAD pipe
−  Float Multiply, Add, etc.
−  Integer ops,
−  Conversions
−  Only one instruction per clock

§  Scalar SFU pipe
−  Special functions like Sin, Cos, Log, etc.

•  Only one operation per four clocks

§  TEX pipe (external to SM, shared by all
SM’s in a TPC)

§  Load/Store pipe
−  CUDA has both global and local memory

access through Load/Store

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

GPGPU

Foils adapted from nVIDIA

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

What is really GPGPU?

§  General Purpose computation using GPU
in other applications than 3D graphics
− GPU can accelerate parts of an application

§  Parallel data algorithms using the GPUs properties
−  Large data arrays, streaming throughput
−  Fine-grain SIMD parallelism
−  Fast floating point (FP) operations

§  Applications for GPGPU
− Game effects (physics): nVIDIA PhysX, Bullet Physics, etc.
−  Image processing: Photoshop CS4, CS5, etc.
−  Video Encoding/Transcoding: Elemental RapidHD, etc.
− Distributed processing: Stanford Folding@Home, etc.
−  RAID6, AES, MatLab, BitCoin-mining, etc.

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Previous GPGPU use, and limitations

§  Working with a Graphics API
−  Special cases with an API like Microsoft

Direct3D or OpenGL

§  Addressing modes
−  Limited by texture size

§  Shader capabilities
−  Limited outputs of the available shader

programs

§  Instruction sets
− No integer or bit operations

§  Communication is limited
−  Between pixels

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

 FB Memory

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

nVIDIA CUDA

§  “Compute Unified Device Architecture”
§  General purpose programming model
− User starts several batches of threads on a GPU
− GPU is in this case a dedicated super-threaded, massively data

parallel co-processor

§  Software Stack
− Graphics driver, language compilers (Toolkit), and tools (SDK)

§  Graphics driver loads programs into GPU
−  All drivers from nVIDIA now support CUDA
−  Interface is designed for computing (no graphics J)
−  “Guaranteed” maximum download & readback speeds
−  Explicit GPU memory management

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Khronos Group OpenCL

§  Open Computing Language
§  Framework for programing heterogeneous processors
−  Version 1.0 released with Apple OSX 10.6 Snow Leopard
−  Current version is version OpenCL 1.1

§  Two programing models. One suited for GPUs and one suited
for Cell-like processors.
− GPU programing model is very similar to CUDA

§  Software Stack:
− Graphics driver, language compilers (Toolkit), and tools (SDK).
−  Lab machines with nVIDIA hardware support both CUDA & OpenCL.
− OpenCL also supported on all new AMD cards (must run on lab machine).

§  You decide what to use for the home exam!

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Outline

§  The CUDA Programming Model
−  Basic concepts and data types

§  An example application:
−  The good old Motion JPEG implementation!

§  Thursday:
−  More details on the CUDA programming API
−  Make an example program!

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

The CUDA Programming Model

§  The GPU is viewed as a compute device that:
−  Is a coprocessor to the CPU, referred to as the host
−  Has its own DRAM called device memory
−  Runs many threads in parallel

§  Data-parallel parts of an application are
executed on the device as kernels, which run in
parallel on many threads

§  Differences between GPU and CPU threads
−  GPU threads are extremely lightweight

•  Very little creation overhead

−  GPU needs 1000s of threads for full efficiency
•  Multi-core CPU needs only a few

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Thread Batching: Grids and Blocks

§  A kernel is executed as a
grid of thread blocks
−  All threads share data

memory space

§  A thread block is a batch of
threads that can cooperate
with each other by:
−  Synchronizing their execution

•  Non synchronous execution
is very bad for performance!

−  Efficiently sharing data
through a low latency shared
memory

§  Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

CUDA Device Memory Space Overview

§  Each thread can:
−  R/W per-thread registers
−  R/W per-thread local memory
−  R/W per-block shared memory
−  R/W per-grid global memory
−  Read only per-grid constant

memory
−  Read only per-grid texture

memory

§  The host can R/W global,
constant, and texture
memories

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Global, Constant, and Texture Memories

§  Global memory:
− Main means of

communicating R/W
Data between host and
device
− Contents visible to all

threads

§  Texture and Constant
Memories:
− Constants initialized by

host
− Contents visible to all

threads

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Terminology Recap

§  device = GPU = Set of multiprocessors
§  Multiprocessor = Set of processors & shared memory
§  Kernel = Program running on the GPU
§  Grid = Array of thread blocks that execute a kernel
§  Thread block = Group of SIMD threads that execute a

kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Access Times

§  Register – Dedicated HW – Single cycle
§  Shared Memory – Dedicated HW – Single cycle
§  Local Memory – DRAM, no cache – “Slow”
§  Global Memory – DRAM, no cache – “Slow”
§  Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
§  Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

The CUDA Programming Model

§  The GPU is viewed as a compute device that:
−  Is a coprocessor to the CPU, referred to as the host
−  Has its own DRAM called device memory
−  Runs many threads in parallel

§  Data-parallel parts of an application are
executed on the device as kernels, which run in
parallel on many threads

§  Differences between GPU and CPU threads
−  GPU threads are extremely lightweight

•  Very little creation overhead

−  GPU needs 1000s of threads for full efficiency
•  Multi-core CPU needs only a few

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Terminology Recap

§  device = GPU = Set of multiprocessors
§  Multiprocessor = Set of processors & shared memory
§  Kernel = Program running on the GPU
§  Grid = Array of thread blocks that execute a kernel
§  Thread block = Group of SIMD threads that execute a

kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Access Times

§  Register – Dedicated HW – Single cycle
§  Shared Memory – Dedicated HW – Single cycle
§  Local Memory – DRAM, no cache – “Slow”
§  Global Memory – DRAM, no cache – “Slow”
§  Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
§  Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality

Some Information on the Toolkit

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Compilation

§  Any source file containing CUDA language
extensions must be compiled with nvcc

§  nvcc is a compiler driver
−  Works by invoking all the necessary tools and

compilers like cudacc, g++, etc.

§  nvcc can output:
−  Either C code

•  That must then be compiled with the rest of the
application using another tool

−  Or object code directly

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Linking & Profiling

§  Any executable with CUDA code requires two dynamic
libraries:
− The CUDA runtime library (cudart)
− The CUDA core library (cuda)

§  Several tools are available to optimize your application
− nVIDIA CUDA Visual Profiler
− nVIDIA Occupancy Calculator

§  NVIDIA Parallel Nsight for Visual Studio and
Eclipse

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Debugging Using Device Emulation
§  An executable compiled in device emulation

mode (nvcc -deviceemu):
−  No need of any device and CUDA driver

§  When running in device emulation mode, one
can:
−  Use host native debug support (breakpoints, inspection, etc.)
−  Call any host function from device code
−  Detect deadlock situations caused by improper usage of

__syncthreads

§  nVIDIA CUDA GDB (available on clinton, bush
and kennedy)

§  printf is now available on the device! (cuPrintf)

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Before you start…

§  Four lines have to be added to your group
users .bash_profile or .bashrc file

PATH=$PATH:/usr/local/cuda-5.0/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-5.0/

lib64:/lib

export PATH
export LD_LIBRARY_PATH

§  Code samples is installed with CUDA
§  Copy and build in your users home directory

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Some usefull resources
 nVIDIA CUDA Programming Guide 5.0
 http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

 nVIDIA OpenCL Programming Guide
 http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/
OpenCL_Programming_Guide.pdf

 nVIDIA CUDA C Best Practices Guide
 http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

 Tuning CUDA Applications for Kepler
 http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html

 Tuning CUDA Applications for Fermi

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/
Fermi_Tuning_Guide.pdf

Example:

Motion JPEG Encoding

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

14 different MJPEG encoders on GPU

Nvidia GeForce GPU

Problems:
•  Only used global memory
•  To much synchronization between threads
•  Host part of the code not optimized

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Profiling a Motion JPEG encoder on x86

•  A small selection of DCT
algorithms:
•  2D-Plain: Standard forward 2D

DCT
•  1D-Plain: Two consecutive 1D

transformations with transpose
in between and after

•  1D-AAN: Optimized version of
1D-Plain

•  2D-Matrix: 2D-Plain
implemented with matrix
multiplication

•  Single threaded application
profiled on a Intel Core i5
750

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Optimizing for GPU, use the memory correctly!!

•  Several different types
of memory on GPU:
•  Global memory
•  Constant memory
•  Texture memory
•  Shared memory

•  First Commandment
when using the GPUs:
•  Select the correct

memory space, AND
use it correctly!

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

How about using a better algorithm??

•  Used CUDA Visual
Profiler to isolate DCT
performance

•  2D-Plain Optimized is
optimized for GPU:
•  Shared memory
•  Coalesced memory access
•  Loop unrolling
•  Branch prevention
•  Asynchronous transfers

•  Second Commandment
when using the GPUs:
•  Choose an algorithm suited

for the architecture!

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

Effect of offloading VLC to the GPU

•  VLC (Variable Length
Coding) can also be
offloaded:
•  One thread per macro

block
•  CPU does bitstream

merge
•  Even though algorithm is

not perfectly suited for the
architecture, offloading
effect is still important!

Example: Hello World

INF5063, Pål Halvorsen, Carsten Griwodz, Håvard Espeland, Håkon Stensland University of Oslo

// Hello World CUDA - INF5063!
!
// #include the entire body of the cuPrintf code (availible in the SDK)!
#include "util/cuPrintf.cu"!
#include <stdio.h>!
!
!
__global__ void device_hello(void)!
{!
 cuPrintf("Hello, world from the GPU!\n");!
}!
!
!
int main(void)!
{!
 // greet from the CPU!
 printf("Hello, world from the CPU!\n");!
!
 // init cuPrintf!
 cudaPrintfInit();!
!
 // launch a kernel with a single thread to say hi from the device!
 device_hello<<<1,1>>>();!
!
 // display the device's greeting!
 cudaPrintfDisplay();!
!
 // clean up after cuPrintf!
 cudaPrintfEnd();!
!
 return 0;!
}!

Example: Hello World

