INF5063: Programming heterogeneous multi-core processors

... because the OS-course is just to easy!

Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks

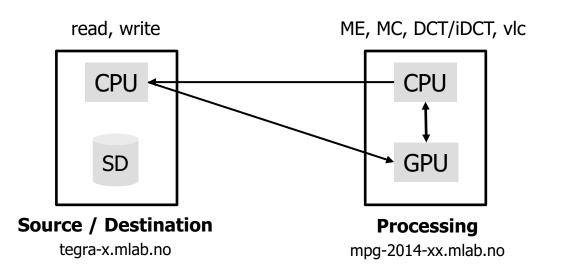
November 9th 2017

Håkon Kvale Stensland

Video Encoding

- Pål still wants to encode some videos on his computer...
- Pål discovered that PowerPoint 2016 now offloads the animations to the GPU... So one machine would therefore not be sufficient.
- We therefore need to add another computer to do his video encoding...

Lab Hardware for Home Exam 3


nVIDIA Quadro K2200

- All machines have the same GPU
- 1st Gen Maxwell Architecture
- Based on the full GM107 chip
 - 1870 million transistors
 - 640 Processing cores (SP) at 1000 MHz (5 SMM)
 - 4096 MB GDDR5 Memory with 80 GB/sec bandwidth
 - 1280 GFLOPS theoretical performance
 - Compute version 5.0
- Supports GPUDirect RDMA

Precode

- Same precode as Home Exam 1 and 2!
- Use makefile and program structure from non-mandatory assignment 3.
- You are not allowed to change out the Motion Estimation, Motion Compensation or DCT algorithms.
- You are **not** allowed to paste code from other projects / encoders.
- You only need to optimize the Codec63 encoder!
- Your implementation must use Dolphin PCI Express networks for communication between the machines.

Architecture for Home Exam 3

- 1 source and destination machine (Jetson TX1).
 - tegra-x.mlab.no
- 1 processing machine with four Intel Haswell cores and a Nvidia Maxwell GPU (Quadro K2200).
 - mpg-2014-xx.mlab.no
- The machines are connected in pairs with a PCI Express.

Your task: I/O Machines

- You can have up to three frames "in flight" (not counting any double buffering).
- DMA is recommended for data transfers, use PIO for synchronization. Remember, you might have to try multiple approaches. There are also different techniques for using SISCI to communicate between machines.
- Source & Destination (tegra-x.mlab.no):
 - The source machine has limited CPU resources.
 - Four cores are available on this machine, use threads and NEON if needed.
 - The CPU architecture is different compared to the processing machines (ARMv8 vs. x86)

• The use of two machines and PCIe interconnect is an absolute requirement for passing this exam.

Your task: Processing Machine

- No extra points will be given for using MMX, SSE or AVX on the processing machine.
- Use the GPU on the processing machines for at least Motion Estimation.
- The efficiently of your ME, MC and DCT/iDCT will not be evaluated on this assignment, this has already been evaluated on H2.
- You can use asynchronous transfers between CPU and GPU (CUDA streams) on the processing machines.
- Evaluate features like GPUDirect RDMA to copy data directly into GPU memory from the source machine.
- In the report you should describe all the optimizations that have been done, also the ones that did not work.

How are you evaluated?

- Make sure that your implementation **compiles** and **run**, and that it can **produce correct video output** (we also check the motion prediction). Our main focus will be on tractor video!
- Is different strategies for using SISCI evaluated? Is optimizations like GPUDirect evaluated?
- Communication and synchronization protocol between the IO machine and the processing node
- Is both the I/O and processing node optimized?
- Quality of the report. Is profiling of the code done between the different steps and how are the different optimization attempts documented and discussed in the report.
- Use of GPU for Motion Estimation, Motion Compensation and DCT/iDCT. *Not the local performance tuning that you achieve, but the gains achieved by parallelization and distribution (already evaluated on H1 and H2).*
- Presentation of your solution in the "poster session" is required to pass the exam!

Formal Information

- Deadline: Friday December 1st 16:00
- The assignment will count 33% of the final grade.
- Deliver your code, report and poster to: https://devilry.ifi.uio.no/
- Prepare a poster (two A3 pages) and a short talk (2 minutes without slides) to pitch your poster for the class (December 7th). Best poster & presentation will be awarded!

Competition!

- Will be announced on Wednesday November 23rd
- Winners will be announced during the last session on November 30th
- Prizes will be awarded to the best groups!
- Prizes for best poster and presentations will also be awarded on this final session!

Last but not least!

 Codec63 precode available for download in git. Clone the repository and work on you own local version.

```
git clone https://bitbucket.org/mpg_code/inf5063-codec63.git git clone https://bitbucket.org/mpg_code/sisci-assignment.git
```

 Bugs in the code can be reported in Bitbucket's issue tracking system, or Slack.

Good Luck!

PS! Start early!