§4¥% UNIVERSITETET
JIl 5 1 0SLO

Meta-models and Grammars
Prof. Andreas Prinz

Introduction
Modelling
Meta-modelling
Compilers
Meta-models vs. Grammars
Summary

Z
T
a1
o
=
o
1
N
o
o
(&)

4/25/2006 © Institutt for informatikk 1

What I1s a model?

= An abstraction of a system

= \What Is the best model of a cat?
— Itis a cat. But it has to be the same cat!

= A model needs a representation because it is
abstract.

= A model describes several systems.

= A model is similar to a language.
— It is applicable to some sort of systems.
— It distinguishes between correct and wrong systems.
— It has some (internal) structure.

pd
T
)
iy
=
o
]
N
o
o
o

4/25/2006 2

The meaning triangle

Concept

Thing Symbol

Cat

pd
T
)
iy
=
o
]
N
o
o
o

myCat| |myCat.Cat

4/25/2006 3

What i1s a meta-model?

= A description of a class of models
» Meta-models (languages) can have several aspects

graphical

Structure

Constraints

pd
T
)
iy
=
o
]
N
o
o
o

4/25/2006 4

How Is this done in SDL?
= SDL-2000 as standard of the SDL language.

900¢ - OTTS AN

4/25/2006

[¢)]

How Is this done in UML?
= UML 2.0 as OMG standard.

900¢ - OT1S AN

(o]

4/25/2006

Meta-modelling and Tools

= XMF from Xactium as example tool set.
simulator
» |dea: The meta-model IS the tool. Q
hical
m graphica un ~

. agentation: Behavieur:
editor) 1ial XOC

transforn

Textual :
editor ormalmeta-mode A
v _transformator

7 onstraints:

Formal Exchange

Access OCL format

Interface w
Repository

4/25/2006 7

=2
L
)
=
=
o
1
N
Q
)
(©)]

A meta-modelling architecture

MOF (meta-meta)

A

UML meta-model

7y

User model

A
]

Model instance

4/25/2006

Le | Class Property | Assoc. |OCL
vel
2 |class property | Assoc. |OCL
concept | concept |concept |concept
(meta-
model)
1 |specific |specific |specific |OCL
class property |assoc. |formula
O |object |slotwith |link value
of a value between
class objects

=2
T
)
=
=
o
1
N
Q
o
(o))

Clabjects

= A class is also an object.

Class

name: String

iISAbstract: Boolean

Person

4/25/2006

Class,: Class,

name = 'Class’
ISAbstract = false

name: String
ISAbstract: Boolean

Person

: Class,

: Property,

name = 'Person’
ISAbstract = false

name = 'Class,’
iISAbstract = false

name = 'name’

: Class,

name = 'Person’
iISAbstract = false

: Property,

name = 'iIsAbstract’

=2
T
)
=
=
o
1
N
Q
o
(o))

MDA in OMG context

A 4
A 4

CIM PIM PSM

Meta Language

P\
T\
. .

1

| Descr. Language\“\

Source Language —{T Descr.]—» Target Language
Source —{Transform}—»

4/25/2006 10

pd
T
)
iy
=
o
]
N
o
o
o

Target

Compilers & problems

» Graphical languages
= Domain specific

languages
= Many transformations input
» Solved: many —
input/output formats frontend
backend

* Internal representation
— Meta-model output
— Abstract grammar =

4/25/2006 11

pd
L
)
iy
=
o
]
N
o
o
o

Meta-models versus grammars

= Advantages of grammars

Strong mathematical basis

Tree-based

Trees can be extended into general graphs
Several advanced tools available

Easily understandable

= Advantages of meta-models

4/25/2006

Direct representation of graphs (graphics!)

Namespaces and relations between language elements (in particular for
language transformations and combinations)

Object-oriented definition of oo languages

More problem-oriented

Reuse and inheritance

Tools allow direct handling of models (repositories)
Structuring possible (e.g. packages)

pd
L
)
iy
=
o
]
N
o
o
o

12

Example: EBNF in EBNF

BnfGrammar ::= Rule*
Rule :: NonTerminal (::" | '="| "::=") Expression
Expression = Alternative | Composition | PExpression
PEXpression =

Optional | AtLeastOne | Arbitrary | Symbol | ’(" Expression ’)’
Alternative ::= PExpression ’|' (PExpression | Alternative)
Composition ::= PExpression +
Optional ::="[" Expression |
AtLeastOne ::= PEXxpression '+’
Arbitrary ::= PExpression ™’
Symbol = Terminal | NonTerminal

4/25/2006

=2
L
)
=
=
o
1
N
Q
o
(o))

13

Example: Abstract syntax of EBNF

BnfGrammar ::= Rule*
Rule :: NonTerminal Expression

Expression = Alternative | Composition | Optional |
AtLeastOne | Arbitrary | Symbol

Alternative .= Expression +
Composition ::= Expression +
Optional ::= Expression
AtLeastOne ;.= Expression
Arbitrary ::= Expression

Symbol = Terminal | NonTerminal

4/25/2006

=2
L
)
=
=
o
1
N
Q
o
(o))

14

Example: simple meta-model for EBNF

\ 4

Symbol
Terminal | | NonTerminal 1 L Rule
ube
Optional || AtLeastOne || Arbitrary

ression

Expression +quhpxprpqqio
1..n

Alternative

4/25/2006

Composition

pd
T
)
iy
=
o
]
N
o
o
o

15

Example: reworked meta-model for EBNF

Class
v .
Class Class T—Relation! L Expression Iq“hp"-“mqqlo
..N
ubexpression Alternative

Optional || AtLeastOne || Arbitrary =
)
S
Composition 3
(@))

4125/2006 16

Example: reworked meta-model for EBNF

<<enumeration>>
MultiplicityKind
Arbitrary
AtLeastOne
Optional
One
v
Class 71 Generalization - Expression
1 1
— z
Assoclation o
=
1 :
Multiplicity §
o

kind: MultiplicityKind

4/25/2006 17

Example: final meta-model for EBNF

<<enumeration>>
MultiplicityKind
Arbitrary
AtLeastOne
Optional
One
Generalization
1
1
Class 1
1
Association
1

Multiplicity
kind: MultiplicityKind

pd
L
)
iy
=
o
]
N
o
o
o

4/25/2006 18

Transformation to the meta-model

1. Every symbol is represented with a class.

2. A rule with a single symbol on the rhs is represented with an
association between the class representing the |hs and the
rhs.

3. A rule with a composition on the rhs is represented with an
association for every sub-expression.

4. A rule with an alternative on the rhs is represented with a
generalization for every sub-expression.

5. A sub-expression consisting of just one symbol is
represented with the symbol’s class.

6. A sub-expression being a composition or an alternative is
represented with a new class with new name. The
composition is then handled like a rule.

=2
L
)
=
=
o
1
N
Q
o
(o))

4/25/2006 19

From grammars to metamodels

= Nowadays languages are usually grammar-based
= How can we come to a metamodel?

Static semantics

A

constraints

+Language definition+—

BNF grammar

Mapping aLpIication

Primitive meta-model

Abstract concepts

Model Tr

Model transformation

transient meta-model

4/25/2006

\ 4

Model transformation

transformation

A 4

meta-model

pd
T
)
iy
=
o
1
N
o
o
o

20

Using the transformation for SDL

* Introduction of abstract concepts
— General: namespace, namedElement, typedElement
— Specific: parametrizedElement, bodiedElement

» |[ntroduction of relations

— Procedure name versus procedure definition
» Deletion of grammar artefacts

— Referencing: identifier, qualifier

— Names in general

— Superfluous structuring

4/25/2006

pd

T

)

iy

=

o
]

900¢

21

Summary

» Languages of the future will be defined using meta-
models

= Meta-model language definitions allows
— Direct access to the models
— Easy exchange of representation or several of them
— Combination of tools handling the language
— Description of relations between languages

= An important future work is the identification of joint
concepts.
— MOF is not enough here, describe more in-depth relations
— Have communities discuss their concepts.

4/25/2006

pd
T
)
iy
=
o
]
N
o
o
o

22

	Meta-models and GrammarsProf. Andreas Prinz
	What is a model?
	The meaning triangle
	What is a meta-model?
	How is this done in SDL?
	How is this done in UML?
	Meta-modelling and Tools
	A meta-modelling architecture
	Clabjects
	MDA in OMG context
	Compilers & problems
	Meta-models versus grammars
	Example: EBNF in EBNF
	Example: Abstract syntax of EBNF
	Example: simple meta-model for EBNF
	Example: reworked meta-model for EBNF
	Example: reworked meta-model for EBNF
	Example: final meta-model for EBNF
	Transformation to the meta-model
	From grammars to metamodels
	Using the transformation for SDL
	Summary

