l SEC. 9.2 THE TARGET MACHINE 519

T INF 370, s 2011
f-/za, z%a SuMu. L&@ﬂﬂma/n ”CMFM

| 9.2 THE TARGET MACHINE

i Familiarity with the target machine and its instruction set is a prerequisite for
designing a good code gencrator. - Unfortunately, in a general discussion of

| code generation it is not possible to describe the nuances of any target

- machine in sufficient detail to be able to generate good code for a complete
language on that machine. In this chapter, we shall use as the target com- <.

: . puter_a register machine that is representative of ‘several minicomputers.
Hewever the code-generation techniques presented m this chapler have also

. been used on many other classes of machines. -

i Our target computer is a byte-addressable machine with four bytes fo a

- word and n general-purpose registers, RO, R1, Rn—1. It has two-

address instructions of the form ' :

I op source, destination) _ < N Oif’./ LL.,@ ; j‘[’;

- in which op is an op-code, and source and destination are data fields. It has AA /("0% V bwL A%
the following op-codes (among others): ‘

4
_ a m R O
MOV (move source to de..s'tim.uion) - 1/ in R 1
ADD (add source to destination) . ‘_ (.
: SUB (subtract source from destination) : l/b% [&) a)
. Other instructions will be introduced as needed. . ' CSUB Rf [20

The source and destination ficlds are not long enough to hold memory wuL ML{M y %y

- addresses, so certain bit patterns in these fields specify that words following R 0 =
: an instruction contain operands and/or addresses. The source and destination - -
. of an instruction are specified by combining registers and memory locations '
i with address modes. In the following description, contents{a) denotes the
"‘. contents of the register or memory address represented by a.

. The address modes together wnh their assembly-language forms and -associ-
nted costs are as follows: '

| * MODE Form ADDRESS - . ADDED CosT
absolute M M ' |
register R ' © R
indexed c{R) ¢ + contents(R)
indirect register *R ' contents (R)

0
. -
o . -
indirect indexed ;’; (’I;) 'CO_J;_{Z;?(; :&iogtem/‘s;k)} .'IL - (mﬁ / d‘i ,AGMGG)
Jowhclion fwnwuﬂ | | |

 Sounce Det, Sommce Deat . .

T T T

oF,carQL /[HeleIR/[Moch,lR] ,'\ Mo C LM o C ’_j

[..._,_,.H.

e (ed T7n
1 A

j‘f Mw C occur A phe.

ovetuad aoé&ww@ mo’éc

520 CODE GENERATION - SEC. 9.2

A fnemory location M or a register R represents itself when used as a source or
destination. For example, the instruction

MOV RO,M

stores the contents of register RO into memory location M. 7
An address offset ¢ from the value in register R is written as ¢ (R). Thus,

MOV 4(R0),M
stores the value
contents (4 + contents (R0))

into memory location M.
Indii_';ct versions of the last two modes are indicated by prefix ., Thus,

MOV +4(RO),M

stores. the value

contents (contents (4 + contents (R0)))

. :-'-A ‘fial a ress mode allows the source to be a conStant-‘;

MODE ForM CONSTANT ADpDED Cost
literal #c c) i

Thus, the instr_uction
' MOV #1,R0

loads the constant 1 into register RO.

Imstruction Costs

We take the cost of an instruction to be one plus the costs associated with the
source and destination address modes (indicated as “added cost” in the table
for address modes above). This cost corresponds to the length (in words) of
the instruction. Address modes involving registers have,cost zero, while those

with a memory location or literal in them have co;w, because such

operands have to be stored with the instruction. .\ -
-, If space is important, then we should clearly ‘minimize instruction length.
- However, doing so has an important additiohal beriefit, ‘For most ‘machines
~~and. for most.instructions, the time taken to fotch in instruction from memory
excceds the time spent executing the instruction. Therefore, by minimizing
the instruction length we also tend to minimize the time taken to perform the
- instruction as well.? Some examples follow. '

* The cost criterion is meant to be insiructive rather than realistic. Allewing a full word for an in-
struction simplifies the rule for determining the cost. A more accurate estimate of the time taken.
by an instruction would consider whether an instruction requires the value of an operand, as well

SEC. 9.2 THE TARGET MACHINE 521

1. The instruction MOV RO, R4 copies the contents of register RO into regis- -
ter R1. This instruction has cost one, since it occupies only one word of
memory,

2. The (store) instruction MOV RS, M copies the contents of register RS into
memory location M. This instruction has cost two, since the address of
memory location M is in the word following the instruction.

L

3. THe instruction ADD #1, R3 adds the constant 1 to the contents of regis-
ter 3, and has cost two, since the constant 1 must appear in the next word
_ following the instruction. :

4. The instruction SUB 4(R0), »12(R1) stores the value / ff ([/ + M ({o))
comentr{ronEANA=E ROy |)

contenis{contents (12 + contents {(R1))) —~

into the destination *12(R1). The cost of this instruction is three, since
the constants 4 and 12 are stored in the next two words following the
instruction. : - . :

Some.of:the difficulties in generating.code for this machine can seen by con-
-sidering - what code to generate for a three-address - statemeint-of the form.
aiab+c where b and c are simple variables in distinct memory locations
denoted by these names. This statement can be implemented by many dif-
ferent instruction sequences. Here are a few examples:

1. Mov b, RO

ADD c, RO cost = 6
MOV RO, a

2. MOV b, a _
ADD - ¢, a cost = 6

Assuming RO, R1, and R2 contain the addresses of a, b, and c, respee-
tively, we can use:

3. MOV sR1, *RO

$ =
ADD *R2, *RO cos 2

Assuming R1 and R2 contain the values of b and c, respectively, and that
the value of b is not needed after the assignment, we can use: J

4. ADD R2, R1

[=
MOV - R1, a cost = 3

b

We sec that in order to generate good code for this machine, we must util- ;
ize its addressing capabilities efficiently. There is a premium on keeping the |
- or r-value of a name in a register, if possible, if it is going to be used in the |
near future. |
|

—_— .
as its address (found with the instruction), to be fetched from memory.

528 CODE GENERATION SEC. 9.3

E
9.4 BASIC BLOCKS AND FLOW GRAPHS

A graph representation of three-address statements, called a flow graph, is
useful for understanding code-generation algorithms, even if the graph is not
explicitly constructed by a code-generation algorithm. Nodes in the flow
graph represent computations, and the edges represent the flow of control. In
Chapter 10, we use the flow graph of a program extensively as a vehicle to
collect information about the intermediate program. Some register assignment
algorithms use flow graphs to find the inner loops where a program is
expected to spend most of its time. '

Basic Blocks

A basic block is a sequence of consecutive statements in which flow of control
enters at the beginning and leaves at the end without halt or possibility of

branching except at the end. The following sequence of three-address state-
ments forms a basic block:

ty
t2 H

a % a
a=*>bh

SEC. 9.4. ‘ BASIC BLOCKS AND FLOW GRAPHS 529

t 1= 2 # &y]
Tty 1= L) + &y
ts s b * b c.whwﬁ

P | & Defpuiin o,
A three-addregs-sfatement x := y+z is said to define x and to use (or [<’/ 7 -, x

reference) y,dnd z. A name in a basic block is said to be five at a given

point:{f its vaM_% after that point in_the program, (perhaps in another — e X
basic block.} * oM : E—

2 A
The following algorithm can be used to partition a sequence of three- - X M <
address statements into basic blocks.] , '
Uale, wawx AA

9.1

Algorithm 9.1. Partition into basic blocks.

Input. A sequence of three-address statements. - ‘ ‘o

ba&o Mocm af |

Output. A list of basic blocks with each threc-address statement in exactly one |
block.

".-.MCM . R BEE I r‘ LA oo ' ' -

I We first; determine the set of leaders, the first statements of basnc blocks.

- The.rulés we use are the following, RN ' UJ l«w@- Cbé?wf dQ)W C&i‘u‘{/

i) The first statement is a leader. :
ii) Any statement that is the target of a conditional or unconditional -

. goto is a leader. - we Ahb
ili) Any statement that immediately follows a goto or conditional goto W ,” P10,
statement is a leader, . .

E
2. For each leader, its basic block consists of the leader and all statements
up to but not includiug the next leader or the end of the program. a

‘Example 9.3. Consider- the fragment of . source code shown in Fig. 9.7; it
computes the dot product of two vectors a and b of length 20. A list of
three-address statements performing this computation on our target machine is
shown in Fig. 9.8,

begin)
prod = 0;
4 1= 13
. do begin ' _
prrod := prod + prod ali] = b[i];
HE S S
end

while 1 <= 20
end

Fig. 9.7. Program to compute dot product.

530" CODE GENERATION SEC. 9.4

Let us apply Algorithm 9.1 to the three-address code in Fig. 9.8 to deter-
mine its basic blocks. Statement (1) is a leader by rule (i) and statement (3)

is a leader by rule (ii), since the last statement can jump to it, By rule (iii) .

the statement following (12) (recail that Fig. 9.13 is just a fragment of a pro-

\ I
gram) is a leader. Therefore, statements (1) and (2) form a basic block. The

remainder of the program beginning with statement (3) forms a second basic

biock. o
{1) prod :=0
() i =1
(N £ =4+ 4
{9 €y = alt]} /+ compute a[.i] */
A (5) &y 1= 4+ 1
te t=b [& 1 /+ compute bli] =/
t; 1= £y €,
kg = prod 4ty e T
grod ety PR
t-, =4 + _1 o
i:= t-;

if { <= 20 goto {3)

Fig. 9.8, Threc-address code computing dot product.

Flow Graphs

We can add the flow-of-control information to the set of basic blocks making
up a program by constructing a directed graph called a flow graph. The nodes
of the flow graph are the basic blocks. One node is distinguished as initial; it
is the block whose leader is the first statement. There is a directed edge from
block B to block B, if B, can immediately follow B, in some execution
sequence; that is, if

1. there is a conditional or unconditional jump from the last statement of B, :

to the first statement of B,, or

2, B, lmmedlately follows B, in the order of the program, and B, does not :

cend in an unconditional jump.
We say that B, is a predecessor of B,, and B, is a successor of B .

Example 9.4. The flow graph of the program of Fig. 9.7 is shown in Fig. 9.9.
B, is the initial node. Note that in the last statement, the jump to statement

(3) has been replaced by an equivalent jump to the beginning of block B,. O ;

Representation of Basic Blocks

Basic blocks can be represented by a variety of data structures. For example, .|
after partitioning the three-address statements by Algorithm 9.1, each basic
block can be represented by a record consisting of a count of the number of

quadruples in the block, followed by a pointer to the leader (first quadruple)

O boi-g

(2) a<d4r+2

(3 ﬁa(lggﬁ(é)
% %X;ef')

5 (%

(¢} x:-':‘;

2D Ahi=xwyg
((@.) &# £r>$jdid)

SEC. 9.4 BASIC BLOCKS AND FLOW GRAPHS 533

prod = {0

iz= 1 B,
¥

tl t= 4 & 1

ty, t=a [£]

ty = 4 » i

* t4:=h[t3]

ts 1= 82 » 1y B

tg = prod + &4 2

prod := t

£ t= 1+ 1

i = 14

if 4 <= 20 goto B,
]

Fig. 9.9. Flow graph for prﬁgram... .

of the block, and by the lists of predecessors and successors of the block. An
alternative is to make a linked list of the quadruples in each block. Explicit
references to quadruple numbers in jump stitements at the end of basic blocks
can cause problems if quadruples are moved during code optimization. For
example, if the block B, running from statements (3} through (12) in the
intermediate code of Fig. 9.9 were moved elsewhere in the quadruple array or

were shrunk, the (3) in if i <= 20 goto (3} would have to be changed. '

Thus, we prefer to make jumps point to blocks rather than quadruples, as we
have done in Fig. 9.9.

It is important to-note that an edge of the flow graph from block B to block
B’ does not specify the conditions under which control flows from B to B'.
That is, the edge does not tell whether the conditional jump at the end of B (if
there is a conditional jump there} goes to the leader of B’ when the condition
is satisfied or when the condition is rot satisfied. That information can be
recovered when needed from the jump statement in B.

Loops

In a flow graph, what is a loop, and how doés one find all loops? Most of the
time, it is easy to answer these questions, For example, in Fig. 9.9 there is
one loop, consisting of block B,. The general answers to these questions,
however, are a bit subtle; and we shall examine thermn in detail in the next
chapter. For the present, it is sufficient to say that a loop is a collection of
nodes in a flow graph such that : ‘

1. All nodes in the collection are strongly connected; that is, from any node
in the loop to any other, there is a path of length one or more, wholly
within the loop, and

& Me au'utL'mdf make
we o Una oﬁv-}lmi.ﬂmﬁ

lok . shntd
kmgw &by

Note Yhak im the handanilen cxomple. o previont
(D C) ‘u/LE’; /Sf’e {B.L)BB} Bg}m:f(ma{p a /(00)
s Vb wm be ondoed ot hwo placeh (se

tog mext Pa%e)\{ﬁm, voder modlin the

—at B, (e B))
ot Bj P‘m B%‘)

o (1, By B, B 4 o logp!

534 CODE GENERATION SEC. 0.4

2. The collection of nodes has a unique entry, that is, a node in the loop
such that the only way to reach a node of the loop from a node outside
the loop is to first go through the entry.

2
Mer: innermotte A

A loop that contains no other loops is called an inner loop. L

9.5 NEXT-USE INFORMATION

In this section, we collect next-use information about names in basic blocks.
If the name in a register is no longer needed, then the register can be assigned
to some other name. This idea of keeping a name in storage only if it wili be
used subsequently can be applied in a number of contexts. We used it in Sec-
tion 5.8 to assign space for attribute values. The simple code generator in the
next section applies it to register assignment, As a final application, we con-
sider the assignment of storage for temporary names.

Computing Next Uses : .N:

The use of a name in a three- address statement is deflncd as follows Suppose
three-address statement /assigns a value to x. If statement j has x as an
operand, and control can flow from statement i to j along a path that has no |
intervening assignments to x. then we say statement j uses the value of x J
computed at §. !

We wish to determine for each three-address statement x = y op 2z what
the next uses of %, v, and =z are. For the present, we do not concern our-
selves with uses outside the basic block containing this three-address statement
but we may, if we wish, attempt to determine whether or not there is such a‘;_‘@u‘ol 1)&4416 M
use by the live-variable analysis technique of Chapter 10 J

Qur algorithm to determine next uses ‘makes a backward pass over cach
basic block. We can easily scan a stream of three-address statements to find
the ends of basic blocks as in Algorithm 9.1. Since procedures can have arbi-
trary side effects, we assume for convenience that each procedure call starts a
new basic block.

Having found the end of a basic block, we scan backwards to the beginning,

recording (in the symbal table) for each name x whether x has a next use in . w° de mee

the block and if not, whether it is live on exit from that block. If the data- uA A
flow analysis discussed in Chapter 10 has been done, we know which names 4)
are live on exit from each block. If no live-variable analysis has been done, Ao me, th
we can assume alt nontemporary variables are live on exit, to be conservative. | oAl ume ‘HA‘K-

If the algorithms generating intermediate code or optimizing the code permit
certain temporaries to be used across blocks, these too must be considered
live. It would be a good idea to mark any such temporaries, so we do not
have to consider all temporaries live. ‘

Suppose we reach three-address statement & x:= y op z in our backward
scan. We then do the following.

>
i. Attach to statement~ the information currently found in the symbol table

)@A—é——* /\Jo' m%\tz _%/LW&

Ne mﬁzt uhe

Mbn;txma ALive.,

&— Haume o, b,c Live bere.

SEC. 9.6 A SIMPLE CODE GENERATOR 535

>
regarding the next use and liveness of x,g;mmé{
2. In the symbol table, set x to *“not live” and “‘no next use.” K" 2

3. In the symbaol table, set y and z to “live” and the next uses of y and z
to £ Note that the order of steps (2) and (3) may not be interchanged
because x may be y or z.

If three-address statement i is of the form x:= yor x = op y, the steps
are the same as above, ignoring =z.
Storage for Temporary Names

Although it may be useful in an optimizing compiler to create a distinct name

each time a temporary is needed (see Chapter 10 for justification), space has _.

to be allocated to hold the values of these temporaries. The size of the field
for temporaries in the general activation record of Section 7.2 grows with the
number of temporaries,

We can, in general, pack-two temporaries into the same location if they are

not live simultaneously. Since almost all temporaries are defined and -used{_i.é
within basic blocks, next-use information can be applied to pack temporaries, * .
For temporaries that are ised across blocks, Chapter 10 discusses the data-

flow analysis needed to compute liveness.

We can allocate storage locations for temporaries by examining each in turn
and assigning a temporary to the first location in the field for temnporarics that
does not contain a live temporary. If a temporary cannot be assigned to any
previously created location, add a new location to the data area for the current
procedure. In many cases, temporaries can be packed into registers rather
than memory locations, as in the next section.

For example, the six temporaries in the basic block (9.1) can be packed into
two locations. These locations correspond to t, and t; in:

t) t= a»a
t; := a»b
tz 1= 2 * &,
ty 1=t + &y
t; ;= b *b
t) 1= & + £y

2.6 A SIMPLE CODE GENERATOR

The code-generation strategy in this section generates target code for a2
sequence of three-address statement. It considers each statement in turn,
remembering if any of the operands of the statement are currently in registers,
and taking advantage of that fact if possible. For simplicity, we assume that

* If x is not live, then this statement can be deleted; such transformations are considered in Sec-
tion 9.8, '

536 CODE GENERATION | SEC. 9.6

for each operator in a statement there is a corresponding target-language
operator. We also assume that computed results can be left in registers as
long as possible, storing them only (a} if their register is needed for another
computation or (b) just before a procedure call, jump, or labeled statement.’

Condition (b) implies that everything must be stored just before the end of
a basic block.® The reason we must do so is that, after leaving a basic block,
we may be able to go to several different blocks, or we may go to one particu-
lar block that can be reached from several others. In either case, we cannaot,
without extra effort, assume that a datum used by a block appears in the same
register no matter how control reached that block. Thus, to avoid a possible
error, our -simple code-generation algorithm stores everything when moving
across basic-block boundaries as well as when procedure calls are made.
Later we consider ways to hold some data in registers across block boun-
daries. '

We can prodice reasonable code for'a three-address stalement.a :=b+c if -

we generate the single’ instruction ADD Rj, Ri with cost.one, lea_vingx._the"
result a in register Ri. This sequence’ is possible only if register Ri contains
b, RJ contains c, and b is not live after the statement; that is, b is not used
after the statement.

If Ri contains b but ¢ is in a memory location (called e for convenience),
we can generate the sequence

ADD c, Ri cost = 2
or

MOV c, Rj
ADD Rj, Ri

cost 3

provided b is not subsequently live. The second sequence becomes attractive
if this value of c is subsequently used, as we can then take its value from
register Rj. There are many more cases to consider, depending on where b
and c are currently located and depending on whether the current value of b

is subsequently used. We must also consider the cases where one or both of .

b and c is a constant. The number of cases that need to be considered
further increases if we assumg that the operator + is commutative. Thus, we
see that code generation involves examining a large number of cases, and
which case should prevail depends on the context in which a three-address
statement is seen.

————

$ However, to produce a symbolic dump, which makes available the values of memory locations
and registers in terms of the source program’s names for these values, it may be more convenicnt
to have programmer-defined variables (but not necessarily compiler-generated temporarics) stored
immediately upon calculation, should a program error suddenly cause a precipitous interrupt and
exit.

5 Note we are not assuming thal the guadruples were actually partitioned into basic blocks by the
compiler; the notion of a basic block is useful conceptually in any event,

!

SEC. 9.6 A SIMPLE CODE GENERATOR 537

Register and Address Descriptors

The code generation algorithm uses descriptors to keep track of register con-
tents and addresses for names.

1. A register descriptor keeps track of what is currently in each register. It :
is consulted whenever a new register is needed. We assume that initially |
the register descriptor shows that all registers are empty. (If register are
assigned across blocks, this would not be the case.) As the code genera-
tion for the block progresses, each register will hold the value of zero or
more names at any given time.

2. An address descriptor keeps track of the location (or locations) where the (_: % , }7/ %C»
i

current value of the name can be found af run time. The location might Y
be a register, a stack location, a memory address, or some set ot_' these, c& da/er méag& LA om
since when copied, a value also stays where it was. This information can ’ ‘ £| wy o
be stored in thc{symb‘ol_tgble and is used‘_to_‘;}eté;miqe the accessing B . ’;Ja’”b

o fhas e

 miethod for aname., T S
A Code-Generation Algorithm °

The code generation algorithm takes as input a sequence of three-address
statements constituting a basic block. For each threg-address statement
X 1= y op z we perform the following actions:

1. Invoke a function gefreg to determine the location L where the computa-
tion y op z should be performed. 1, will usually be a register, but it _
could also be a memory location. We describe the details of getreg |
shortly,

2. Consult the’ address descriptor for y to determine y', (one of) the . :
current location(s) of y. Prefer the register for y' if the value of ¥ is ,
currently both in memory and a register. If the value of v is not alread ' : Ao~
in L, generate the instruction Mov ¥', L to place a copy of y in L) elie. UIPC{Q}"&' m@u’ oA ;M) L
3. Gencfate the instruction OP z', L, where z' is a current location of z. - u‘w(' :j M M\g)
Again, prefer.a register to a memory location if z is in both. [Update the
address descriptor of x to indicate that x is in location L. If L is a
register, update its descriptor to indicate that it contains the value of x.

~ 4. I the current values of ¥ and/or =z have no next uses, are not live om |

—exit-frem=the=bleck, and are in registers, alter the register descriptor to

indicate that, after execution of x := ¥y op z, those registers no longer

will contain y and/or z, respectively. =0, tb
£
If the current three-address statement has a unary operator, the steps are IW'LL mOTl: e enls
- analogous to those above, and we omit the details. An important special case B&/ F’wf '
is a three-address statement x := y. If yis in a register, simply change the

register and address descriptors to record that the value of x is now found :
only in the register holding the value of ¥. If y has no next use and is not ,

The Jodosung omudh Avintly Lo an WM@—%:
A

¢ , J .
7 labley Hal are /44/@
Fei, G wmlafled Tt o) it
cf:)de;s.ﬁ cvf ,{wﬁ A OVLE, fbmﬁnm_-_

538 CODE GENERATION % . SEC. 9.6

live en-exit-frem-the-blotk, the register no longer hol
If v is only in memory, we could in principle recofd that the value of x is

in the location of y, but this option would complicat our algorithm, since we '

could not then change the value of y without the value of x,

Thus, if y is in memory we use getreg to find a register in which to load y

and make that register the location of =x.
Alternatively, we can generate a MOV y, x instruction, which would be
preferable if the value of x has no next use in the block. It is worth noting

that most, if not all, copy instructions will be eliminated if we use the block- .

improving and copy-propagation algorithm of Chapter 10.

Once we have processed all three-address statements in the basic block, we
store, by MOV instructions, those names that are live on exit and ‘not in their
memory locations. To do this we use the register descriptor te determine
what names are left in registers, the address descriptor to determine that the
same name is not already in its memory location, and the live variable infor-

‘mation to. 'determine whether. the name is to be stored. If no live-variable .
‘information has been- computed by data-flow-analysis among blocks, we¢ must "

assume all user-defined names are live at the-end of the biock

The Function getreg

The function gefreg returns the location L to hold the value of x for the
assignment X := y op z. A great deal of effort can be expended in imple-
menting this function to produce a perspicacious choice for L. In this section,
we discuss a simple, easy-to-implement scheme based on the next-use informa-
tion collected in the last section.

1. If the name y is in a register that holds the value of no other names
(recall that copy instructions such as x := y could cause a register to
hold the value of two or more variables simultancously), and ¥ is not
live and has no next use after execution of x := y op =, then return
the rcglster of y for L. ' 1 Heseriptor-at=y
Failing (l). return an empty register for L if there i fts orf
Failing (2), if x has a next use in the block k;;' op is an operator, such as
indexing, that requires a register, find an occupied register R. Store the
value of R into a memory location (by MOV R, M) if it is not already in
the proper memory location M, update the address descriptor for M, and
return R, If R holds the value of several variables, a MOV instruction
must be generated for each variable that needs to be stored. A suitable

occupied register might be one whose datum is referenced furthest in the -

future, or one whose value is also in memory. We leave the exact choice
unspecified, since there is no one proven best way to make the selection.

4.‘ If x is not used in‘ the block, or no suitable occupied register can be
found, select the memory location of x as L.,

%;:% Jhe meﬂ
vz af gf X
wfga,g?(w‘{ M&i{:‘*’é

4 oj,we, oA

moonld,
imalma €

Aioms

Mov

lop>

o(ﬂque/ ‘d/""'«‘

Y
RIS

(mmcla, ma(pwa o

4

J)

SEC. 9.6 A SIMPLE CODE GENERATOR 539

A more sophisticated getreg function would also consider the subsequent
uses of x and the commutativity of the operator op in determining the register
to hold the value of x. We leave such extensions of gelreg as exercises.

Example 9.5. The assignment d := (a-b) + {a-c) + (a~c) might be
translated into the following three-address code sequence

£.t= a - b
14 iz a - ¢
2imer Ao 0., b and. e Live ad dhe eud,

/

with 4 live at the end. The code generation algorithm given above would pro-
duce the code sequence shown in Fig, 9.10 for this three-address statemeht
sequence. Shown alongside are the values of the register and address descrip-
tors as code generation progresses. Not shown in the address descriptor is the
fact that a, b, and c are always in memory. We also assume that t, u and

v, being temporaries, are not in memory unless we explicitly store their values

with a MOV instruction. .

CODE - . | REGISTER ADDRESS

STATEMENTS e
: GENERATED DESCRIPTOR DESCRIPTOR

registers empty

t = a-b | MOV a, RO RO contaiiis t t in RO
5UB b, RO ’

ui=a~¢c | MOV a, R1 RO contains £ t in RO
SUB c, R1 R1 contains u u in R1

v.is t + u | ADD R1, RO | RO contains v uin RY
R1 centains u v in RO

d := v + u | ADD R1, RO | RO contains & d in RO

MOV RO, 4) - & in RO and
memory

Fig. 9.10. Codec sequence.

The first call of getreg returns RO as the location in which to compute t.
Since a is not in RO, we generate instructions MOV a, R0 and SUB b, RO.
We now update the register descriptor to indicate that RO contains t.

Code generation proceeds in this manner until the last three-address state-
fient d := v+u has been processed. Note that R1 becomes empty because u
has no next use. We then generaie MOV RO, d to store the live variable d at
the end of the block. _

The cost of the code generated in Fig. 9.10 is 12. We could reduce this to

1 by generating MOV RO, R1 immediately after the first instruction and
removing the instruction MOV a, R1, but to do so requires a more sophisti-
cated code-generation algorithm. The reason for the savings is that it ig
cheaper to load R1 from RO than from memory. a

@

'
i
1
i
i

\

We doe mot condloter ;2%‘ M@«»/m J

Ao cechiihe caé&i/ O
WAWMLCWA,)

