
Model-driven Compiler
Construction
Prof. Andreas Prinz

Meta-Introduction, Meta-Languages
DSL, Compilers, Modelling
Examples
Meta-models vs. Grammars
Summary

Prepared by Andreas Prinz 2

Meta-Introduction A
• Say your name
• Go to the right side
• Explain the sequence-rule
• Explain the skip-rule
• Go to the left side
• Explain the meaning of life
• Select one participant
• Pass the word to the selected person, Switch
to the next slide and Sit down on your seat

Prepared by Andreas Prinz 3

Meta-Introduction B
• Say your name
• Go to the right side
• Draw a circle on the blackboard
• Explain the term ”Meta”
• Explain
• Go to the left side
• Extrapolate positively
• Select one participant
• Pass the word to the selected person, Switch
to the next slide and Sit down on your seat

Prepared by Andreas Prinz 4

Meta-Introduction C
• Say your name
• Read the following text aloud

• The term “meta” means transcending or above.
• In our context, “meta” can be replaced by the
following phrases:

•  is a description of
•  is a model of
•  is an abstraction of

• Select Prof. Andreas Prinz
• Pass the word to the selected person, Switch
to the next slide and Sit down on your seat

Prepared by Andreas Prinz 5

Meta-lecture

• description of a lecture

• if it is
• formal (formulated in a formal language)

• complete (on some level of abstraction)

• executable (has semantics)

• then we can execute it (on a computer)

Prepared by Andreas Prinz 6

Meta-language

• description of a language

• if it is
• formal (formulated in a formal language)

• complete (on some level of abstraction)

• executable (has semantics)

• then we can execute it (on a computer)

Prepared by Andreas Prinz 7

What describes a language?

Structure

restrict

Semantics

execute

transform

Presentation

graphical

textual

construct

•  Language structure
•  construct: concepts and their relations
•  restrict: conditions, constraints

• Presentation
•  textual: text that presents that structure
•  graphical: graphics for the structure

• Semantics (Meaning)
•  transform: translate to another language
•  execute: run the statements

Structure

construct

Prepared by Andreas Prinz 8

Aspects of a language & tools

• Build a tool
from this info

• Idea: The meta-
model IS the
tool.

restrict

Semantics

execute

transform

Presentation

graphical

textual

Parser

Textual
editor

Access
interface

Repository

Graphical
editor

Checker

Exchange
format

Code generator

Simulator

Prepared by Andreas Prinz 9

Language tools: compilers

internal format

Graphical Editor Parser Text editor

Code generation Test case derivation Simulation

Exchange Format
(XMI, ASN.1) Static checks

•  Solved: many input/output formats
•  Graphical / Domain specific languages, many transformations
•  platform dependent code generation
•  combination of tools
•  internal format based on: abstract syntax, meta-model, MOF-structure

Prepared by Andreas Prinz 10

Why to describe Languages?
• graphical languages / combined
languages

• domain specific languages
• small languages
• higher abstraction levels – use of models
• fast production of compilers

• Needs good language design!
• Less focus on optimization because of
high-level output languages

Prepared by Andreas Prinz 11

Prepared by Andreas Prinz 12

Prepared by Andreas Prinz 13

Models and systems
• A model is an abstraction of a (part of a) system.

•  one model describes several systems, one system can have
several models

•  simplified view of a system with respect to criteria
•  needs a representation, e.g. using a language

• Models on different abstraction levels: Modelling
language, Programming Language, Assembler,
Machine code, Bits, Electricity, Atoms, …

• Meta-model = high-level description of a language
•  narrow view: concepts of the language
•  wider view: all important aspects of the language, i.e.

concepts, presentation, static and dynamic semantics
• Language descriptions use also DSLs and have
aspects.

Prepared by Andreas Prinz 14

A meta-modelling architecture

OMG Level Examples Grammar
example

OCL
example

3 = meta
meta model

MOF EBNF MOF

2 = meta
model

UML MM Java
grammar

OCL
language

1 = model UML Model a program a formula

0 =
instances

real objects A run a truth
value

«component»
MOF

«component»
UML Metamodel

«component»
UML Model

«component»
User Data

M3

M2

M1

M0

Prepared by Andreas Prinz 15

Language Aspects for SDL and UML

Structure

restrict
formal PC1

Semantics

execute
formal ASM

transform
formal ASM

Presentation

graphical
weak EBNF

textual
weak EBNF

SDL

Structure

restrict
formal OCL

Semantics

execute
informal text

transform
informal text

Presentation

graphical
informal text

textual
informal text

UML

construct
formal EBNF

construct
formal MOF

Prepared by Andreas Prinz 16

Meta-Languages in MDA and Eclipse

Structure

Constraints
OCL

Semantics

execute
action

transform
QVT

Presentation

graphical
HUGN

textual
HUTN

MDA

Structure

Constraints
OCL

Semantics

execute
Java

transform
xtend/xpand

Presentation

graphical
GEF/GMF

textual
xtext

eclipse
(oaw)

construct
MOF

construct
EMF

Prepared by Andreas Prinz 17

Simple sample structure (EMF)
Sudoku

1..*
Field

Column

Cell
cellValue

field
Box

Row

cells
cellsB
cellsR
cellsC

column

row

box

dimension

Prepared by Andreas Prinz 18

Simple sample constraints (OCL)
context Field inv uniqueICellValues:

self.cells->forAll(c1,c2 : Cell | c1<>c2 implies
 c1.iCellValue <> c2.iCellValue)

context Cell inv rowFromCell:

self.row -> size()=1

context Puzzle inv numberOfBoxes:

self.Elements->select(f : Field | f.oclIsTypeOf(Box))

-> size()=9

Prepared by Andreas Prinz 19

Simple sample text syntax (xtext)
grammar my.pack.Sudoku
 with org.eclipse.xtext.common.Terminals
generate sudoku "http://www.eclipse.org/sudoku"

Puzzle :
 ‘puzzle‘ dimension=INT ‘;' Row+;

Row :
 ‘row’ ‘(‘ (Cell ‘,’)+ Cell ’)’ ;

Cell :
 cellValue = INT;

Prepared by Andreas Prinz 20

Simple sample graphics
Puzzle

rows subsets diaContents
Row

Cell

Diagram

Container

Rectangle
cells subsets contents

Prepared by Andreas Prinz 21

Simple sample transformation
transformation swap1and6 (source, target: Sudoku){

 source Cell { cellValue = 1 }

 -> target Cell { cellValue = 6 };

 source Cell { cellValue = 6 }

 -> target Cell { cellValue = 1 };

 source Cell { cellValue = value }

 -> target Cell { cellValue = value };

 when{ cellValue <> 1 and cellValue <> 6; }

}

• declarative versus operational

Prepared by Andreas Prinz 22

Simple sample execution
Run(s:Sudoku) =def
 forall f in self.field do RunF(f)
Runf(f:Field) =def
 choose c in self.cell with c.value=null
 and c.possible.size = 1
 choose v in c.possible do c.value:= v
 choose c in self.cell with c.value<>null
 forall cc in self.cell do
 delete c.value from cc.possible

Prepared by Andreas Prinz 23

Problem area execution
Syntax Runtime

Meta-model Cell RTCell

Model X:Cell A: RTCell

B: RTCell

e.g. history,
possibilities

Prepared by Andreas Prinz 24

Problem area Presentation
• There are usually several representations for
the same meta-model instances.

• Tools and theory exist only for the case 1:1.
• A representation is a separate model that is
related to the meta-model.

Sig1: SignalDefinition

Sig2: SignalDefinition

signal Sig1, Sig2; signal Sig1;
signal Sig2;

signal Sig1;

signal Sig2;

Prepared by Andreas Prinz 25

Semantic Analysis (text2as)
• Transformation from concrete syntax to
abstract syntax: connect definitions with
uses

• flow-of-control checks, e.g. join/break labels
• name-related checks, e.g. begin/end construct
names

• Mapping patterns (syntax:semantics)
• Direct mapping (1:1) – direct match
• Merge mapping (1:n) – shorthand notations, e.g.
int a,b;

• Partial description mapping (n:1) – several
descriptions of the same thing

Prepared by Andreas Prinz 26

Meta-models versus grammars
• Advantages of grammars

•  Strong mathematical basis
•  Tree-based
•  Trees can be extended into general graphs
•  Several advanced tools available
•  Easily understandable

• Advantages of meta-models
•  Direct representation of graphs (graphics!)
•  Namespaces and relations between language elements (in

particular for language transformations and combinations)
•  Object-oriented definition of oo languages
•  More problem-oriented
•  Reuse and inheritance
•  Tools allow direct handling of models (repositories)
•  Structuring possible (e.g. packages)

Prepared by Andreas Prinz 27

Grammars  meta-models
1.  Every symbol is represented with a class.
2.  A rule with a single symbol on the rhs is

represented with an association between the class
representing the lhs and the rhs.

3.  A rule with a composition on the rhs is represented
with an association for every sub-expression.

4.  A rule with an alternative on the rhs is represented
with a generalization for every sub-expression.

5.  A sub-expression consisting of just one symbol is
represented with the symbol’s class.

6.  A sub-expression being a composition or an
alternative is represented with a new class with
new name. The composition is then handled like a
rule.

Prepared by Andreas Prinz 28

Using the transformation for SDL
• Joachim Fischer, Michael Piefel, Markus Scheidgen: A
Metamodel for SDL-2000 in the Context of
Metamodelling ULF in Proceedings of SAM2006

• Introduction of abstract concepts
•  General: namespace, namedElement, typedElement
•  Specific: parametrizedElement, bodiedElement

• Introduction of relations
•  Procedure name versus procedure definition

• Deletion of grammar artefacts
•  Referencing: identifier, qualifier
•  Names in general
•  Superfluous structuring

Prepared by Andreas Prinz 29

Summary
• Future compilers based on language descriptions.

•  A description of something can be executed on a computer if
it is formal, complete and executable.

•  describe languages instead of compiler writing
•  need also agreement (standard)
•  definition of good languages is difficult: use patterns

• A formal language description includes three
aspects: structure, syntax, semantics

• A formal language description allows tool generation
on a computer.

•  Model access & exchange, front-end and back-end
•  Easy exchange of representation or several of them
•  Combination of tools handling the language
•  Description of relations between languages

• This leads to model-driven compiler technology.

Prepared by Andreas Prinz 30

Importance of DSL (abstract syntax)

Model

Presentation

generated
Model

generated
code

checking Tools
(type,consistency)

transformation
tool

generated
tool

(checking model)

(xml check descr.)

(access. checker)

(checks compiler)

(code model)

(python code)

(html web page)

(web page model)

(access. checker)

