Exercise 2.1 - regular expressions

a) All strings of lowercase letters that begin and end in a

$$
a\left([a-z]^{*} a\right) ?
$$

b) All strings of lowercase letters that either begin or end in a (or both)

$$
a[a-z]^{*} \mid[a-z]^{*} a
$$

c) All strings of digits that contain no leading zeroes

$$
\text { nonzero }=1|2| \ldots \mid 9
$$

digit $=0 \mid$ nonzero
answer $=0 \mid$ nonzero digit*
d) All strings of digits that represent even numbers

$$
\begin{aligned}
& \text { even }=0|2| 4|6| 8 \\
& \text { answer }=\text { even } \mid[1-9][0-9]^{*} \text { even }
\end{aligned}
$$

e) All strings of digits such that all the 2's occur before all the 9's

$$
\begin{aligned}
& \text { dignot9 }=0|1| \ldots \mid 8 \\
& \text { dignot2 }=0|1| 3|4| \ldots \mid 9 \\
& \text { answer }=\operatorname{dignot9*} \text { dignot2* }
\end{aligned}
$$

f) All strings of a's and b's that contain no three consecutive b's

Exercise 2.1 - regular expressions

g) All strings of a's and b's that contain an odd number of a's and an odd number of b's (or both)
b*ab*(ab*ab*)* | a*ba*(ba*ba*)*
h) All strings of a's and b's that contain an even number of a's and an even number of b's

i) All strings that contain exectly as many a's and b's impossible - requires counting of arbitrary many a's

