
UNIVERSITY OF OSLO
Department of Informatics

Interpreter and
bytecode for
INF5110

Fredrik Sørensen,
Stein Krogdahl and
Birger
Møller-Pedersen

26th May 2008

Contents

1 Introduction 2

1.1 The interpreter . 2

1.2 Interpreting bytecode . 3

1.3 The library . 3

1.4 Using the Virtual Machine . 5

1.5 Source code overview . 6

2 Building a complete program 7

3 How the interpreter works 13

4 Some typical tasks 15

5 The instructions 19

6 Finally – Remember this 27

1

1 Introduction

This report presents the local variant of bytecode, bytecode interpreter and
bytecode construction library written for the course INF5110 (Compiler Con-
struction) at the University of Oslo. The bytecode library and interpreter
were developed to be used in the code generation and runtime part of the
obligatory exercise in the course. The objective of this exercise is to write a
compiler for a simple example language.

Bytecodes in general are similar to machine code, but instead of being run
directly on a machine, they are usually interpreted by a bytecode inter-
preter. They may also be translated into machine code before being run. A
bytecode construction library is a library used to simplify the task of gener-
ating bytecode for a bytecode interpreter. Bytecode is named exactly that
because each instruction is the size of a byte.

Our bytecode is very similar to Java bytecode and our bytcode library is
based on the Byte Code Engineering Library (BCEL)1. We chose to write
a simpler, stripped down version that does not support classes, virtual pro-
cedures and all the things Java’s bytecode has. We did this so that it would
be simpler to work with and there would be less code. For example, one
does not need to create classes like, since our language does not have them,
just for “some unexplained reason”. Still, we encourage the students to look
at BCEL, because it is a nice tool and very well designed.

The bytecode library and the interpreter are both written in Java. All the
code is handed out in source form and consists of the packages:

• bytecode.*: the classes to create bytecode

• bytecode.instructions.*: instruction classes (supporting the above)

• bytecode.type.*: type classes (supporting the above)

• runime.*: all the classes of the runtime system

1.1 The interpreter

The interpreter is stack based and it interprets the about 40 different instruc-
tions of our bytecode. The interpreter “automatically” handles allocation of

1http://jakarta.apache.org/bcel/

2

struct types, method calls and access of variables in a struct when instruc-
ted to, by the bytecode instructions. In the first version it does not have
a garbage collector and allocates memory sequencially as long as there is
memory left for it.

The operators (instructions) are so-called “stack operations”. It means that
when the interpreter executes an instruction it pops a number of operands
(zero or more) from the stack, performs the task required by the instruction
and leaves a number (usually just one) of result values on the stack.

The interpreter is not written for efficiency, but rather for readability and
ease of creating runnable bytecode. For example, the types are kept on the
stack together with the calculated values and the interpreter decides what
kind of operation to perform based on the types as well as the current in-
struction. For example, an ADD (addition) instruction will be performed
differently if there are two integers on the stack, two floats, or one of each.
This is different from Java bytecode, which has an ADDINT and an ADD-
FLOAT instruction, and where type casting has to be done explicitly in the
bytecode (for example with the i2f instruction, which converts an int to a
float).

1.2 Interpreting bytecode

As mentioned, the interpreter is stack based. The parameters from right
to left in an operation (including user defined functions) must be placed on
the stack with the leftmost on the bottom and the rightmost on the top of
the stack before the instruction itself is interpreted. For example, the SUB
(subtraction) instruction requires that the two operands the SUB instruction
will be applied to are on the stack and in the right order beforehand. The
number to subtract must be on the top and the number to subtract from
below it. We may denote the elements on the stack before an instruction
is interpreted with sn, where n is the index from the top, with the top as
n = 0. Then, the result of the SUB instruction is that the two values on the
top of the stack is removed and replaced by s1 − s0.

1.3 The library

The library has a class CodeFile that is the base for creating a program
with “runnable” sequences of instructions, that is, a (binary or .bin) file
that can be executed by the virtual machine or more specifically by the

3

virtual machines interpreter.

To create such a bytecode file, one must create an object of the class Code-
File, and add procedures, structs and global variables using the procedures
of the CodeFile object. Objects that represent local variables and instruc-
tions are created using the library and added to the procedure objects, which
are of class CodeProcedure. When the program is complete, that is, when
all the elements of the program has been added to the CodeFile object and
its CodeProcedure objects, the actual bytecode can be extracted by using
the procedure getBytecode() of a CodeFile object. The array of bytes that
is then created, is usually written to a file, which can then be read by the
virtual machine and run by its interpreter.

A typical use of the CodeFile class will be something like this:

CodeFile codeFile = new CodeFile();

String filename = "example.bin";

// Building the bytecode with instructions like

codeFile.addProcedure("Main");

CodeProcedure main = new CodeProcedure("Main", VoidType.TYPE,

codeFile);

main.addInstruction(new RETURN());

codeFile.updateProcedure(main);

// ... and more ...

byte[] bytecode = codeFile.getBytecode();

DataOutputStream stream = new DataOutputStream(

new FileOutputStream (filename));

stream.write(bytecode);

stream.close();

In the example, an object of the class CodeFile is first created. Then, the
procedure “main” is added to it. More procedures, structs, global variables
and constanst may be added to it. Then one can get the bytecode (an array
of bytes) and write it to a file, as shown.

The bytecode file can then, for example, be inspected with an editor for
binary files, like the Eclipse Hex Editor Plugin (EHEP)2.

2http://ehep.sourceforge.net/

4

1.4 Using the Virtual Machine

There are two ways to run a program from a bytecode file. Both are with
the class runtime.VirtualMachine.

• One is to use the command line and write

java runtime.VirtualMachine <FILENAME>

• The other is to use the class VirtualMachine in a program and create
an object of it and call the “run” procedure.

VirtualMachine vm = new VirtualMachine("<FILENAME>");

vm.run();

The class VirtualMachine can also list the content of the bytecode file in a
textual form. This also, can be done in two ways:

• One is to use the command line and write

java runtime.VirtualMachine -l <FILENAME>

• The other is to use the class in a program and create an object and
call the list procedure.

VirtualMachine vm = new VirtualMachine("<FILENAME>");

vm.list();

If we had a program like this ...

// File: ./Simple.d

struct Complex {

var float Real;

var float Imag;

}

var Complex dummy;

func Main() { }

5

... listing the generated bytecode with the “-l” option would look like this:

Loading from file: ./Simple.bin

Variables:

0: var Complex dummy

Procedures:

0: Main()

0: return

Structs:

0: Complex

0: float

1: float

Constants:

STARTWITH: Main

1.5 Source code overview

The most important classes and packages of the bytecode library are Code-
File (the main class for creating bytecode), CodeProcedure (the class for
creating a procedure in the bytecode), CodeStruct (the class for creating
a struct in the bytecode), bytecode.instructions.* (the package with all the
bytecode instruction classes) and bytecode.type.* (the package with all the
classes for the types used in the bytecode).

Although they are usually not used by a programmer, it is nice to know the
main classes of the Virtual Machine. It could be useful to look at the Virtual
Machine code, and one may need to add to it or debug it. The main classes of
the runtime system (the Virtual Machine) are VirtualMachine (the starting
point for running a program), Loader (the class that loads the program
from a file), Interpreter (the class that actually does the interpretation of
the bytecode), Stack (the class that handles the single stack in a program),
Heap,(the class that allocates, stores and retrieves the structs and their
fields) and ActivationBlock (the class that handles and stores the program
counter, local variables and so on and handles the call and return of a
procedure in conjunction with the Interpreter).

6

2 Building a complete program

We have showed the basics of how a bytecode program (binary file) is built
using the bytecode library. In this section we will show some of the details
by covering each of the classes in the library and what they can do. Details
about all the instructions will come in section 5.

The main parts of making a new program are; making an object of the
class CodeFile, then adding the procedures (objects of class CodeProcedure)
and structs (objects of class CodeStruct) and so on. Finally, when the get-
Bytecode() procedure is called, the bytecode library will generate the actual
bytecode bytes from the objects that has been created and the properties
given to those objects.

Note that there are four parts to making a procedure (or struct or global
variable):

1. Adding the definition to the CodeFile object (addProcedure).

2. Creating the CodeProcedure object (new CodeProcedure).

3. Adding the properties, like the instructions, to the CodeProcedure
object.

4. Updating the CodeProcedure object in the CodeFile (updateProced-
ure).

To see the details of these four steps, read the following example.

A small example

Below is a small example. All the classes and procedures used in this example
will be explained later in this section. The example code creates a program
and first adds the name of a library procedure to be used. It the adds a
procedure “Main”, a global variable “myGlobalVar”, a procedure “test” and
a struct “Complex” (I). The procedure “Main” has return type “Void”, no
parameters, no local variables and only has a single instruction RETURN
(II).

The global variable is typed with the struct type of Complex (III).

The procedure “test” has two parameters; one of type Float and one of
reference type Complex. The procedure loads the first parameter onto the
stack and the calls the procedure “print float” to print the value (IV).

7

The struct “Complex” is created and the two fields, both of type Float, are
added to it (V).

The procedure print float must be added, but without instructions. Read
more about library procedures in section 4 (VI).

Finally, the main method must be set before the bytecode can be extracted
and written to a file (VII).

At the end of the section is a listing of the bytecode file created from this.

// Make code:

CodeFile codeFile = new CodeFile();

codeFile.addProcedure("print_float");

// I:

codeFile.addProcedure("Main");

codeFile.addVariable("myGlobalVar");

codeFile.addProcedure("test");

codeFile.addStruct("Complex");

// II:

CodeProcedure main = new CodeProcedure("Main", VoidType.TYPE,

codeFile);

main.addInstruction(new RETURN());

codeFile.updateProcedure(main);

// III:

codeFile.updateVariable("myGlobalVar", new RefType(

codeFile.structNumber("Complex")));

// IV:

CodeProcedure test = new CodeProcedure("test", VoidType.TYPE,

codeFile);

test.addParameter("firstPar", FloatType.TYPE);

test.addParameter("secondPar", new RefType(

test.structNumber("Complex")));

test.addInstruction(new LOADLOCAL(

test.variableNumber("firstPar")));

test.addInstruction(new CALL(

test.procedureNumber("print_float")));

test.addInstruction(new RETURN());

codeFile.updateProcedure(test);

8

// V:

CodeStruct complex = new CodeStruct("Complex");

complex.addVariable("Real", FloatType.TYPE);

complex.addVariable("Imag", FloatType.TYPE);

codeFile.updateStruct(complex);

// VI:

CodeProcedure printFloat = new CodeProcedure("print_float",

VoidType.TYPE, codeFile);

test.addParameter("f", FloatType.TYPE);

codeFile.updateProcedure(printFloat);

// VII:

codeFile.setMain("Main");

byte[] bytecode = codeFile.getBytecode();

// ... Write the bytes to a file.

CodeFile

This is the class the bytecode is created from and all the elements of the
program must be added to this object. It also provides the service of return-
ing indices given to the elements, as we will see used later. These indices are
needed when instruction classes are created. They reference the elements
within the program. Adding something to a CodeFile object is done in two
stages; first the element is added using something like the addProcedure
procedure, supplying only the name. Then later the updateProcedure must
be called with a reference to the actual procedure object. After a procedure
has been added (but before it has been updated) its index can be found and
used, for example to create a call to it, as we will see.

An object of the CodeFile class is typically seen by all the nodes in the
abstract syntax tree, by for example passing around a reference to it. An
element in the syntax tree is typically responsible for adding itself to the
compiled result by using the procedures of the CodeFile or CodeProcedure
classes.

A global variable is added by using the procedure void addVariable(

String name). After a global variable has been added, its index (id) in
the program may be found by using its name, calling the procedure int

globalVariableNumber (String name). The type of the variable must
be supplied before the bytecode is generated. It is done by calling void

updateVariable(String name, CodeType type). All global variables must
have unique names.

9

A procedure is added by using the procedure void addProcedure(String

name). After a procedure has been added, its index (id) in the program may
be found by using its name, calling the procedure int procedureNumber(

String name). The details of the procedure must be supplied before the
bytecode is generated. It is done by calling public void updateProcedure(

CodeProcedure codeProcedure).

For a struct there are similar procedures public void addStruct(String

name), int structNumber(String name) and void updateStruct(Code-

Struct codeStruct). In addition, getting the index of a field in a struct is
done by calling int fieldNumber(String structName, String varName)

using the name of the struct and the name of the field.

A string constant is added by using the procedure int addStringCon-

stant(String value). Note that this procedure returns the index (id) of
the constant directly and there is no procedure to fetch the index of a constnt
later. The index is used when one wants to access a defined constant and
push it on the stack. This is used for string literals by a compiler.

After all the elements are added it is important to let the interpreter know
which procedure to start with. This is done by using the name of the
procedure (typically “main”) and calling void setMain(String name).

CodeProcedure

A procedure in the program is made by first adding the name to the CodeFile
object, then creating an object of this class, then adding the parameters,
local variables and instructions to the object and finally by updating the
CodeFile object with the CodeProcedure object.

A procedure object is created by using the constructor CodeProcedure(
String name, CodeType returnType, CodeFile codeFile). This takes
the unique name of the procedure, the return type (See CodeType below)
and the codefile that it will be added to. The reason that the codefile is
included is that it is needed by the procedure object to provide some of the
codefiles services through delegation.

A parameter or local variable is added by using the procedures void

addParameter(String name, CodeType type) or void addLocalVaria-

ble(String name, CodeType type).

An instruction is added to the procedure object by using int addInstruc-

tion(Instruction instruction). The return value of this is the index of
the instruction in the procedures list of instructions. Sometimes one wants to
replace an earlier inserted instruction. This is done by using void replace-

10

Instruction(int place, Instruction instruction). For example, ont
may insert a NOP instruction, to later be replaced by a JMP. Read more
in section 4 on jumps. A procedure must have at least one instruction, and
also, that instruction has to be a final RETURN instruction.

The index of a variable or parameter can be found by using int var-

iableNumber(String name). Note that local variables must have unique
names in any block and that the parameters are included in this. The
parameters are given the first indices (ids) from left to right, starting from 0.
Then the variables are given the subsequent indices in order of declaration.

A CodeProcedure object can find the indices of elements using its Code-
File object, so it also has the procedures globalVariableNumber, proced-
ureNumber, structNumber and fieldNumber. It also has and delegates the
addStringConstant procedure.

CodeStruct

A struct is created with the constructor CodeStruct(String name) provid-
ing the name of the struct. A field is added to the struct by using void

addVariable(String name, CodeType type). To retrieve the index of
a field added to the struct one may use int fieldNumber(String name).
See also the fieldNumber procedure of CodeFile.

CodeType

This is an abstract class and it has as concrete subclasses the different classes
of types: VoidType (used when a procedure has no return type), BoolType,
IntType, FloatType, StringType and RefType (When the type is a reference
to a struct).

The basic types have a singleton object (for example StringType.TYPE)
which is used as an actual parameter whenever that is needed, for example
to define the return type of a procedure or the type of a field in a struct.

The RefType class is a little different. There is no singleton and its con-
structor has an integer parameter which is the index of the struct for which
this type is a reference. The RefType is used by creating an object with the
index (id) for the struct as the single parameter. One may make many such
objects for the same type (same index) if that is more convenient, or just
reuse the same object for the type. An object of the reference type to the
struct “Complex” can be created like this:

11

CodeFile cf = <...> ;

...

cf.addStruct("Complex");

...

RefType rt = new RefType(cf.structNumber("Complex");

Virtual Machine listing of the example from earlier in this

section

Loading from file: ./example.bin

Variables:

0: var Complex myGlobalVar

Procedures:

0: func void print_float()

1: func void Main()

0: return

2: func void test(float 0, Complex 1, float 2)

0: loadlocal 0

3: call print_float {0}

6: return

Structs:

0: Complex

0: float

1: float

Constants:

STARTWITH: Main

12

3 How the interpreter works

When the virtual machine is started, the interpreter is set up by the loader.
It has a variable pool, which holds the type of each global variable. It has
a procedure pool which contains all the procedures: their parameter and
local variable types, return type and instructions. It has a struct pool with
the layout of the structs; their names and the types (but not names) of the
fields. It also has a constant pool with all the constants from the bytecode
file. All these pools are indexed by numbers (ids), which are the numbers
used in the instructions.

When the interpreter is started, space is allocated for the global variables
and they are initialized with the initial values for their types (See further
down for more on initial values). Then a stack and a heap is created and
an activation block for the main procedure is created and the interpreter
starts interpreting the bytecode of that procedure at the first byte (Setting
the program counter or pc to 0).

The instructions do things like load a global variable (LOADGLOBAL) onto
the stack. The LOADGLOBAL instruction has 2 extra bytes which contain
the id of the variable to push to the stack from the global variables. When
that instruction is performed, 3 must be added to the pc to move to the
next instruction. This increment differs from instruction to instruction and
is the “size” in the table with all the instructions in section 5. Another
instruction is ADD. When that is interpreted, the two values on top of the
stack is added to each other. What kind of addition depends on the types of
the two, which is determined at runtime. The result is pushed on the stack
and since the size is only one (the instruction byte only), one is added to
the pc.

Block levels are not supported by the virtual machine and only global or local
variables can be used (LOADGLOBAL, LOADLOCAL, STOREGLOBAL,
STORELOCAL). All names of procedures, structs and variables must be
unique. A procedure must always end with a RETURN instruction. If a
procedure found in the binary file at loadtime is without instructions it is
assumed to be a library procedure, and a call to it results in a lookup in a
table of library procedures.

All variables; in structs, global and local are allocated with initial values;
which depend on their types. An int is set to 0, a float to 0.0, a string to ””
and a reference is set to the Null Reference.

13

Calling a procedure

A procedure is called with the CALL instruction. The byte instruction
is followed by the index of the procedure to be called. The interpreter
locates the procedure by using the index, creates an activation block from
the information it has, intializes local variables, saves the program counter
and sets the program counter to the first byte of the called function.

Return
The activation block is popped off the stack and the program counter is set
to where it was before the call. The return value, which the called procedure
left on the stack is again left on the top of the stack for the calling procedure.

Jumping

Jumping is simply done by setting the program counter to the byte with
the number that accompanies the jump instruction. This is always a local
address within a procedures instruction bytes.

Allocating a struct on the heap

When a struct is allocated by the heap (using the NEW instruction) a ref-
erence is left on the stack that can be passed around and saved in variables.
The NEW instruction is followed by the index of the struct to allocate.

Get and Put Field

The intstruction GETFIELD is followed by the index of the struct and the
index of the field within that struct. When it is interpreted, the interpreter
assumes that a reference to the struct is on the top of the stack, and that
reference is popped of the stack. The heap is instructed to get the value of
the field within the struct and the interpreter pushes the value of the field to
the stack. If the reference is the Null Reference, the interpreter is aborted
with an error message.

14

4 Some typical tasks

In this section we show how some of the usual tasks are solved.

As has already been shown, some of the instruction classes are created by
supplying one or two integer values, which are the ids of procedures, struct,
variables, or something, that are to be used when the instruction is inter-
preted, for example, JMP is created with an integer parameter, which is the
index of the instruction to jump to.

When an instruction is added to the stream of bytes, it is followed by these
indices coded as 0 to 4 bytes, depending on the size needed. In this way, a
“byte” can be from 1 to 5 bytes long.

Calling a procedure

The constructor of the CALL class has an Integer parameter funcNum. That
is the index of the procedure and can be gotten from a CodeFile object if
the procedure has been added. So a call instruction is created and added to
the list of instructions like in the example in the previos section.

test.addInstruction(new CALL(test.procedureNumber(

"print_float")));

Jumping

The constructor of the JMP class has an integer parameter jumpTo. This
is the index that the instruction has in the list of the instructions of this
procedure. The way to get the index of an instruction is to save the integer
returned from the addInstruction procedure. A trick for placing labels in
the code is to add a dummy instruction (NOP) at a place where one wants
to insert a jump or wants to jump to. For example, the following creates
code for an infinite loop.

int top = test.addInstruction(new NOP());

// The statements of the infinite loop

test.addInstruction(new JMP(top));

Important:

The numbers used in the constructors of JMP and the conditional jump
classes are the index of the instruction in the list of instructions. In this list

15

all instructions are considered to have size one. This is so that there will be
no problems with replacing an instruction with another of a different size.
When the bytecode is created a new number is calculated and replaces that
number (for all jumps) with the actual address within the byte array, since
at runtime the instructions (with accompanying values) have different sizes.

Conditional jumps

They are like jumps, but there must be a boolean value on the stack before
it is interpreted. The jump is performed or not depending on the value of
the boolean. For example, the following creates code for a do while loop.

// do {

//

// The statements inside the loop ...

//

// } while(i<2)

// Start of the loop

int start = test.addInstruction(new NOP());

// The instructions inside the loop ...

// First calculate the boolean expression.

test.addInstruction(new LOADLOCAL(test.variableNumber("i")));

test.addInstruction(new PUSHINT(new Integer(2)));

test.addInstruction(new LT());

// TRUE or FALSE is left on the stack.

// Jump back if true.

test.addInstruction(new JMPTRUE(start));

Sometimes a jump forward may need to be inserted. In that case a NOP is in-
serted and the index saved. Later it can be replaced by a jump or conditional
jump instruction using replaceInstruction(int place, Instruction

instruction)

Constants

Constants or literals are placed on the stack using the PUSH-methods, like
PUSHINT(Integer). In the bytecode it is followed by 4 bytes (The integer
constant) which is pushed on the stack. To push a string literal onto the
stack, it first has to be registered as a constant and then its index is used
with the PUSHSTRING instruction like below.

16

int constId = test.addStringConstant("Literal");

test.addInstruction(new PUSHSTRING(constId));

A float literal with value 0.0 is created like this:

test.addInstruction(new PUSHFLOAT(new Float(0.0)));

Working with structs
Instances of the structs are created with the NEW(Integer structNum) in-
struction. The parameter is the index (id) of the struct. A reference to the
heap allocated struct is left on the stack by the interpreter. To assign a
value to a field of a struct, the reference to the struct must be on the top
of the stack and the value to assign to the field must be on the stack below
that. When the PUTFIELD(int fieldNumber, int structNum) instruction is
interpreted, the interpreter will locate the struct instance in the heap using
the reference and set the field to the value found on the stack. Below is an
example that creates a struct, saves it in a local variable named cmplx and
sets one of its fields (real) to a float value (1.0).

test.addInstruction(new NEW(test.structNumber("Complex")));

test.addInstruction(new STORELOCAL(test.variableNumber("cmplx")));

test.addInstruction(new PUSHFLOAT(new Float(1.0)));

test.addInstruction(new LOADLOCAL(test.variableNumber("cmplx")));

test.addInstruction(new PUTFIELD(test.fieldNumber("Complex",

"real"),

test.structNumber("Complex")));

Parameters and Local Variables

When a procedure is called. the parameters and local variables are all placed
sequencially on the stack, starting with the leftmost of the parameters. All
the parameters and local variables are accessed with LOADLOCAL(Integer),
which places the value of the variable with the given index on the stack. The
index starts with the leftmost parameter at 0 (the lowest on the stack) and
ends with the last defined variable at N (the highest on the stack). Note

that usually we talk about 0 being the top of the stack.

Here is a piece of code and how to generate the bytecode for line 3 only.

17

//1: func ret int add(int a, int b) {

//2: var int res;

//3: res := a + b; // only bytecode for this line

//4: return res;

//5: }

test.addInstruction(new LAODLOCAL(test.variableNumber("a")));

// test.variableNumber("a") returns 0

test.addInstruction(new LAODLOCAL(test.variableNumber("b")));

// test.variableNumber("b") returns 1

test.addInstruction(new ADD());

test.addInstruction(new STORELOCAL(test.variableNumber("res")));

// test.variableNumber("res") returns 2, the highest value

Library Procedures

When library procedures are needed, they must be added to the CodeFile
(and updated, the name is not enough), but no instructions should be added.
The interpreter recognizes the use of a library procedure by the fact that it
has no instructions in the binary file (CodeFile).

18

5 The instructions

Below is a table with all the instructions that is supported by the virtual
machine and that can be found in the bytecode library. We use s0 for the
top of the stack, s1 for the next element and so on. When the symbol †
(dagger) is found after the name of an instruction it means that there are
more details on the types of what is on the stack at the end of this section
(Look up the instruction there).

Summary of the instructions:

• Binary operators:
They require two values on the stack and leave one there. They have
no extra value. They are: ADD, AND, DIV, EQ, EXP, GT,

GTEQ, LT, LTEQ, MUL, NEQ, NOR, OR, SUB

• Unary operator:
It requires one value on the stack and leaves one there. It has no extra
value. It is: NOT

• Jump instructions:
They are followed by the address to jump to (a short). The condi-
tionals require a boolean value on the stack. They are: JMP, JMP-

FALSE, JMPTRUE

• Procedure call instructions:
The call is followed by the id of the procedure (a short). Before a
call, all the parameters must be on the stack with the leftmost at the
bottom. Before a return, the return value (if any) must be on the
stack. After a return from a call, the result value is on the top of the
stack. They are: CALL, RETURN

• Struct access:
They are followed by the id of the struct (a short) and the index
of the field within it (a short). When using PUTFIELD, the value
to be stored and the reference to the struct must be on the stack.
When using GETFIELD, the reference to the struct must be on the
stack and the value found in the field is left on the stack. They are:
GETFIELD, PUTFIELD

• Constants or literals:
They are followed by the value to be put on the stack (1-4 bytes).

19

In the case of PUSHSTRING it is the id of the string constant and
in the case of PUSHNULL it is nothing. They are: PUSHBOOL,

PUSHFLOAT, PUSHINT, PUSHNULL, PUSHSTRING

• Local variables and parameters:
They are followed by the index (index) of the variable to fetch or
store to. They are: LOADGLOBAL, LOADLOCAL, STORE-

GLOBAL, STORELOCAL

• Struct allocation:
It is followed by the index of the struct to allocate and initialize. It is:
NEW

• The do-nothings:
They are followed by no extra value. NOP really does nothing. POP
pops the top off the stack and discards the value. They are: NOP,

POP

The operands for the current instruction on the stack are always popped
off as part of interpreting the instruction. Unless otherwise mentioned, the
result is always left on the stack.

Below is an alphabetic list of all the instructions, with the name of the
instruction, the number (bytecode), any extra bytes needed, the operands
that must be on the stack before execution and the result left on the stack.

Name Number Extra

bytes

On the

stack be-

fore

Result on

the stack

ADD† 01 NONE First op-
erand (s1)
and second
operand
(s0). Both:
int, float or
string.

Result of
s1 + s0

AND 02 NONE First op-
erand (s1)
and second
operand
(s0). Both
boolean.

Result of
s1&s0

20

CALL† 03 2 bytes
(short) with
the index
(id) of the
function.

The para-
meters from
left (sN) to
right (s0).

Value re-
turned from
procedure if
any.

DIV† 35 NONE Dividend
(s1) and
divisor (s0).
Both int or
float.

Result of
s1/s0

EQ† 04 NONE First oper-
and (s1) and
second op-
erand (s0).
Both: int,
float or bool.

A boolean.
True if
s1 = s0, else
false.

EXP† 05 NONE First oper-
and (s1) and
second op-
erand (s0).
Both int or
float.

A float, res-
ult of ss0

1
.

GETFIELD 06 4 bytes
(2 shorts)
which are
the index
of the field
within the
struct and
the index
(id) of the
struct.

Reference to
the struct
(s0).

The value of
the field if s0

is not a Null
Reference.

GT 07 NONE First oper-
and (s1) and
second op-
erand (s0).
Both int or
float.

A boolean.
True if
s1 > s0, else
false.

21

GTEQ 31 NONE First oper-
and (s1) and
second op-
erand (s0).
Both int or
float.

A boolean.
True if
s1 ≥ s0, else
false.

JMP 08 2 bytes
(short) with
the position
in the bytes
of this func-
tion to jump
to.

NONE NONE

JMPFALSE 09 2 bytes
(short) with
the position
in the bytes
of this func-
tion to jump
to.

A Boolean
(s0). Jumps
only if it is
false.

NONE

JMPTRUE 10 2 bytes
(short) with
the position
in the bytes
of this func-
tion to jump
to.

A Boolean
(s0). Jumps
only if it is
true.

NONE

LOADGLOBAL 11 2 bytes
(a short)
with the
index (id) of
the global
variable to
load.

NONE The value of
the global
variable.

LOADLOCAL 12 2 bytes (a
short) with
the index
(id) of the
local vari-
able to load.
Remember
params!

NONE The value
of the local
variable.

22

LOADOUTER 13 4 bytes. Not imple-

mented in

this ver-

sion. No

support

for block

structure!

N/A

LT 29 NONE First oper-
and (s1) and
second op-
erand (s0).
Both int or
float.

A boolean.
True if
s1 < s0, else
false.

LTEQ 30 NONE First oper-
and (s1) and
second op-
erand (s0).
Both int or
float.

A boolean.
True if
s1 ≤ s0, else
false.

MUL† 34 NONE First oper-
and (s1) and
second op-
erand (s0).
Both: int or
float.

Result of s1 ∗
s0

NEQ† 32 NONE First oper-
and (s1) and
second op-
erand (s0).
Both: int,
float or bool.

A boolean.
True if
s1 6= s0, else
false.

NEW 14 2 bytes (a
short) with
the index
(id) of the
struct to
create and
instance of.

NONE A reference
to the newly
created
struct.

NOP 15 NONE NONE NONE (It
does noth-
ing!)

23

NOT 16 NONE A boolean
(s0).

A boolean.
True if s0

is false, else
true.

OR 17 NONE First op-
erand (s1)
and second
operand
(s0). Both
boolean.

Result of s1 |
s0

POP 28 NONE Some value
(s0).

NONE. It
just removes
the top.

PUSHBOOL 18 1 byte with
the constant
value; 1
(true) or 0
(false).

NONE The boolean
constant
from the
extra byte.

PUSHFLOAT 19 4 bytes with
the value of
the float con-
stant.

NONE The constant
from the ex-
tra bytes.

PUSHINT 20 4 bytes with
the value of
the integer
constant.

NONE The constant
from the ex-
tra bytes.

PUSHNULL 21 NONE NONE A Null Ref-
erence.

PUSHSTRING 22 2 bytes
(a short)
with the
index (id)
of the string
constant.

NONE The string
constant.

24

PUTFIELD† 23 4 bytes
(2 shorts)
which are
the index
of the field
within the
struct and
the index
(id) of the
struct.

The value to
assign to the
field (s1) and
the reference
to the struct
(s0).

NONE

RETURN† 24 NONE A return
value (s0)
if the pro-
cedure has
one.

Not Ap-

plicable

STOREGLOBAL† 25 2 bytes (a
short) with
the index
(id) of the
global vari-
able to store
to.

The value
(s0) to store
in the global
variable.

NONE

STORELOCAL† 26 2 bytes (a
short) with
the index
(id) of the
local variable
to store to.
Remember
params!

The value
(s0) to store
in the local
variable.

NONE

STOREOUTER 27 4 bytes. Not imple-

mented in

this ver-

sion. No

support

for block

structure!

N/A

SUB† 33 NONE First oper-
and (s1) and
second op-
erand (s0).
Both: int or
float.

Result of
s1 − s0

25

More details on some instructions Here or some comments for the
instructions with a dagger (†) by the name.

ADD

The types of the two arguments can be any of int, float of string. If at least
one of them is string, the result will be a string; the string concatenation of
the two values. If none are string and at least one is float, the result will be
a float; the sum of the two values. If both are int, the result will be an int;
the sum of the two values.

CALL

If a formal parameter is of type float and the corresponding actual parameter
on the stack is an int, it will be translated into a float.

DIV

If at least one of the operands is a float, the result will be a float; the floating
point division of the two values. If both are int, the result will be an int;
the integer division of the two values.

EQ

If one of the operands is a float and the other an int, the int value will be
translated into a float before the two values are compared.

EXP

The operands can be int or float. The result will always be a float.

MUL

If at least one of the values is a float, the result will be a float; the mul-
tiplication of the two values. If both are int, the result will be an int; the
multiplication of the two values.

PUTFIELD

If the type of the field is float and the actual value on the stack is an int,
the value will be translated into a float.

RETURN

If the return type of the procedure is float and the actual result placed on
the stack by the procedure is an int, the result will be translated into a float.

STOREGLOBAL

If the type of the variable is float and the actual value on the stack is an
int, the value will be translated into a float.

26

STORELOCAL

If the type of the variable is float and the actual value on the stack is an
int, the value will be translated into a float.

SUB

If at least one of the values is a float, the result will be a float; the subtraction
of the second from the first. If both are int, the result will be an int; the
subtraction of the second from the first.

6 Finally – Remember this

To sum up, here are some of the important points to remember:

• Always add a return statement to the end of the instructions of a
procedure

• Always set the main method

• Add the library procedures (print int, etc) as procedure, but without
instructions

• If the reference on the stack is a Null Reference when one tries to
access a field of it, the interpreter will print the error “Nullpointer
at GETFIELD” or the equivalent for PUTFIELD, and the virtual
machine will abort.

• Do not just add, but remember to update procedures, structs and
global variables.

• Use this list option to see your bytecode and even take a look at it
with a Hex Editor.

27

