
INF5110: Mandatory Exercise 2

Eyvind W. Axelsen
eyvinda@ifi.uio.no

 @eyvindwa
http://eyvinda.at.ifi.uio.no

Slides are partly based on material from previous years, made by Henning
Berg, Fredrik Sørensen, and others.

Main goals

• Determine if programs written in the language
Compila16 are semantically valid
–I.e. are they type-correct? (static semantics)

• Generate byte-code for Compila16(-ish)

programs
–Write a code generator

Last time

• You made
–a Lexer
–a Parser
–an Abstract Syntax Tree

• This time we expand on this
–Use your previous delivery!

Learning outcomes

• Understand how type checking can be done

• Understand what bytecode is, and how it can
be generated from source code

• Extend an existing compiler code base with
new functionality

Semantic Analysis/Type checking

• A parser cannot check all the properties of the
language specification
–Context-free grammars are not powerful enough

• Thus, we shall extend our compiler with a type
checker
–Use the AST classes you defined last time
–Add type-checking code
–You are allow to make any changes you want to your

previous delivery

The Compila16 language at a(nother)
glanceprogram MyProgram begin

 class Complex begin
 var Real : float;
 var Imag : float;
 end;

 proc Add(a : Complex, b : Complex) : Complex
 begin
 var retval : Complex;
 retval := new Complex;
 retval.Real := a.Real + b.Real;
 retval.Imag := a.Imag + b.Imag;

 return retval;
 end;

 proc Main()
 begin
 var c1 : Complex;
 var c2 : Complex;
 var result : Complex;
 …
 result := Add (c1, c2);
 …
 return;
end; end;

Real and Imag are of the (built-in)
float type

Check that the + operator is
compatible with its operands’

types, and that the assignment is
legal.

Check that the actual parameters
to Add(…) are of the correct type,

according to the formal
parameters, and that the

assignment to result is legal.

Type checking – example
class IfStatement extends Statement {
 …
 public void typeCheck() {
 String condType = condition.getType();
 if(condType != “bool”) {
 throw new TypeException(“condition in if-

statement must be of type bool”);
 }
}

Implement
such a

method in
e.g. the
various

Expression
classes

Type checking – example
class Assignment extends Statement {
 …
 public void typeCheck() {
 String varType = var.getType();
 String expType = exp.getType();
 if(varType != expType &&
 !isAssignmentCompatible(varType,
expType)) {
 throw new TypeException(“cannot assign “

 + vartype + “ from “ + expType);
 }
}

Check supported type
conversions, e.g. float to int

Code generation

The lecture about code generation
• is not until April 20th,
• So, if this looks difficult now, don’t worry!
–

• Byte code API and operations are described in
the document “Interpreter and bytecode for
INF5110”
–Available on the course page

• Add bytecode generation methods to your AST
classes
–Again, any changes you want to make to the

structure is OK

Code generation - limitations

• The interpreter and bytecode library are
somewhat limited
–Cannot express full Compila16
–No block structures (only global and local variables)
–No reference parameters
–

• You delivery should support generating correct
bytecode for the Compila16 source code file
RunMe.cmp
–Available from the material on the course webpage

Code generation – creating a
procedure

CodeFile codeFile = new CodeFile();
// add the procedure by name first
codeFile.addProcedure(”Main”);

// then define it
CodeProcedure main = new

CodeProcedure(”Main”, VoidType.TYPE,
codeFile);
main.addInstruction(new RETURN());

// then update it in the code file
codeFile.updateProcedure(main);

Code generation - assignment
//1: proc add(a: int, b : int) : int {
//2: var res : int;
//3: res := a + b; // only bytecode for this line
//4: return res;
//5: }

// push a onto the stack
proc.addInstruction(new LOADLOCAL(proc.variableNumber("a")));
// push b onto the stack
proc.addInstruction(new LOADLOCAL(proc.variableNumber("b")));
// perform addition with arguments on the stack
proc.addInstruction(new ADD());
// pop result from stack, and store it in variable res
proc.addInstruction(new
STORELOCAL(proc.variableNumber("res")));

Code generation – writing to file

String filename = “myfile.bin”;
byte[] bytecode = codeFile.getBytecode();
DataOutputStream stream = new

DataOutputStream(
new FileOutputStream (filename));

stream.write(bytecode);
stream.close();

Testing

• 42 supplied tests in test folder, for testing the
type checker

• Run tests with “ant test”
• Tests ending with “fail” are supposed to fail

(i.e., they contain an erroneous program)
–Compiler returns error code 2 for semantic failure

• 32 of the 42 tests must pass for the delivery to
be successful

Provided source code

Three example programs,
including RunMe.cmp,
that you’re going to
compile

Revised version of
Compila.cmp (not really
needed for this exercise)

Revised source code, see next slide

42 test programs. Use these to
verify your type checking
implementation (and hand in a
printout of the results with your
delivery)

NOTE: the error mentioned earlier is
in this folder

Provided source code (the src
folder)

DEADLINE

• May 8, 2015 @ 23:59
• Don’t miss the deadline!
–Extensions are only possible if you have an

agreement with the student administration
(studadm)

–This time we must be stricter, because of deadlines
for exam lists etc

–Contact them if you are sick, etc.
• Even if you are not 100% finished, deliver what

you have before the deadline

Deliverables
• Working type checker for Compila16
–Run the supplied tests

• Code generator for (a subset of) Compila16
–Test with RunMe.cmp

• Report
–Front page with your name(s) and UiO user name(s)
• Work alone or in pairs. Groups of three can be allowed after

an application.
–Discussion of your solution, choices you’ve made

and assumptions that you depend on
–Printout of test run
–Printout of bytecode from RunMe.cmp

• The code you supply must build with “ant”
–Test your delivery on a UiO computer

• Deliver a zipped folder by email to
eyvinda@ifi.uio.no
–Feel free to send questions at any time!
–Read the exercise description thoroughly!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

