
INF5110: Mandatory Exercise 1

Eyvind W. Axelsen
eyvinda@ifi.uio.no

@eyvindwa

http://eyvinda.at.ifi.uio.no

Slides are partly based on material from previous years, made by Henning
Berg, Fredrik Sørensen, and others.

mailto:eyvinda@ifi.uio.no
http://eyvinda.at.ifi.uio.no

Main goal

Determine if programs written in the language
Compila16 are syntactically valid.

– Write a scanner

– And a parser

– Compila16 is described in detail in a separate
document available on the course page.

Learning outcomes

• Using tools for scanner and parser generation
– JFlex and CUP

• Variants of a grammar for the same language
– Transforming from one form (extended BNF) to

another (BNF for the tools we will be using).
– Controlling precedence and associativity

• Defining ASTs as node classes in Java
– Using the parsing tools to build such trees
– Pretty-printing ASTs.

The Compila16 language at a glance
program MyProgram
begin

class Complex begin
var Real : float;
var Imag : float;

end ;

proc Add (a : Complex, b : Complex) : Complex
begin

var retval : Complex;
retval := new Complex;
retval.Real := a.Real + b.Real;
retval.Imag := a.Imag + b.Imag;

return retval;
end ;

proc Main()
begin

var c1 : Complex;
var c2 : Complex;
var result : Complex;
…
result := Add (c1, c2);
…
return;

end ;

end ;

The language supports very
simple “classes”, but no real OO
(inheritance, polymorphism, etc)

Programs are written enclosed in
program NAME begin … end

Procedures are declared within
programs (but not within classes).

They perform calculations and
create new objects.

Execution starts in the Main
method.

PROGRAM -> "program" NAME "begin" { DECL ";" } "end" ";"

DECL -> VAR_DECL | PROC_DECL | CLASS_DECL

VAR_DECL -> "var" NAME ":" TYPE

PROC_DECL -> "proc" NAME "(" [PARAM_DECL { "," PARAM_DECL }] ")”

[":" TYPE] "begin" { DECL ";" } { STMT ";" } "end"

CLASS_DECL -> "class" NAME "begin" { VAR_DECL ";" } "end"

PARAM_DECL -> ["ref"] NAME ":" TYPE

EXP -> EXP LOG_OP EXP | "not" EXP | EXP REL_OP EXP | EXP ARIT_OP EXP | "(" EXP ")”

| LITERAL | CALL_STMT | "new" NAME | VAR

VAR -> NAME | EXP "." NAME

LOG_OP -> "&&" | "||"

REL_OP -> "<" | "<=" | ">" | ">=" | "=" | "<>"

ARIT_OP -> "+" | "-" | "*" | "/" | "#"

LITERAL -> FLOAT_LITERAL | INT_LITERAL | STRING_LITERAL | "true" | "false" | "null"

STMT -> ASSIGN_STMT | IF_STMT | WHILE_STMT | RETURN_STMT | CALL_STMT

ASSIGN_STMT -> VAR ":=" EXP

IF_STMT -> "if" EXP "then" "begin" { STMT “;” } "end" ["else" "begin" { STMT “;” } "end"]

WHILE_STMT -> "while" EXP "do" "begin" { STMT “;” } "end"

RETURN_STMT -> "return" [EXP]

CALL_STMT -> NAME "(" [ACTUAL_PARAM { "," ACTUAL_PARAM }] ")"

ACTUAL_PARAM -> "ref" VAR | EXP

TYPE -> "float" | "int" | "string" | "bool" | NAME

Compila16 grammar

“terminal”
NON-TERMINAL

[optional]
{ repetition }

Alternative1 | Alternative2

Tool: JFlex

• A tool to easily (YMMV) generate scanners
– Input: lexical specification

– Output: scanner program written in Java

• The lexical specification is written in a .lex file
– Consists of three separate parts

• User code

• Options and macros

• Lexical rules

package oblig1parser;

import java_cup.runtime.*;

%%

%class Lexer

%unicode

%cup

%{

private Symbol symbol(int type) {

return new Symbol(type, yyline, yycolumn);

}

%}

LineTerminator = \r|\n|\r\n

%%

<YYINITIAL>

{

"program” { return symbol(sym.PROGRAM); }

"class” { return symbol(sym.CLASS); }

“begin” { return symbol(sym.BEGIN); }

“end” { return symbol(sym.END); }

“var” { return symbol(sym.VAR); }

…

}

User code

Options/
macros

Lexical
rules

Copied to the generated class, before
the class definition

Options (class name, unicode support,
CUP integration)

Inserted into
generated class

Macros, defined as
regular expressions

The following rules are applicable from the initial state

Lexical rules

Defined in package
java_cup.runtime.

Variables holding
current line/column

oblig1.lex

Tool: CUP – Construction of Useful Parsers
- for Java

• A tool to easily (YMMV) generate parsers

– Reads tokens from the scanner using next_token()
• The %cup option (prev. slide) makes this work

– Input: Grammar defined as BNF with action code

var_decl ::= VAR ID:name COLON ID:type SEMI

{: RESULT = new VarDecl(name, type); :};

– Output: a parser program
written in Java

Build AST with user
defined node classes
(java code)

Assign names to parts of production so
we can reuse them in action code

Symbol
list

package oblig1parser;

import java_cup.runtime.*;

import syntaxtree.*;

parser code {: :};

terminal PROGRAM, CLASS;

terminal BEGIN, END;

…

terminal String ID;

terminal String STRING_LITERAL;

non terminal Program program;

non terminal List<ClassDecl> decl_list;

non terminal ClassDecl class_decl, decl;

precedence left AND;

program := PROGRAM BEGIN decl_list:dl END SEMI {: RESULT = new Program(dl); :} ;

decl_list ::= decl:d

{: List<ClassDecl> l = new LinkedList<ClassDecl>(); l.add(d); RESULT = l; :} ;

decl ::= class_decl:sd {: RESULT = sd; :} ;

class_decl ::= CLASS ID:name BEGIN END

{: RESULT = new ClassDecl(name); :} ;

Package/
imports

User code

Precedence

Grammar

Package name for generated code and imports of packages we need

Code between {: and :} is inserted directly into the generated class
(parser.java)

Terminals and non-terminals are defined here. They can also be
given a Java type for the “value” that they carry, e.g. a node in
the AST

Precedence declarations are listed in ascending order

oblig1.cup

The syntaxtree package contains our own AST classes

AST is built during parsing.
The left hand side of each
production is implicitly labeled
RESULT.

AST

ASTNode

Decl

ClassDecl ProcDecl VarDecl

Expr Statement

… …

…

• Make a reasonable
structure
• This slide is an

EXAMPLE
• Do not copy it

verbatim without
thinking

Tool:

• A Java-based build tool

– Configuration in build.xml

• Can contain different targets, for instance test, clean,
build, run, etc

– The supplied configuration takes care of calling
jflex, cup and javac for you.

• Note that ant might continue even if jflex or cup
encounter errors!

Provided source codeOverview of provided code

buildbuild

grammarsgrammars

input-examplesinput-examples

liblib

compila-astcompila-ast

compila-codecompila-code

srcsrc

src-examplessrc-examples

src-gensrc-gen

Class files for compiler, lexer,
parser, syntaxtree, etc.

Three pairs of .lex/.cup files

Test file for example parser

JFlex and CUP libs

Generated abstract syntax tree

Compila source code

Java source code for
compiler, syntax tree, etc.

Java source code example
syntax tree

Generated Java source code
for lexer and parser

(Department of Informatics, UiO) Introduction to the 1st Obligatory Exercise INF5110/9110 2014 10 / 18

expression-eval.cup/lex
Example expression

language
expression-par.cup/lex
Example language that
handles parentheses

oblig1.cup/lex
Starting point for your

grammars in this
exercise

compila.ast
Example showing how

your pretty-printed AST
could (should) look

compila.cmp
Compila source file; this

is the file you need to
parse in this exercise

ClassDecl.java,
Starting point for AST

node implementations
in Java

Compiler.java
The main entry point

for the compiler. You do
not necessarily have to

change this

Putting it all together

And more
AST
classes

And more
AST
classes

The provided
ant build file
takes care of
this interaction

DEADLINE

• March 20th, 2015 @ 23:59

• Don’t miss the deadline!

– Extensions are only possible if you have an
agreement with the student administration
(studadm)

– Contact them if you are sick, etc.

• Even if you are not 100% finished, deliver
what you have before the deadline

Deliverables
• Working parser for Compila16

– Parse the supplied example program
– Printout of the resulting AST

• Two grammars
– One ambiguous, with ambiguities resolved through precedence

declarations
– One inherently unambiguous grammar

• Report
– Front page with your name(s) and UiO user name(s)

• Work alone or in pairs. Groups of three can be allowed after an application.

– Discussion of your solution
– A comparison of the two grammars

• The code you supply must build with “ant”
– Test your delivery on a UiO computer

• Deliver a zipped folder by email to eyvinda@ifi.uio.no
– Feel free to send questions at any time!
– Read the exercise description thoroughly!

mailto:eyvinda@ifi.uio.no

