INF5110: Mandatory Exercise 1

Eyvind W. Axelsen

eyvinda@ifi.uio.no 00 _—
W @eyvindwa FURS-"-

MEDISINSK LABORATORIUM

http://eyvinda.at.ifi.uio.no

Slides are partly based on material from previous years, made by Henning
Berg, Fredrik S@rensen, and others.

mailto:eyvinda@ifi.uio.no
http://eyvinda.at.ifi.uio.no

Determine if programs written in the language
Compilal6 are syntactically valid.

— Write a scanner
— And a parser

— Compilal6 is described in detail in a separate
document available on the course page.

Learning outcomes

e Using tools for scanner and parser generation
— JFlex and CUP

e Variants of a grammar for the same language

— Transforming from one form (extended BNF) to
another (BNF for the tools we will be using).

— Controlling precedence and associativity

* Defining ASTs as node classes in Java
— Using the parsing tools to build such trees
— Pretty-printing ASTs.

The Compilal6 language at a glance

program MyProgram &
begin

class Complex begin
var Real : float;

Programs are written enclosed in
program NAME begin ... end

var Imag : float;
end ;

proc Add (a : Complex, b : Complex) : Complex
begin
var retval : Complex;

The language supports very
simple “classes”, but no real OO
(inheritance, polymorphism, etc)

retval := new Complex; <€
retval.Real := a.Real + b.Real;
retval.Imag := a.Imag + b.Imag;

return retval;
end ;

proc Main() g

Procedures are declared within
programs (but not within classes).
They perform calculations and
create new objects.

begin
var c1 : Complex;
var c2 : Complex;
var result : Complex;

result := Add (c1, c2);

return;
end ;

end ;

Execution starts in the Main
method.

PROGRAM
DECL
VAR DECL

PROC_DECL

CLASS DECL
PARAM DECL

EXP

VAR
LOG_OP
REL_OP

ARIT OP
LITERAL

STMT

ASSIGN_ STMT
IF STMT
WHILE STMT
RETURN_STMT
CALL_STMT
ACTUAL_PARAM

TYPE

"program" NAME "begin" { DECL ";" } "end" ";"
VAR DECL | PROC DECL | CLASS DECL
"var" NAME ":" TYPE
"proc" NAME " (" [PARAM DECL { "," PARAM DECL }
[":" TYPE] "begin" { DECL ";" } { STMT ";"
"class" NAME "begin" { VAR DECL ";" } "end"
["ref"] NAME ":" TYPE
EXP LOG OP EXP | "not" EXP | EXP REL OP EXP
| LITERAL | CALL STMT | "new" NAME | VAR
NAME | EXP "." NAME
"esM | |"
B G IR L D L B LU B O
B B A VA B

FLOAT LITERAL | INT LITERAL | STRING LITERAL |

ASSIGN STMT | IF STMT | WHILE STMT | RETURN
VAR ":=" EXP

"if" EXP "then" "begin" { STMT “;” } "end" [
"while" EXP "do" "begin" { STMT “;” } "end"
"return" [EXP]

NAME " (" [ACTUAL PARAM { "," ACTUAL PARAM }]
"ref" VAR | EXP

"float" | "int" | "string" | "bool" | NAME

Compilalé grammar

I”

“termina
NON-TERMINAL
[optional]
{ repetition }
Alternativel | Alternative2

] ") ”

} "end"

| EXP ARIT OP EXP | "(" EXP ")~

"true" | "false" | "null"

STMT | CALL STMT

"else" "begin" { STMT \\;II } "end"]

") "

Tool: JFlex

* Atool to easily (YMMV) generate scanners
— Input: lexical specification
— QOutput: scanner program written in Java

* The lexical specification is written in a .lex file

— Consists of three separate parts
e User code
* Options and macros
* Lexical rules

obligl.lex

User code package obliglparser; Copied to the generated class, before
import java cup.runtime.*; the class definition

o\°
o\°

sclass Lexer Options (class name, unicode support,

. %unicode CUP integration)
Options/ S cup
Macros Defined in package
java_cup.runtime.
5 {
private Symbol symbol (int type) { Inserted into
return new Symbol(type, yyline, yycolumn); generated class
t
Variables holding
5} . current line/column
LineTerminator = \r|[\n|\r\n Macros, defme(.j as
regular expressions
. <YYINITIAL> The following rules are agplicable from the initial state
Lexical {
rules "program” { return symbol (sym.PROGRAM) ; }
"class” { return symbol (sym.CLASS); }
“begin” { return symbol (sym.BEGIN); } Lexical rules
“end” { return symbol (sym.END); }
“var” { return symbol (sym.VAR); }

Tool: CUP — Construction of Useful Parsers
- for Java

* Atool to easily (YMMV) generate parsers
— Reads tokens from the scanner using next_token()

* The %cup option (prev. slide) makes this work

— Input: Grammar defined as BNF with action code

Assign names to parts of production so
we can reuse them in action code

var decl ::= VAR ID:name COLON ID:type SEMI
{: RESULT = new VarDecl (name, type); :};

\ Build AST with user
defined node classes

— Output: a parser program (java code)

written in Java 2 f /mmpmer %:1%?5%
. Scott Hudson, GVIA Center, Georgia Tech

package obliglparser;

obligl.cup
Package name for generated code and imports of packages we need

Pad@ge/ import java cup.runtime.*;
imports import syntaxtree.*; The syntaxtree package contains our own AST classes
de (: :); Code between {: and :} is inserted directly into the generated class
User code parser code {: :}; (parser.java)
Symbol terminal PROGRAM, CLASS; Terminals and non-terminals are defined here. They can also be
list terminal BEGIN, END; given a Java type for the “value” that they carry, e.g. a node in
the AST
terminal String ID;
terminal String STRING LITERAL;
non terminal Program program;
non terminal List<ClassDecl> decl list;
non terminal ClassDecl class decl, decl;
Precedence precedence left AND; Precedence declarations are listed in ascending order
program := PROGRAM BEGIN decl list:dl_END SEMI {: RESULT = new Program(dl); :} ;
Grammar
decl list ::= decl:d

{: List<ClassDecl

decl

class decl:

class decl

CLASS ID:name BEG
{: RESULT

inkedList<ClassDeclsS(): TTaae(d); RESULT = 1; :} ;

d {: RESULT

AST is built during parsing.
The left hand side of each
production is implicitly labeled
RESULT.

= new ClassDecl (name); :} ;

AST

 Make a reasonable
structure
* Thisslide is an
EXAMPLE ASTNode
* Do notcopy it
verbatim without
thinking

Statement

ClassDecl ProcDecl VarDecl

P oo

/* . /\

Tool: 9%\‘ <
<APACHE ANT>

* A Java-based build tool

— Configuration in build.xml

e Can contain different targets, for instance test, clean,
build, run, etc
— The supplied configuration takes care of calling
jflex, cup and javac for you.

* Note that ant might continue even if jflex or cup
encounter errors!

Provided source code

compila.cmp
expression-eval.cup/lex Class files for compiler, lexer, Compila source code Compila source file; this
Example expression parser, syntaxtree, etc. P is the file you need to
language parse in this exercise
. build compila-code
expression-par.cup/lex
Example language that pu—
handles parentheses Th irs of fil Java source code for
obligl.cup/lex ree pairs of .lex/.cup files compiler, syntax tree, etc. ClassDecl.java

Starting point for your | Cosoacin,
grammars in this RIMMANS e

node implementations
exercise [

R — inJ
in Java
flo | Java source code example Compiler.iava
Lompiler.java
Test file for example parser syntax tree

The main entry point

input-examples src-examples for the compiler. You do

not necessarily have to

o (\ .
. Generated Java source code change this
JFlex and CUP libs
for lexer and parser
lib src-gen
|
compila.ast Generated abstract syntax tree

Example showing how
your pretty-printed AST npila-ast
could (should) look

Putting It all together

|
|
|
I
|
|
I
[CUP | >
|
|
|
I

\l\

And more

DR

classes

The provided
ant build file
takes care of
this interaction

W

/

: javac >

And more

[

classes

DEADLINE

* March 20th, 2015 @ 23:59
e Don’t miss the deadline!

— Extensions are only possible if you have an
agreement with the student administration
(studadm)

— Contact them if you are sick, etc.

e Even if you are not 100% finished, deliver
what you have before the deadline

Deliverables

Working parser for Compilal6
— Parse the supplied example program
— Printout of the resulting AST

Two grammars

— One ambiguous, with ambiguities resolved through precedence
declarations

— One inherently unambiguous grammar
Report

— Front page with your name(s) and UiO user name(s)
* Work alone or in pairs. Groups of three can be allowed after an application.

— Discussion of your solution
— A comparison of the two grammars
The code you supply must build with “ant”
— Test your delivery on a UiO computer
Deliver a zipped folder by email to eyvinda@ifi.uio.no
— Feel free to send questions at any time!
— Read the exercise description thoroughly!

mailto:eyvinda@ifi.uio.no

