
Compiler construction

Martin Steffen

January 19, 2016

Contents
1 Introduction 1

1.1 Introduction . 1
1.2 Compiler architecture & phases . 2
1.3 Bootstrapping and cross-compilation . 7

1 Introduction
19. 01. 2016

1.1 Introduction
1. Course info

(a) Course presenters:

• Martin Steffen (msteffen@ifi.uio.no)
• Stein Krogdahl (stein@ifi.uio.no)
• Birger Møller-Pedersen (birger@ifi.uio.no)
• Eyvind Wærstad Axelsen (oblig-ansvarlig, eyvinda@ifi.uio.no)

(b) Course’s web-page http://www.uio.no/studier/emner/matnat/ifi/INF5110

• overview over the course, pensum (watch for updates)
• various announcements, beskjeder, etc.

2. Course material and plan

• The material is based largely on [Louden, 1997], but also other sources will play a role. A classic is “the
dragon book” [Aho et al., 1986]

• see also Errata list at http://www.cs.sjsu.edu/~louden/cmptext/

• approx. 3 hours teaching per week

• mandatory assignments (= “obligs”)

– O1 published mid-February, deadline mid-March
– O2 published beginning of April, deadline beginning of May

• group work up-to 3 people recommended. Please inform us about such planned group collaboration

• slides: see updates on the net

• exam: 8th June, 14:30, 4 hours.

3. Motivation: What is CC good for?

• not everyone is actually building a full-blown compiler, but

– fundamental concepts and techniques in CC
– most, if not basically all, software reads, processes/transforms and outputs “data”
⇒ often involves techniques central to CC
– Understanding compilers ⇒ deeper understanding of programming language(s)
– new language (domain specific, graphical, new language paradigms and constructs. . .)
⇒ CC & their principles will never be “out-of-fashion”.

1

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.cs.sjsu.edu/~louden/cmptext/

Figure 1: Structure of a typical compiler

1.2 Compiler architecture & phases
1. Architecture of a typical compiler

2. Anatomy of a compiler

3. Pre-processor

• either separate program or integrated into compiler

2

• nowadays: C-style preprocessing mostly seen as “hack” grafted on top of a compiler.1

• examples (see next slide):
– file inclusion2

– macro definition and expansion3

– conditional code/compilation: Note: #if is not the same as the if-programming-language construct.
• problem: often messes up the line numbers

4. C-style preprocessor examples

#include <fi lename>

Listing 1: file inclusion

#varde f #a = 5 ; #c = #a+1
. . .
#i f (#a < #b)

. .
#else

. . .
#endif

Listing 2: Conditional compilation

5. C-style preprocessor: macros

#macrodef hentdata (#1,#2)
−−− #1−−−−
#2−−−(#1)−−−

#enddef

. . .
#hentdata (kar i , per)

Listing 3: Macros

−−− kar i−−−−
per−−−(ka r i)−−−

6. Scanner (lexer . . .)

• input: “the program text” (= string, char stream, or similar)
• task

– divide and classify into tokens, and
– remove blanks, newlines, comments ..

• theory: finite state automata, regular languages

7. Scanner: illustration

a [index] ␣=␣4␣+␣2

lexeme token class value
a identifier "a" 2
[left bracket
index identifier "index" 21
] right bracket
= assignment
4 number "4" 4
+ plus sign
2 number "2" 2

0
1
2 "a"

...

21 "index"
22

...

1C-preprocessing is still considered sometimes a useful hack, otherwise it would not be around . . . But it does not naturally encourage
elegant and well-structured code, just quick fixes for some situations.

2the single most primitive way of “composing” programs split into separate pieces into one program.
3Compare also to the \newcommand-mechanism in LATEX or the analogous \def-command in the more primitive TEX-language.

3

8. Parser

9. a[index] = 4 + 2: parse tree/syntax tree

expr

assign-expr

expr

subscript expr

expr

identifier
a

[expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2

10. a[index] = 4 + 2: abstract syntax tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

11. (One typical) Result of semantic analysis

• one standard, general outcome of semantic analysis: “annotated” or “decorated” AST

• additional info (non context-free):

– bindings for declarations
– (static) type information

4

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

• here: identifiers looked up wrt. declaration

• 4, 2: due to their form, basic types.

12. Optimization at source-code level

assign-expr

subscript expr

identifier
a

identifier
index

number
6

(a) 1

t = 4+2;
a[index] = t;

(b) 2

t = 6;
a[index] = t;

(c) 3

a[index] = 6;

13. Code generation & optimization

MOV R0 , index ; ; va lue o f index −> R0
MUL R0 , 2 ; ; double va lue o f R0
MOV R1 , &a ; ; address o f a −> R1
ADD R1 , R0 ; ; add R0 to R1
MOV ∗R1 , 6 ; ; const 6 −> address in R1

MOV R0 , index ; ; va lue o f index −> R0
SHL R0 ; ; double va lue in R0
MOV &a [R0] , 6 ; ; const 6 −> address a+R0

• many optimizations possible

• potentially difficult to automatize4, based on a formal description of language and machine

• platform dependent

14. Anatomy of a compiler (2)
4not that one has much of a choice. Difficult or not, no one wants to optimize generated machine code by hand

5

15. Misc. notions

• front-end vs. back-end, analysis vs. synthesis

• separate compilation

• how to handle errors?

• “data” handling and management at run-time (static, stack, heap), garbage collection?

• language can be compiled in one pass?

– E.g. C and Pascal: declarations must precede use
– no longer too crucial, enough memory available

• compiler assisting tool and infra structure, e.g.

– debuggers
– profiling
– project management, editors
– build support
– . . .

16. Compiler vs. interpeter

(a) Compilation

• classically: source code ⇒ machine code for given machine
• different “forms” of machine code (for 1 machine):

– executable ⇔ relocatable ⇔ textual assembler code

(b) full interpretation

• directly executed from program code/syntax tree
• often used for command languages, interacting with OS etc.
• speed typically 10–100 slower than compilation

(c) compilation to intermediate code which is interpreted

• used in e.g. Java, Smalltalk,
• intermediate code: designed for efficient execution (byte code in Java)
• executed on a simple interpreter (JVM in Java)
• typically 3–30 times slower than direct compilation
• in Java: byte-code ⇒ machine code in a just-in time manner (JIT)

6

17. More recent compiler technologies

• Memory has become cheap (thus comparatively large)

– keep whole program in main memory, while compiling

• OO has become rather popular

– special challenges & optimizations

• Java

– “compiler” generates byte code
– part of the program can be dynamically loaded during run-time

• concurrency, multi-core

• graphical languages (UML, etc), “meta-models” besides grammars

1.3 Bootstrapping and cross-compilation
1. Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). . . .

2. Two ways to compose “T-diagrams”

7

3. Using an “old” language and its compiler for write a compiler for a “new” one

4. Pulling oneself up on one’s own bootstraps

bootstrap (verb, trans.): to promote or develop . . . with little or no assistance
— Merriam-Webster

8

http://www.merriam-webster.com/dictionary/bootstrap

(a) Explanation
There is no magic here. The first thing is: the “Q&D” compiler in the diagram is said do be in machine
code. If we want to run that compiler as executable (as opposed to being interpreted, which is ok too), of
course we need machine code, but it does not mean that we have to write that Q&D compiler in machine
code. Of course we can use the approach explained before that we use an existing language with an existing
compiler to create that machine-code version of the Q&D compiler.
Furthermore: when talking about efficiency of a compiler, we mean here exactly that here: it’s the compila-
tion process itself which is inefficent! As far as efficency goes, one the one hand the compilation process can
be efficient or not, and on the other the generated code can be (on average and given competen program-
mers) be efficent not. Both aspects are not independent, though: to generate very efficient code, a compiler
might use many and aggressive optimizations. Those may produce efficient code but cost time to do. In
the first stage, we don’t care how long it takes to compile, and also not how efficient is the code it produces!
Note the that code that it produces is a compiler, it’s actually a second version of “same” compiler, namely
for the new language A to H and on H. We don’t care how efficient the generated code, i.e., the compiler
is, because we use it just in the next step, to generate the final version of compiler (or perhaps one step
further to the final compiler).

5. Bootstrapping 2

9

6. Porting & cross compilation

(a) Explanation The situation is that K is a new “platform” and we want to get a compiler for our new language
A for K (assuming we have one already for the old platform H). It means that not only we want to compile
onto K, but also, of course, that it has to run on K. These are two requirements: (1) a compiler to K and
(2) a compiler to run on K. That leads to two stages.
In a first stage, we “rewrite” our compiler for A, targeted towards H, to the new platform K. If structured
properly, it will “only” require to port or re-target the so-called back-end from the old platform to the new
platform. If we have done that, we can use our executable compiler on H to generate code for the new
platform K. That’s known as cross-compilation: use platform H to generate code for platform K.
But now, that we have a (so-called cross-)compiler from A to K, running on the old platform H, we use it
to compile the retargeted compiler again!

10

References
[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques and Tools.

Addison-Wesley.

[Louden, 1997] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

11

Index
abstract syntax tree, 4

binding, 4
bootstrapping, 7
byte code, 6, 7

code generation, 5
command language, 6
cross compilation, 10
cross-compiler, 7

intermediate code, 6
interpreter, 6

just-in-time compilation, 6

lexer, 3

object orientation, 7
optimization

code generation, 5

parse tree, 4
parser, 4

scanner, 3
semantic analysis, 4
syntax tree, 4

tombstone diagram, 7
type, 4

12

	Introduction
	Introduction
	Compiler architecture & phases
	Bootstrapping and cross-compilation

