Compiler construction

Martin Steffen

January 19, 2016

Contents

(1__Introduction|

(1.2 Compiler architecture & phases| o
[1.3 Bootstrapping and cross-compilation| Lo L oL

N0

1 Introduction

19. 01. 2016

1.1 Introduction

1. Course info

(a) Course presenters:

e Martin Steffen (msteffen@ifi.uio.no)

e Stein Krogdahl (stein@ifi.uio.no)

e Birger Myller-Pedersen (birger@ifi.uio.no)

e Eyvind Waerstad Axelsen (oblig-ansvarlig, eyvinda@ifi.uio.no)

(b) Course’s web-page http://www.uio.no/studier/emner/matnat/ifi/INF5110

e overview over the course, pensum (watch for updates)
e various announcements, beskjeder, etc.

2. Course material and plan

e The material is based largely on [Louden, 1997], but also other sources will play a role. A classic is “the
dragon book” [Aho et al., 1986]

e see also Errata list at http://www.cs.sjsu.edu/"louden/cmptext/
e approx. 3 hours teaching per week
e mandatory assignments (= “obligs”)
— O1 published mid-February, deadline mid-March
— 02 published beginning of April, deadline beginning of May
e group work up-to 3 people recommended. Please inform us about such planned group collaboration
e slides: see updates on the net
e exam: Sth June, 1/:30, 4 hours.

3. Motivation: What is CC good for?

e not everyone is actually building a full-blown compiler, but

— fundamental concepts and techniques in CC

— most, if not basically all, software reads, processes/transforms and outputs “data”

= often involves techniques central to CC

— Understanding compilers = deeper understanding of programming language(s)

— new language (domain specific, graphical, new language paradigms and constructs. . .)
= CC & their principles will never be “out-of-fashion”.

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.cs.sjsu.edu/~louden/cmptext/

Front End
A

Back End
A

Source Code

kildekode

Syntax Tree

Annotated Tree

Intermediate Code

Target Code

Target Code

malkode

Literal
Table

Symbol
Table

Error
Handler

Figure 1: Structure of a typical compiler

1.2 Compiler architecture & phases

1. Architecture of a typical compiler

2. Anatomy of a compiler

-

tek: tokens syntaks-tre beriket
/ ,e synltaks-tre
f/ 51\/ \// NS Y
/ Pre- Scanner | Parser | Checker Code
' processor generator
= Finne Sjekker
\ Makroer * Deleoppi| Strukturi bruk <
S = Betinget leksemer pro;_:;ran‘n- ?ef'“'sl‘:’"
—— kompilering | |« me ype
L el s OKZ L o sjekk
henhold til
gram-
matikk?
Symboltabell (havn < Betydning (definisjon))

3. Pre-processor

Lex/
Flex
lignende
verktay

Yacc/
Bison
lignende
verkioy

e cither separate program or integrated into compiler

Attributtgrammatikker

Div.

'

+
metoder

N

e nowadays: C-style preprocessing mostly seen as “hack” grafted on top of a compilerE]
e examples (see next slide):
— file inclusionf]
— macro definition and expansion’]
— conditional code/compilation: Note: #if is not the same as the if-programming-language construct.

e problem: often messes up the line numbers

4. C-style preprocessor examples

#include <filename >

Listing 1: file inclusion

#vardef #a = 5; #c = #a+1
HAE (Ha < #b)

#else

Hendif

Listing 2: Conditional compilation

5. C-style preprocessor: macros

#macrodef hentdata(#1,#2)

7, I
H2 (1)
#enddef

#hentdata (kari , per)

Listing 3: Macros

—— kari
per——(kari)———

6. Scanner (lexer ...)
e input: “the program text” (= string, char stream, or similar)
e task
— divide and classify into tokens, and
— remove blanks, newlines, comments ..

e theory: finite state automata, regular languages

7. Scanner: illustration

‘ alindex|.=_4_+._.2

lexeme | token class value (1)
a identifier "a" 2 2 nah
L left bracket
index | identifier "index" 21
] right bracket
= assignment 21 | "index"
4 number "4n 4 22
+ plus sign
2 number "n 2
LC-preprocessing is still considered sometimes a useful hack, otherwise it would not be around ... But it does not naturally encourage

elegant and well-structured code, just quick fixes for some situations.
2the single most primitive way of “composing” programs split into separate pieces into one program.
3Compare also to the \newcommand-mechanism in IATEX or the analogous \def-command in the more primitive TEX-language.

8. Parser

SAPressio
parserings-tre assign-expresion
.
(syntaks-tre) _— -
SEPREEFTOR = EXPrEsion
resultat av parserlﬂg sulsseripr-expression additive-expression
—— —
/f H‘\“"\ T ,-'/ T
XLl [FEPRFEETEOR 1 ExprEEsion +* EXPETTIN]
af[index] = 4 + 2 identifier identifier number number
a index 4 2
abstrakt

@S5I gH-EXPression

!/ \ syntaks-tre

subscripr-expression addirive-expression .
/ \ "syntaktisk
/ ‘\ Sukker”
identifier idantifiar number number -
2 index] 2 fiernet

9. alindex] = 4 + 2: parse tree/syntax tree

expr

assign-expr

T

expr = expr
| |
subscript expr additive expr
P I
expr [expr] expr + expr
| | | |
identifier identifier number number
a index 4 2

10. alindex] = 4 + 2: abstract syntax tree

assign-expr

/\

subscript expr additive expr
identifier identifier number number
a index 2 4

11. (One typical) Result of semantic analysis

e one standard, general outcome of semantic analysis: “annotated” or “decorated” AST
e additional info (non context-free):

— bindings for declarations
— (static) type information

assign—exprn
subscript—cxpr additivc—cxpr
identiﬁerdentiﬁer number number

e here: identifiers looked up wrt. declaration

e 4. 2: due to their form, basic types.

12. Optimization at source-code level

assign-expr

/\

subscript expr number

/\ i

identifier identifier
a index
(a) 1
t = 4+2;
alindex] = t;
(b) 2
t = 6;
alindex] = t;
(c) 3
a[index] = 6;
13. Code generation & optimization
MOV RO, index ;; value of index —> RO
MUL RO, 2 ;5 double value of RO
MOV RI1, &a ;5 address of a —> RI1
ADD R1, RO ;5 add RO to Rl
MOV xR1, 6 ;3 const 6 —> address in Rl
MOV RO, index ;; value of index —> RO
SHL RO ;; double value in RO
MOV &a[RO], 6 ;; const 6 —> address a+RO

e many optimizations possible
e potentially difficult to automatizeﬂ based on a formal description of language and machine

e platform dependent

14. Anatomy of a compiler (2)

4not that one has much of a choice. Difficult or not, no one wants to optimize generated machine code by hand

L —

Cprogre)

e | ~,
|\‘xpmg e /J

callp
P N goto start+30
f_.f \.__ l.-" \uff A | / _\\ /__.,-————.__‘\' _
‘ L ' ,— ~{_prog.asm) -)
/ —— N f,
o~ R S “uf
-~ T ——
g | [' R e
-~ Linker/ |/ \
L \ Assembler Y _prog.abs)
- I Loader — -
f‘/’.l | I\\ ra ';
- _,./' e — -
P .1 \\ [P -
e | \‘{ rog.rel >—— — call p
4 VR =il S = - goto start+30
/ / Time i i
i . Y —
\ . |compiler v lealm - .
~ ByteCode) S P -
— % |goto start+10 -
W\ SO L call m
h . R . - —
\ Virtual ~_ e oto start+ 10
fortalkning | Machine - - =
—— —_—— = — — — — — — -

15. Misc. notions

e front-end vs. back-end, analysis vs. synthesis
e separate compilation
e how to handle errors?
e “data” handling and management at run-time (static, stack, heap), garbage collection?
language can be compiled in one pass?

— E.g. C and Pascal: declarations must precede use
— no longer too crucial, enough memory available
compiler assisting tool and infra structure, e.g.

debuggers

profiling

project management, editors

build support

16. Compiler vs. interpeter

(a) Compilation
e classically: source code = machine code for given machine
e different “forms” of machine code (for 1 machine):
— executable < relocatable < textual assembler code
(b) full interpretation
e directly executed from program code/syntax tree
e often used for command languages, interacting with OS etc.
e speed typically 10-100 slower than compilation
(¢) compilation to intermediate code which is interpreted

e used in e.g. Java, Smalltalk,
e intermediate code: designed for efficient execution (byte code in Java)

e executed on a simple interpreter (JVM in Java)

typically 3-30 times slower than direct compilation

in Java: byte-code = machine code in a just-in time manner (JIT)

17. More recent compiler technologies

e Memory has become cheap (thus comparatively large)

— keep whole program in main memory, while compiling
e OO has become rather popular

— special challenges & optimizations
o Java

— “compiler” generates byte code
— part of the program can be dynamically loaded during run-time

e concurrency, multi-core

graphical languages (UML, etc), “meta-models” besides grammars

1.3 Bootstrapping and cross-compilation

1. Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). ...

Compiler far language A Existing Caompiler Running compiler
written in language B far language B far language A

oversetter fra \ oversetter til N

skrevet i
(eller: kan
utfores pa)

2. Two ways to compose “T-diagrams”

H H H
— Bytecode
) » B A B
H | H K K
[oL : 'f
| I.'I M \\H.. Il.l_
Java |' x T— \
c {j.-' —————— Intel maskinkode

_ Vanlig C-kompilator som
gar pa M-maskin

3. Using an “old” language and its compiler for write a compiler for a “new” one

Compiler far language A Existing Caompiler Running compiler
written in language B far language B far language A
A H A H
B | B H H
H

4. Pulling oneself up on one’s own bootstraps

bootstrap| (verb, trans.): to promote or develop ... with little or no assistance
— Merriam-Webster

http://www.merriam-webster.com/dictionary/bootstrap

Lage en kompilator som er skrevet i eget sprak, gar fort og lager god kode

Steg 1 S T
Skrevet i en S
begrenset del Lager god H-kode
avA /
e
= - men sakte

Compiler written in its own Running but inefficient
language A compiler

"Quick and dirty" compiler written in
machine language

(a) Explanation

There is no magic here. The first thing is: the “Q&D” compiler in the diagram is said do be in machine
code. If we want to run that compiler as executable (as opposed to being interpreted, which is ok too), of
course we need machine code, but it does not mean that we have to write that Q&D compiler in machine
code. Of course we can use the approach explained before that we use an existing language with an existing
compiler to create that machine-code version of the Q&D compiler.

Furthermore: when talking about efficiency of a compiler, we mean here exactly that here: it’s the compila-
tion process itself which is inefficent! As far as efficency goes, one the one hand the compilation process can
be efficient or not, and on the other the generated code can be (on average and given competen program-
mers) be efficent not. Both aspects are not independent, though: to generate very efficient code, a compiler
might use many and aggressive optimizations. Those may produce eflicient code but cost time to do. In
the first stage, we don’t care how long it takes to compile, and also not how efficient is the code it produces!
Note the that code that it produces is a compiler, it’s actually a second version of “same” compiler, namely
for the new language A to H and on H. We don’t care how efficient the generated code, i.e., the compiler
is, because we use it just in the next step, to generate the final version of compiler (or perhaps one step
further to the final compiler).

5. Bootstrapping 2

Lager god H-kode

Steg 2
/ - og fort
A H A H
SR —
Al A H 1! H
== |- -]
/ 1 H ¢!
| g |
Compiler written in its own Final version of the
language A compiler

Running but inefficient compiler
{from the first step)

6. Porting & cross compilation
= Har: A kompilator som oversetter til H-maskinkode
» @nsker: A-kompilator som oversetter til K-maskin kode

Steg 1: Skriv kompilator slik at den produserer K-kode
(f.eks. vha ny back-end)

H gar pa H-maskin,
L ! produserer K-kode
H / ,,/’“/ (kryss-kompilator)

Compiler source code Cross compiler
retargeted to K

Original compiler

Steg 2: Oversetter den nye A K A K

: . I EE e N [
kompilatoren til K-kode. AlA B K
Gjores pa en H-maskin vha Ty
krysskompilatoren Lol

Compiler source code Retargeted compilar

retargeted to K

2001115 Cross compiler

(a) Explanation The situation is that K is a new “platform” and we want to get a compiler for our new language

A for K (assuming we have one already for the old platform H). It means that not only we want to compile
onto K, but also, of course, that it has to run on K. These are two requirements: (1) a compiler to K and
(2) a compiler to run on K. That leads to two stages.
In a first stage, we “rewrite” our compiler for A, targeted towards H, to the new platform K. If structured
properly, it will “only” require to port or re-target the so-called back-end from the old platform to the new
platform. If we have done that, we can use our executable compiler on H to generate code for the new
platform K. That’s known as cross-compilation: use platform H to generate code for platform K.

But now, that we have a (so-called cross-)compiler from A to K, running on the old platform H, we use it
to compile the retargeted compiler again!

10

References

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques and Tools.
Addison-Wesley.

[Louden, 1997] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

11

Index

abstract syntax tree, 4

binding, 4
bootstrapping, 7
byte code, 6, 7

code generation, 5
command language, 6
cross compilation, 10
cross-compiler, 7

intermediate code, 6
interpreter, 6

just-in-time compilation, 6
lexer, 3

object orientation, 7
optimization

code generation, 5

parse tree, 4
parser, 4

scanner, 3
semantic analysis, 4
syntax tree, 4

tombstone diagram, 7
type, 4

12

	Introduction
	Introduction
	Compiler architecture & phases
	Bootstrapping and cross-compilation

