
Compiler construction

Martin Steffen

January 31, 2016

Contents
1 Grammars 1

1.1 Introduction . 1
1.2 Context-free grammars and BNF notation . 3
1.3 Ambiguity . 9
1.4 Syntax diagrams . 15
1.5 Chomsky hierarchy . 15
1.6 Syntax of Tiny . 16

1 Grammars

1.1 Introduction
1. Bird eye’s view of a parser

sequence
of tokens Parser tree repre-

sentation

• check that the token sequence correspond to a syntactically correct program

– if yes: yield tree as intermediate representation for subsequent phases
– if not: give understandable error message(s)

• we will encounter various kinds of trees

– derivation trees (derivation in a (context-free) grammar)
– parse tree, concrete syntax tree
– abstract syntax trees

• mentioned tree forms hang together

• result of a parser: typically AST

2. Sample syntax tree

program

stmts

stmt

assign-stmt

expr

+

var

y

var

x

var

x

decs

val=vardec

1

(a) Syntax tree
The displayed syntax tree is meant “impressionistic” rather then formal. Neither is it a sample
syntax tree of a real programming language, nor do we want to illustrate for instance special
features of an abstract syntax tree vs.\ a concrete syntax tree (or a parse tree). Those notions
are closely related and corresponding trees might all looks similar to the tree shown. There
might, however, be subtle conceptual and representational differences in the various classes of
trees. Those are not relevant yet.

3. Natural-language parse tree

S

NP

DT

The

N

dog

VP

V

bites

NP

NP

the

N

man

4. “Interface” between scanner and parser

• remember: task of scanner = “chopping up” the input char stream (throw away white space
etc) and classify the pieces (1 piece = lexeme)

• classified lexeme = token

• sometime we use 〈integer, ”42”〉
– integer: “class” or “type” of the token, also called token name
– ”42” : value of the token attribute (or just value). Here, it’s directly the lexeme (a string

or sequence of chars)

• a note on (sloppyness/ease of) terminology: often: the token name is simply just called the
token

• for (context-free) grammars: the token (symbol) corrresponds there to terminal symbols (or
terminals, for short)

(a) Token names and terminals

Remark 1 (Token (names) and terminals). We said, that sometimes one uses the name “to-
ken” just to mean token symbol, ignoring its value (like “42” from above). Especially, in the
conceptual discussion and treatment of context-free grammars, which form the core of the spec-
ifications of a parser, the token value is basically irrelevant. Therefore, one simply identifies
“tokens = terminals of the grammar” and silently ignores the presence of the value. In an im-
plementation, and in lexer/parser generators, the value ”42” of an integer-representing token
must obviously not be forgotten, though . . .The grammar maybe the core of the specification of
the syntactical analysis, but the result of the scanner, which resulted in the lexeme ”42” must
nevertheless not be thrown away, it’s only not really part of the parser’s tasks.

(b) Notations

Remark 2. Writing a compiler, especially a compiler front-end comprising a scanner and
a parser, but to a lesser extent also for later phases, is about implementing representation
of syntactic structures. The slides here don’t implement a lexer or a parser or similar, but
describe in a hopefully unambiguous way the principles of how a compiler front end works
and is implemented. To describe that, one needs “language” as well, such as English language

2

(mostly for intuitions) but also “mathematical” notations such as regular expressions, or in this
section, context-free grammars. Those mathematical definitions have themselves a particular
syntax; one can see them as formal domain-specific languages to describe (other) languages.
One faces therefore the (unavoidable) fact that one deals with two levels of languages: the
language who is described (or at least whose syntax is described) and the language used to
descibe that language. The situation is, of course, analogous when implementing a language:
there is the language used to implement the compiler on the one hand, and the language for
which the compiler is written for. For instance, one may choose to implement a C++-compiler
in C. It may increase the confusion, if one chooses to write a C compiler in C Anyhow, the
language for describing (or implementing) the language of interest is called the meta-language,
and the other one described therefore just “the language”.
When writing texts or slides about such syntactic issues, typically one wants to make clear
to the reader what is meant. One standard way nowadays are typographic conventions, i.e.,
using specific typographic fonts. I am stressing “nowadays” because in classic texts in compiler
construction, sometimes the typographic choices were limited. []

1.2 Context-free grammars and BNF notation
1. Grammars

• in this chapter(s): focus on context-free grammars

• thus here: grammar = CFG

• as in the context of regular expressions/languages: language = (typically infinite) set of words

• grammar = formalism to unambiguously specify a language

• intended language: all syntactically correct programs of a given progamming language

(a) Slogan A CFG describes the syntax of a programming language. 1

(b) Rest

• note: a compiler will reject some syntactically correct programs, whose violations cannot
be captured by CFGs.

(c) Remarks on grammars
Sometimes, the word “grammar” is synonymously for context-free grammars, as CFG are so
central. However, context-sensitive and Turing-expressive grammars exists, both more expres-
sive than CFG. Also a restricted class of CFG corresponds to regular expressions/languages.
Seen as a grammar, regular expressions correspond so-called left-linear grammars (or alterna-
tivelty, right-linear grammars), which are a special form of context-free grammars.

2. Context-free grammar

Definition 1 (CFG). A context-free grammar G is a 4-tuple G = (ΣT ,ΣN , S, P):

(a) 2 disjoint finite alphabets of terminals ΣT and

(b) non-terminals ΣN

(c) 1 start-symbol S ∈ ΣN (a non-terminal)

(d) productions P = finite subset of ΣN × (ΣN + ΣT)∗

• terminal symbols: corresponds to tokens in parser = basic building blocks of syntax

• non-terminals: (e.g. “expression”, “while-loop”, “method-definition” . . .)

• grammar: generating (via “derivations”) languages

• parsing: the inverse problem

⇒ CFG = specification

3. BNF notation
1and some say, regular expressions describe its microsyntax.

3

• popular & common format to write CFGs, i.e., describe context-free languages

• named after pioneering (seriously) work on Algol 60

• notation to write productions/rules + some extra meta-symbols for convenience and grouping

(a) Slogan: Backus-Naur form
What regular expressions are for regular languages is BNF for context-free languages.

4. “Expressions” in BNF

exp → exp op exp | (exp) | number
op → + | − | ∗

(1)

• “→” indicating productions and “ | ” indicating alternatives. 2

• convention: terminals written boldface, non-terminals italic

• also simple math symbols like “+” and “(′′ are meant above as terminals.

• start symbol here: expr

• remember: terminals like number correspond to tokens, resp. token classes. The attributes
are not relevant here.

(a) Terminals
Conventions are not 100% followed, often bold fonts for symbols such as + or (are unavailable.
The alternative using for instance PLUS and LPAREN looks ugly. Even if this might
reminisce to the situation in concrete parser implementation, where + might by implemented
by a concrete class named Plus —classes or identifiers named + are typically not available—
most texts don’t follow conventions so slavishly and hope of intuitive understanding of the
educated reader.

5. Different notations

• BNF: notationally not 100% “standardized” across books/tools

• “classic” way (Algol 60):

<exp> : := <exp> <op> <exp>
| (<exp>)
| NUMBER

<op> : := + | − | ∗

• Extended BNF (EBNF) and yet another style

exp → exp (” + ” | ”− ” | ” ∗ ”) exp
| ”(” exp ”)” | ”number”

(2)

• note: parentheses as terminals vs. as metasymbols

(a) “Standard” BNF
Specific and unambiguous notation is important, in particular if you implement a concrete
language on a computer. On the other hand: understanding the underlying concepts by
humans is at least equally important. In that way, bueaucratically fixed notations may distract
from the core, which is understanding the principles. BTW: XML, anyone? Most textbooks
(and we) rely on simple typographic conventions (boldfaces, italics). For “implementations” of
BNF specification (as in tools like yacc), the notations, based mostly on ASCII, cannot rely
on such typographic conventions.

2The grammar can be seen as consisting of 6 productions/rules, 3 for expr and 3 for op, the | is just for convenience.
Side remark: Often also ::= is used for →.

4

https://en.wikipedia.org/wiki/ALGOL_60

(b) Syntax of BNF
BNF and its variations is a notation to describe “languages”, more precisely the “syntax” of
context-free languages. Of course, BNF notation, when exactly defined, is a language in itself,
namely a domain-specific language to describe context-free languages. It may be instructive to
write a grammar for BNF in BNF, i.e., using BNF as meta-language to describe BNF notation
(or regular expressions). Is it possible to use regular expressions as meta-language to describe
regular expression?

6. Different ways of writing the same grammar

• directly written as 6 pairs (6 rules, 6 productions) from ΣN × (ΣN ∪ ΣT)∗, with “→” as nice
looking “separator”:

expr → expr op expr
expr → (expr)
expr → number
op → +
op → −
op → ∗

(3)

• choice of non-terminals: irrelevant (except for human readability):

E → E O E | (E) | number

O → + | − | ∗
(4)

• still: we count 6 productions

7. Grammars as language generators

(a) Deriving a word: Start from start symbol. Pick a “matching” rule to rewrite the current word
to a new one; repeat until terminal symbols, only.

(b) Rest

• non-deterministic process
• rewrite relation for derivations:

– one step rewriting: w1 ⇒ w2

– one step using rule n: w1 ⇒n w2

– many steps: ⇒∗ etc.

(c) language of grammar G

L(G) = {s | start ⇒∗ s and s ∈ Σ∗T }

8. Example derivation for (number−number)∗number

exp ⇒ exp op exp
⇒ (exp) op exp
⇒ (exp op exp) op exp
⇒ (number op exp) op exp
⇒ (number− exp) op exp
⇒ (number−number)op exp
⇒ (number−number)∗ exp
⇒ (number−number)∗number

• underline the “place” were a rule is used, i.e., an occurrence of the non-terminal symbol is
being rewritten/expanded

• here: leftmost derivation3

3We’ll come back to that later, it will be important.

5

9. Rightmost derivation

exp ⇒ exp op exp
⇒ exp op number
⇒ exp ∗number
⇒ (exp op exp)∗number
⇒ (exp op number)∗number
⇒ (exp−number)∗number
⇒ (number−number)∗number

• other (“mixed”) derivations for the same word possible

10. Some easy requirements for reasonable grammars

• all symbols (terminals and non-terminals): should occur in a word derivable from the start
symbol

• words containing only non-terminals should be derivable

• an example of a silly grammar G
A → B x
B → Ay
C → z

• L(G) = ∅
• those “sanitary conditions”: very minimal “common sense” requirements

(a) Remarks

Remark 3. There can be many more that the one mentioned. A CFG that derives ultimately
only 1 word of terminals (or a finite set of those) does not make much sense either.

Remark 4 (“Easy” sanitary conditions for CFGs). We stated a few conditions to avoid gram-
mars which technically qualify as CFGs but don’t make much sense; there are easier ways to
describe an empty set . . .
There’s a catch, though: it might not immediately be obvious that, for a given G, the question
L(G) =? ∅ is decidable!
Whether a regular expression describes the empty language is trivially decidable immediately.
Whether a finite state automaton descibes the empty language or not is, if not trivial, then
at least a very easily decidable question. For context-sensitive grammars (which are more
expressive than CFG but not yet Turing complete), the emptyness question turns out to be
undecidable. Also, other interesting questions concerning CFGs are, in fact, undecidable, like:
given two CFGs, do they describe the same language? Or: given a CFG, does it actually
describe a regular language? Most disturbingly perhaps: given a grammar, it’s undecidable
whether the grammar is ambiguous or not. So there are interesting and relevant properties
concerning CFGs which are undecidable. Why that is, is not part of the pensum of this lecture
(but we will at least encounter the concept of grammatical ambiguity later). Coming back for
the initial question: fortunately, the emptyness problem for CFGs is decidable.
Questions concerning decidability may seem not too relevant at first sight. Even if some gram-
mars can be constructed to demonstrate difficult questions, for instance related to decidability
or worst-case complexity, the designer of a language will not intentionally try to achieve an ob-
scure set of rules whose status is unclear, but hopefully strive to capture in a clear manner the
syntactic principles of a equally hopefully clearly structured language. Nonetheless: grammars
for real language may become large and complex, and, even if conceptually clear, may contain
unexcepted bugs which makes them behave different from expectation (for instance caused by a
simple typo in one of the many rules).
In general, the implementor of a parser will mostly rely on automatic tools (“parser generators”)
which take as an input a CFG and turns it in into an implementation of a recognizer, which does
the syntactic analysis. Such tools obviously can reliably and accurately help the implementor
of the parser automatically only for problems which are decidable. For undecidable problems,
one could still achieve things automatically, provided one would compromise by not insisting

6

that the parser always terminates (but that’s generally seens as unacceptable), or at the price
of approximative answers. It should also be mentioned that parser generators typcially won’t
tackle CFGs in their full generality but are tailor-made for well-defined and well-understood
subclasses thereof, where efficient recognizers are automaticlly generatable.

11. Parse tree

• derivation: if viewed as sequence of steps ⇒ linear “structure”
• order of individual steps: irrelevant
• ⇒ order not needed for subsequent steps
• parse tree: structure for the essence of derivation
• also called concrete syntax tree.4

1 exp

2 exp

number

3 op

+

4 exp

number

• numbers in the tree
– not part of the parse tree, indicate order of derivation, only
– here: lefttmost derivation

12. Another parse tree (numbers for rightmost derivation)

1 exp

4 exp

(5 exp

8 exp

number

7 op

−

6 exp

number

)

3 op

∗

2 exp

number

13. Abstract syntax tree

• parse tree: contains still unnecessary details
• specifically: parentheses or similar used for grouping
• tree-structure: can express the intended grouping already
• remember: tokens contain also attibute values also (e.g.: full token for token class number

may contain lexeme like ”42” . . .)

1 exp

2 exp

number

3 op

+

4 exp

number

+

3 4

14. AST vs. CST

• parse tree
4there will be abstract syntax trees as well.

7

– important conceptual structure, to talk about grammars . . . ,
– most likely not explicitly implemented in a parser

• AST is a concrete datastructure
– important IR of the syntax of the language to be implemented
– written in the meta-language used in the implementation
– therefore: nodes like + and 3 are no longer tokens or lexemes
– concrete data stuctures in the meta-language (C-structs, instances of Java classes, or what

suits best)
– the figure is meant as schematic only
– produced by the parser, used by later phases (often by more than one)
– note also: we use 3 in the AST, where lexeme was "3"
⇒ at some point the lexeme string (for numbers) is translated to a number in the meta-

language (e.g., when producing the AST)

15. Plausible schematic AST (for the other parse tree)

*

-

34 3

42

• this AST: rather “simplified” version of the CST
• an AST closer to the CST (just dropping the parentheses): nothing wrong with it either.

16. Conditionals

(a) Conditionals G1

stmt → if -stmt | other
if -stmt → if (exp) stmt

→ if (exp) stmt else stmt
exp → 0 | 1

(5)

17. Parse tree
if (0)other else other

stmt

if -stmt

if (exp

0

) stmt

other

else stmt

other

18. Another grammar for conditionals

(a) Conditionals G2

stmt → if -stmt | other
if -stmt → if (exp) stmt else_part

else_part → else stmt | ε
exp → 0 | 1

(6)

8

(b) Abbreviation ε = empty word

19. A further parse tree + an AST

stmt

if -stmt

if (exp

0

) stmt

other

else_part

else stmt

other

COND

0 other other

(a) Note A missing else part may be represented by null-pointers in languages like Java.

1.3 Ambiguity
1. Ambiguous grammar

Definition 2 (Ambiguous grammar). A grammar is ambiguous if there exists a word with two
different parse trees.

Remember grammar from equation (1):

exp → exp op exp | (exp) | number
op → + | − | ∗

Consider:

number−number ∗number

2. 2 resulting ASTs

∗

−

34 3

42

−

34 ∗

3 42

different parse trees ⇒ different5 ASTs ⇒ different5 meaning

(a) Side remark: different meaning The issue of “different meaning” may in practice be subtle: is
(x+ y)− z the same as x+ (y − z)? In principle yes, but what about MAXINT?

3. Precendence & associativity

• one way to make a grammar unambiguous (or less ambiguous)
5At least in most cases.

9

• For instance:

binary op’s precedence associativity
+, − low left
×, / higher left
↑ highest right

• a ↑ b written in standard math as ab:

5 + 3/5× 2 + 4 ↑ 2 ↑ 3 =

5 + 3/5× 2 + 42
3

=

(5 + ((3/5× 2)) + (4(2
3))) .

• mostly fine for binary ops, but usually also for unary ones (postfix or prefix)

4. Unambiguity without associativity and precedence

• removing ambiguity by reformulating the grammar

• precedence for op’s: precedence cascade

– some bind stronger than others (∗ more than +)
– introduce separate non-terminal for each precedence level (here: terms and factors)

5. Expressions, revisited

• associativity

– left-assoc: write the corresponding rules in left-recursive manner, e.g.:

exp → exp addop term | term

– right-assoc: analogous, but right-recursive
– non-assoc:

exp → term addop term | term

(a) factors and terms
exp → exp addop term | term

addop → + | −
term → term mulop term | factor

mulop → ∗
factor → (exp) | number

(7)

6. 34− 3 ∗ 42

exp

exp

term

factor

number

addop

−

term

term

factor

number

mulop

∗

factor

number

10

7. 34− 3− 42

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

(a) Ambiguity
The question whether a given CFG is ambiguous or not is undecidable. Note also: if one
uses a parser generator, such as yacc or bison (which cover a subset of CFGs), the resulting
recognizer is always determinstic. In case the construction encounter ambiguous situations,
they are “resolved” by making a specific choice. Nonetheless, such ambiguities indicate often
that the formulation of the grammar (or even the language it defines) has problematic aspects.
Most programmars as “users” of a programming language may not read the full BNF definition,
most will try to grasp the language looking at sample code pieces mentioned in the manual etc.
And even if they bother studying the exact specification of the system, i.e., the full grammar,
ambiguities are not obvious (after all, it’s undecidable). Hidden ambiguities, “resolved” by
the generated parser, may lead misconceptions as to what a program actually means. It’s
similar to the situation, when one tries to study a book with arithmetic being unaware that
multiplication binds stronger than addition. A parser implementing such grammars may make
consistent choices, but the programmer using the compiler may not be aware of them. At least
the compiler writer, responsible for designing the language, will be informed about “/conflicts/”
in the grammar and a careful designer will try to get rid of them. This may be done by adding
associativities and precedences (when appropriate) or reformulating the grammar, or even
reconsider the syntax of the language. While ambiguities and conflicts are generally a bad
sign, arbitrarily adding a complicated “precedence order” and “associativities” on all kinds of
symbols or complicate the grammar adding ever more separate classes of nonterminals just
to make the conflicts go away is not a real solution either. Chances are, that those parser-
internal “tricks” will be lost on the programmer as user of the language, as well. Sometimes,
makeing the language simpler (as opposed to complicate the grammar for the same language)
might be the better choice. That typically be done by making the language more verbose and
reducing “overloading” of syntax. Of course, going overboard by making groupings etc. of all
constructs crystal clear to the parser, may also lead to non-elegant designs. Lisp is a standard
example, notoriously known for it’s extensive use of parentheses. Basically, the programmer
directly writes down syntax trees, which certainly removes all ambiguities, but still, mountains
of parentheses are also not the easiest syntax for human consumption. So it’s a tricky balance.
But in general: if it’s enormously complex to come up with a reasonably unambigous grammar
for an intended language, chances are, that reading programs in that language and intutively
grasping what is intended will be hard for humans, too.
Note also: since already the question, whether a given CFG is ambigiguous or not is undecid-
able, it should be clear, that the following question is undecidable as well: given a grammar,
can I reformulate it, still accepting the same language, that it becomes unambiguous?

8. Real life example

11

9. Non-essential ambiguity

(a) left-assoc
stmt-seq → stmt-seq ; stmt | stmt

stmt → S

stmt-seq

stmt

S

; stmt-seq

stmt

S

; stmt-seq

stmt

S

10. Non-essential ambiguity (2)

(a) right-assoc representation instead

stmt-seq → stmt ; stmt-seq | stmt
stmt → S

12

stmt-seq

stmt-seq

stmt-seq

stmt

S

; stmt

S

; stmt

S

11. Possible AST representations

Seq

S S S

Seq

S S S

12. Dangling else

(a) Nested if’s
if (0) if (1)other else other

(b) :Bignoreheading: Remember grammar from equation (5):

stmt → if -stmt | other
if -stmt → if (exp) stmt

→ if (exp) stmt else stmt
exp → 0 | 1

13. Should it be like this

stmt

if -stmt

if (exp

0

) stmt

if -stmt

if (exp

1

) stmt

other

else stmt

other

14. . . . or like this

stmt

if -stmt

if (exp

0

) stmt

if -stmt

if (exp

1

) stmt

other

else stmt

other

13

• common convention: connect else to closest “free” (= dangling) occurrence

15. Unambiguous grammar

(a) Grammar

stmt → matched_stmt | unmatch_stmt
matched_stmt → if (exp)matched_stmt elsematched_stmt

| other
unmatch_stmt → if (exp) stmt

| if (exp)matched_stmt else unmatch_stmt
exp → 0 | 1

(b) :Bignoreheading:

• never have an unmatched statement inside a matched
• complex grammar, seldomly used
• instead: ambiguous one, with extra “rule”: connect each else to closest free if

• alternative: different syntax, e.g.,
– mandatory else,
– or require endif

16. CST

stmt

unmatch_stmt

if (exp

0

) stmt

matched_stmt

if (exp

1

) else matched_stmt

other

17. Adding sugar: extended BNF

• make CFG-notation more “convenient” (but without more theoretical expressiveness)

• syntactic sugar

(a) EBNF Main additional notational freedom: use regular expressions on the rhs of productions.
The can contain terminals and non-terminals

(b) Rest

• EBNF: officially standardized, but often: all “sugared” BNFs are called EBNF
• in the standard:

– α∗ written as {α}
– α? written as [α]

• supported (in the standardized form or other) by some parser tools, but not in all
• remember equation (2)

14

18. EBNF examples

A → β{α} for A→ Aα | β
A → {α}β for A→ αA | β

stmt-seq → stmt {; stmt}
stmt-seq → {stmt ;} stmt
if -stmt → if (exp) stmt [else stmt]

greek letters: for non-terminals or terminals.

1.4 Syntax diagrams
1. Syntax diagrams

• graphical notation for CFG

• used for Pascal

• important concepts like ambiguity etc: not easily recognizable

– not much in use any longer
– example for unsigned integer (taken from the TikZ manual):

uint . digit E

+

-

uint

1.5 Chomsky hierarchy
1. The Chomsky hierarchy

• linguist Noam Chomsky [Chomsky, 1956]

• important classification of (formal) languages (sometimes Chomsky-Schtzenberger)

• 4 levels: type 0 languages – type 3 languages

• levels related to machine models that generate/recognize them

• so far: regular languages and CF languages

2. Overview

rule format languages machines closed
3 A→ aB , A→ a regular NFA, DFA all
2 A→ α1βα2 CF pushdown

automata
∪, ∗, ◦

1 α1Aα2 → α1βα2 context-
sensitive

(linearly re-
stricted au-
tomata)

all

0 α→ β, α 6= ε recursively
enumerable

Turing ma-
chines

all, except
complement

(a) Conventions

• terminals a, b, . . . ∈ ΣN ,
• non-terminals A,B, . . . ∈ ΣT

• general words α, β . . . ∈ (ΣT ∪ ΣN)∗

15

(b) Remark: Chomsky hierarchy
The rule format for type 3 languages (= regular languages) is also called right-linear. Alter-
natively, one can use right-linear rules. If one mixes right- and left-linear rules, one leaves
the class of regular languages. The rule-format above allows only one terminal symbol. In
principle, if one had sequences of terminal symbols in a right-linear (or else left-linear) rule,
that would be ok too.

3. Phases of a compiler & hierarchy

(a) “Simplified” design? 1 big grammar for the whole compiler? Or at least a CSG for the front-
end, or a CFG combining parsing and scanning?

(b) Rest theoretically possible, but bad idea:
• efficiency
• bad design
• especially combining scanner + parser in one BNF:

– grammar would be needlessly large
– separation of concerns: much clearer/ more efficient design

• for scanner/parsers: regular expressions + (E)BNF: simply the formalisms of choice!
– front-end needs to do more than checking syntax, CFGs not expressive enough
– for level-2 and higher: situation gets less clear-cut, plain CSG not too useful for

compilers

1.6 Syntax of Tiny
1. BNF-grammar for TINY

program → stmt-seq
stmt-seq → stmt-seq ; stmt | stmt

stmt → if -stmt | repeat-stmt | assign-stmt
| read-stmt | write-stmt

if -stmt → if expr then stmt end
| if expr then stmt else stmt end

repeat-stmt → repeat stmt-seq until expr
assign-stmt → identifier := expr
read-stmt → read identifier
write-stmt → write identifier

expr → simple-expr comparison-op simple-expr
comparison-op → < | =

simple-expr → simple-expr addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗ | /
factor → (expr) | number | identifier

2. Syntax tree nodes

typedef enum {StmtK ,ExpK} NodeKind;
typedef enum {IfK ,RepeatK ,AssignK ,ReadK ,WriteK} StmtKind;
typedef enum {OpK ,ConstK ,IdK} ExpKind;

/* ExpType is used for type checking */
typedef enum {Void ,Integer ,Boolean} ExpType;

#define MAXCHILDREN 3

typedef struct treeNode
{ struct treeNode * child[MAXCHILDREN];

struct treeNode * sibling;
int lineno;
NodeKind nodekind;
union { StmtKind stmt; ExpKind exp;} kind;
union { TokenType op;

int val;
char * name; } attr;

ExpType type; /* for type checking of exps */

16

3. Comments on C-representation

• typical use of enum type for that (in C)

• enum’s in C can be very efficient

• treeNode struct (records) is a bit “unstructured”

• newer languages/higher-level than C: better structuring advisable, especially for languages larger than
Tiny.

• in Java-kind of languages: inheritance/subtyping and abstract classes/interfaces often used for better
structuring

4. Sample Tiny program

read x; { input as integer }
if 0 < x then { don ’t compute if x <= 0 }

fact := 1;
repeat

fact := fact * x;
x := x -1

until x = 0
write fact { output factorial of x }

end

5. Same Tiny program again

read x ; { input as i n t e g e r }
i f 0 < x then { don ’ t compute i f x <= 0 }

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0
write f a c t { output f a c t o r i a l o f x }

end

• keywords / reserved words highlighted by bold-face type setting

• reserved syntax like 0, :=, . . . is not bold-faced

• comments are italicized

6. Abstract syntax tree for a tiny program

7. Some questions about the Tiny grammy later given as assignment

• is the grammar unambiguous?

• How can we change it so that the Tiny allows empty statements?

• What if we want semicolons in between statements and not after?

• What is the precedence and associativity of the different operators?

17

References
[Chomsky, 1956] Chomsky, N. (1956). : Three models for the description of language. IRE Transactions

on Information Theory, 2(113–124).

18

Index
abstract syntax tree, 1, 7, 8
Algol 60, 4
alphabet, 3
ambiguity, 9

non-essential, 12
ambiguous grammar, 9
associativity, 9
AST, 1

Backus-Naur form, 4
BNF, 4

extended, 14

CFG, 3
Chomsky hierarchy, 15
concrete syntax tree, 1
conditional, 8
conditionals, 8
contex-free grammar

emptyness problem, 6
context-free grammar, 3

dangling else, 13
derivation

left-most, 5
leftmost, 5
right-most, 6, 7

derivation (given a grammar), 5
derivation tree, 1

EBNF, 4, 14, 15

grammar, 1, 3
ambiguous, 9, 11
context-free, 3

language
of a grammar, 5

leftmost derivation, 5
lexeme, 2

meta-language, 5, 7
microsyntax

vs. syntax, 3

non-terminals, 3

parse tree, 1, 7
parsing, 3
precedence

Java, 12
precedence cascade, 10
precendence, 9

regular expression, 5
right-most derivation, 6

scannner, 2

syntactic sugar, 14
syntax, 3
syntax tree

abstract, 1
concrete, 1

terminal symbol, 2
terminals, 3
token, 2

19

	Grammars
	Introduction
	Context-free grammars and BNF notation
	Ambiguity
	Syntax diagrams
	Chomsky hierarchy
	Syntax of Tiny

