
INF5110 – Compiler Construction

Types and type checking

Spring 2016

1 / 43

Outline

1. Types and type checking
Intro
Various types and their representation
Equality of types
Type checking

2 / 43

Outline

1. Types and type checking
Intro
Various types and their representation
Equality of types
Type checking

3 / 43

General remarks and overview

• Goal here:
• what are types?
• static vs. dynamic typing
• how to describe types syntactically
• how to represent and use types in a compiler

• coverage of various types
• basic types (often predefined/built-in)
• type constructors
• values of a type and operators
• representation at run-time
• run-time tests and special problems (array, union, record,

pointers)

• specification and implementation of type systems/type
checkers

• advanced concepts

4 / 43

Why types?

• crucial user-visible abstraction describing program behavior.

• one view: type describes a set of (mostly related) values
• static typing: checking/enforcing a type discipline at compile
time

• dynamic typing: same at run-time, mixtures possible
• completely untyped languages: very rare, types were part of
PLs from the start.

Milner’s dictum (“type safety”)
Well-typed programs cannot go wrong!

• strong typing:1 rigourously prevent “misuse” of data
• types useful for later phases and optimizations
• documentation and partial specification
1Terminology rather fuzzy, and perhaps changed a bit over time.

5 / 43

Types: in first approximation

Conceptually
• semantic view: A set of values plus a set of corresponding
operations

• syntactiv view: notation to construct basic elements of the
type (it’s values) plus “procedures” operating on them

• compiler implementor’s view: data of the same type have same
underlying memory representation

further classification:

• built-in/predefined vs. user-defined types
• basic/base/elementary/primitive types vs. compound types
• type constructors: building more compex types from simpler
ones

• reference vs. value types

6 / 43

Outline

1. Types and type checking
Intro
Various types and their representation
Equality of types
Type checking

7 / 43

Some typical base types

base types
int 0, 1, . . . +,−, ∗, / integers
real 5.05E4 . . . +,-,* real numbers
bool true, false and or (|) . . . booleans
char ’a’ characters
...

• often HW support for some of those (including many of the
op’s)

• mostly: elements of int are not exactly mathematical
integers, same for real

• often variations offered: int32, int64
• often implicit conversions and relations between basic types

• which the type system has to specify/check for legality
• which the compiler has to implement

8 / 43

Some compound types

composed types
array[0..9] of real a[i+1]
list [], [1;2;3] concat
string "text" concat . . .
struct / record r.x
. . .

• mostly reference types
• when built in, special “easy syntax” (same for basic built-in
types)

• 4 + 5 as opposed to plus(4,5)
• a[6] as opposed to array_access(a, 6) . . .

• parser/lexer aware of built-in types/operators (special
precedences, associativity etc)

• cf. functionality “built-in/predefined” via libraries

9 / 43

Abstract data types

• unit of data together with functions/procedures/operations . . .
operating on them

• encapsulation + interface
• often: separation between exported and interal operations

• for instance public, private . . .
• or via separate interfaces

• (static) classes in Java: may be used/seen as ADTs, methods
are then the “operations”

ADT begin
i n t ege r i ;
r e a l x ;
i n t proc t o t a l (i n t a) {

re tu rn i ∗ x + a // or : ‘ ‘ t o t a l = i ∗ x + a ’ ’
}

end

10 / 43

Type constructors: building new types

• array type
• record type (also known as struct-types
• union type
• pair/tuple type
• pointer type

• explict as in C
• implict distinction between reference and value types, hidden

from programmer (e.g. Java)

• signatures (specifying
methods/procedures/subroutines/functions) as type

• function type constructor, incl. higher-order types (in
functional languages)

• (names of) classes and subclasses
• . . .

11 / 43

Arrays

Array type

ar ray [< index t ype >] of <component type>

• elements (arrays) = (finite) functions from index-type to
component type

• allowed index-types:
• non-negative (unsigned) integers?, from ... to ...?
• other types?: enumerated types, characters

• things to keep in mind:
• indexing outside the array bounds?
• are the array bounds (statically) known to the compiler?
• dynamic arrays (extensible at run-time)?

12 / 43

One and more-dimensional arrays

• one-dimensional: effienctly implementable in standard
hardware, (relative memory addressing, known offset)

• two or more dimensions

a r r a y [1 . . 4] of a r r a y [1 . . 3] of r e a l
a r r a y [1 . . 4 , 1 . . 3] of r e a l

• one can see it as “array of arrays” (Java), an array is typically a
reference type

• conceptually “two-dimensional”
• linear layout in memory (dependent on the language)

13 / 43

Records (“structs”)

s t r u c t {
r e a l r ;
i n t i ;

}

• values: “labelled tuples” (real× int)
• constructing elements, e.g.
• access (read or update): dot-notation x.i
• implemenation: linear memory layout given by the (types of
the) attributes

• attributes accessible by statically-fixed offsets
• fast access
• cf. objects as in Java

14 / 43

Tuple/product types

• T1 × T2 (or in ascii T_1 * T_2)
• elements are tuples: for instance: (1, "text") is element of
int * string

• generalization to n-tuples:

value type
(1, "text", true) int * string * bool
(1, ("text", true)) int * (string * bool)

• structs can be seen as “labeled tuples”, resp. tuples as
“anonymous structs”

• tuple types: common in functional languages,
• in C/Java-like languages: n-ary tuple types often only implicit
as input types for procedures/methods (part of the “signature”)

15 / 43

Union types (C-style again)

union {
r e a l r ;
i n t i

}

• related to sum types (outside C)
• (more or less) represents disjoint union of values of
“participating” types

• access in C (confusingly enough): dot-notation u.i

16 / 43

Union types in C and type safety

• union types is C: bad example for (safe) type disciplines, as it’s
simply type-unsafe, basically an unsafe hack . . .

• the union type (in C):
• nothing much more than directive to allocate enough memory

to hold largest member of the union.
• in the above example: real takes more space than int

• role of type here is more: implementor’s (= low level) focus
and memory allocation need, not “proper usage focus” or
assuring strong typing

⇒ bad example of modern use of types
• better (type-safe) implementations known since
⇒ variant record, “tagged”/“discriminated” union) or even

inductive data types2

•
2Basically: it’s union types done right plus possibility of “recursion”.

17 / 43

Variant records from Pascal

record case i s R e a l : boolean of
t rue : (r : r e a l) ;
f a l s e : (i : i n t ege r) ;

• “variant record”
• non-overlapping memory layout3

• type-safety-wise: not really of an improvement
• programmer responsible to set and check the “discriminator”
self

record case boolean of
t rue : (r : r e a l) ;
f a l s e : (i : i n t ege r) ;

3Again, it’s a implementor-centric, not user-centric view
18 / 43

Pointer types

• pointer type: notation in C: int*
• “ * ”: can be seen as type constructor

i n t ∗ p ;

• random other languages: ^integer in Pascal, int ref in ML
• value: address of (or reference/pointer to) values of the
underlying type

• operations: dereferencing and determining the address of an
data item (and C allows “pointer arithmetic”)

var a : ^ i n t ege r
var b : i n t ege r
. . .
a := &i (∗ i an i n t va r ∗)

(∗ a := new i n t e g e r ok too ∗)
b:= ^a + b

19 / 43

Implicit dereferencing

• many languages: more or less hide existence of pointers
• cf. reference types vs. value types often: automatic/implicit
dereferencing

C r ; //
C r = new C () ;

• “sloppy” speaking: “ r is an object (which is an instance of
class C /which is of type C)”,

• slighly more recise: variable “ r contains an object. . . ”
• precise: variable “ r will contain a reference to an object”
• r.field corresponds to something like “ (*r).field, similar
in Simula

• programming with pointers:
• “popular” source of errors
• test for non-null-ness often required
• explicit pointers: can lead to problems in block-structured

language (when handled non-expertly)
• watch out for parameter passing
• aliasing 20 / 43

Function variables

program Funcvar ;
var pv : Procedure (x : i n t ege r) ;

Procedure Q() ;
var

a : i n t ege r ;
Procedure P(i : i n t ege r) ;
begin

a:= a+i ; (∗ a def ’ ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ ‘ ‘ r e t u rn ’ ’ P , ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
begin

Q() ;
pv (1) ;

end .

21 / 43

Function variables and nested scopes

• tricky part here: nested scope + function definition escaping
surrounding function/scope.

• here: inner procedure “returned” via assignment to function
variable4

• think about stack discipline of dynamic memory management?
• related also: functions allowed as return value?

• Pascal: not directly possible (unless one “returns” them via
function-typed reference variables like here)

• C: possible, but nested function definitions not allowed

• combination of nested function definitions and functions as
official return values (and arguments): higher-order functions

• Note: functions as arguments less problematic than as return
values.

4Let’s for the sake of the lecture, not distinguish conceptually between
functions and procedures. But in Pascal, a procedure does not return a value,
functions do.

22 / 43

Function signatures

• define the “header” (also “signature”) of a function5

• in the discussion: we don’t distinguish mostly: functions,
procedures, methods, subroutines.

• functional type (independent of the name f): int→int

Modula-2

var f : procedure (i n t ege r) : i n t ege r ;

C

i n t (∗ f) (i n t)

• values: all functions . . . with the given signature
• problems with block structure and free use of procedure
variables.

5Actually, an identfier of the function is mentioned as well.
23 / 43

Escaping: function var’s outside the block structure

1 program Funcvar ;
2 var pv : Procedure (x : i n t ege r) ;
3
4 Procedure Q() ;
5 var
6 a : i n t ege r ;
7 Procedure P(i : i n t ege r) ;
8 begin
9 a:= a+i ; (∗ a def ’ ed o u t s i d e ∗)

10 end ;
11 begin
12 pv := @P; (∗ ‘ ‘ r e t u rn ’ ’ P , ∗)
13 end ; (∗ "@" dependent on d i a l e c t ∗)
14 begin
15 Q() ;
16 pv (1) ;
17 end .

• at line 15: variable a no longer exists
• possible safe usage: only assign to such variables (here pv) a
new value (= function) at the same blocklevel the variable is
declared

• note: function parameters less problematic (stack-discipline
still doable)

24 / 43

Classes and subclasses

Parent class

c l a s s A {
i n t i ;
vo id f () { . . . }

}

Subclass B

c l a s s B extends A {
i n t i
vo id f () { . . . }

}

Subclass C

c l a s s C extends A {
i n t i
vo id f () { . . . }

}

• classes resemble records, and subclasses variant types, but
additionally

• local methods possble (besides fields)
• subclasses
• objects mostly created dynamically, no references into the stack
• subtyping and polymorphism (subtype polymorphism): a

reference typed by A can also point to B or C objects

• special problem: not really many, nil-pointer still possible

25 / 43

Access to object members: late binding

• notation rA.i or rA.f()
• dynamic binding, late-binding, virtual access, virtual access,
dynamic dispatch . . . : all mean roughly the same

• central mechanism in almost all OO language, in connection
with inheritance

Virtual access rA.f() (methods)
“deepest” f in the run-time class of the object, rA points to
(independent from the static class type of rA.

• remember: “most-closely nested” access of variables in nested
lexical block

• Java:
• methods “in” objects are only dynamically bound
• instance variables not, neither static methods “in” classes.

26 / 43

Example

pub l i c c l a s s Shadow {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s){

C2 c2 = new C2 () ;
c2 . n () ;

}
}

c l a s s C1 {
S t r i n g s = "C1" ;
vo id m () {System . out . p r i n t (t h i s . s) ; }

}

c l a s s C2 extends C1 {
S t r i n g s = "C2" ;
vo id n () { t h i s .m() ; }

}

27 / 43

Inductive types in ML and similar

• type-safe and powerful
• allows pattern matching

I s R e a l of r e a l | I s I n t e g e r of i n t

• allows recursive definitions ⇒ inductive data types:

type i n t_b i n t r e e =
Node of i n t ∗ i n t_b i n t r e e ∗ b i n t r e e

| N i l

• Node, Leaf, IsReal: constructors (cf. languages like Java)
• constructors used as discriminators in “union” types

type exp =
Plus of exp ∗ exp

| Minus of exp ∗ exp
| Number of i n t
| Var of s t r i n g

28 / 43

Recursive data types in C

does not work

s t r u c t intBST {
i n t v a l ;
i n t i s N u l l ;
s t r u c t intBST l e f t , r i g h t ;

}

“indirect” recursion

s t r u c t intBST {
i n t v a l ;
s t r u c t intBST ∗ l e f t , ∗ r i g h t ;

} ;
typedef s t r u c t intBST ∗ intBST ;

In Java: references implicit

c l a s s BSTnode {
i n t v a l ;
BSTnode l e f t , r i g h t ;

• note: implementation in ML: also uses pointers (but hidden
from the user)

• no nil-pointers in ML (and NIL is not a nil-point, it’s a
cosntructor)

29 / 43

Outline

1. Types and type checking
Intro
Various types and their representation
Equality of types
Type checking

30 / 43

Example with interfaces

i n t e r f a c e I 1 { i n t m (i n t x) ; }
i n t e r f a c e I 2 { i n t m (i n t x) ; }
c l a s s C1 implements I 1 {

pub l i c i n t m(i n t y) { re tu rn y++; }
}
c l a s s C2 implements I 2 {

pub l i c i n t m(i n t y) { re tu rn y++; }
}

pub l i c c l a s s Noduck1 {
pub l i c s t a t i c vo id main (S t r i n g [] a rg) {

I 1 x1 = new C1 () ; // I 2 not p o s s i b l e
I 2 x2 = new C2 () ;
x1 = x2 ;

}
}

analogous effects when using classes in their roles as types

31 / 43

Structural vs. nominal equality

a, b

va r a , b : r e c o r d
i n t i ;
double d

end

c

va r c : r e c o r d
i n t i ;
double d

end

typedef

typedef i dReco rd : r e c o r d
i n t i ;
double d

end

va r d : i dReco rd ;
va r e : i dReco rd ; ;

what’s possible?

a := c ;
a := d ;

a := b ;
d := a ;

32 / 43

Types in the AST

• types are part of the syntax, as well
• represent: either in a separate symbol table, or part of the AST

Record type

r e c o r d
x : p o i n t e r to r e a l ;
y : a r r a y [1 0] of i n t

end

procedure header

proc (bool ,
union a : r e a l ; b : cha r end ,
i n t) : vo id

end

33 / 43

Structured types without names

var -decls → var -decls;var -decl | var -decl
var -decl → id : type-exp
type-exp → simple-type | structured -type

simple-type → int | bool | real | char | void
structured -type → array [num] of type-exp

| recordvar -declsend
| unionvar -declsend
| pointertotype-exp
| proc (type-exps) type-exp

type-exps → type-exps,type-exp | type-exp

34 / 43

Structural equality

35 / 43

Types with names

var -decls → var -decls;var -decl | var -decl
var -decl → id : simple-type-exp

type-decls → type-decls;type-decl | type-decl
type-decl → id = type-exp
type-exp → simple-type-exp | structured -type

simple-type-exp → simple-type | id
simple-type → int | bool | real | char | void

structured -type → array [num] of simple-type-exp
| recordvar -declsend
| unionvar -declsend
| pointertosimple-type-exp
| proc (type-exps) simple-type-exp

type-exps → type-exps,simple-type-exp | simple-type-exp

36 / 43

Name equality

• all types have “names”, and two types are equal iff their names
are equal

• type equality checking: obviously simpler
• of course: type names may have scopes. . . .

37 / 43

Type aliases

• languages with type aliases (type synonyms): C, Pascal, ML
. . . .

• often very convenient (type Coordinate = float * float)
• light-weight mechanism

type alias; make t1 known also under name t2

t2 = t1 // t2 i s the ‘ ‘ same type ’ ’ .

• also here: different choices wrt. type equality

Alias if simple types

t1 = i n t ;
t2 = i n t ;

• often: t1 and t2 are
the “same” type

Alias of structured types

t1 = a r r a y [1 0] o f i n t ;
t2 = a r r a y [1 0] o f i n t ;
t3 = t2

• mostly t3 6= t1 6= t2
38 / 43

Outline

1. Types and type checking
Intro
Various types and their representation
Equality of types
Type checking

39 / 43

Type checking of expressions (and statements)

• types of subexpressions must “fit” to the expected types the
contructs can operate on6

• type checking: a bottom-up task
⇒ synthesized attributes, when using AGs
• Here: using an attribute grammar specification of the type
checker

• type checking conceptually done while parsing (as actions of
the parser)

• also common: type checker operates on the AST after the
parser has done its job7

• type system vs. type checker
• type system: specification of the rules governing the use of

types in a language
• type checker: algorithmic formulation of the type system (resp.

implementation thereof)
6In case (operator) overloading: that may complicate the picture slightly.

Operators are selected depending on the type of the subexpressions.
7one can, however, use grammars as specification of that abstract syntax

tree as well, i.e., as a “second” grammar besides the grammar for concrete
parsing. 40 / 43

Grammar for statements and expressions

program → var -decls;stmts
var -decls → var -decls;var -decl | var -decl
var -decl → id : type-exp
type-exp → int | bool | array [num] of type-exp

stmts → stmts;stmt | stmt
stmt → if exp then stmt | id := exp
exp → exp+ exp | exporexp | exp [exp]

41 / 43

Type checking as semantic rules

42 / 43

Diverse notions

• Overloading
• common for (at least) standard operations
• also possible for user defined functions/methods . . .
• disambiguation via (static) types of arguments
• “ad-hoc” polymorphism
• implementation:

• put types of parameters as “part” of the name
• look-up gives back a set of alternatives

• type-conversions: can be problematic in connection with
overloading

• (generic) polymporphism
swap(var x,y: anytype)

43 / 43

	Types and type checking
	Intro
	Various types and their representation
	Equality of types
	Type checking

