
INF5110 – Compiler Construction

Introduction

Spring 2016

1 / 33

Outline

1. Introduction
Introduction
Compiler architecture & phases
Bootstrapping and cross-compilation

2 / 33

Outline

1. Introduction
Introduction
Compiler architecture & phases
Bootstrapping and cross-compilation

3 / 33

Course info

Course presenters:
• Martin Steffen (msteffen@ifi.uio.no)
• Stein Krogdahl (stein@ifi.uio.no)
• Birger Møller-Pedersen (birger@ifi.uio.no)
• Eyvind Wærstad Axelsen (oblig-ansvarlig,
eyvinda@ifi.uio.no)

Course’s web-page
http://www.uio.no/studier/emner/matnat/ifi/INF5110

• overview over the course, pensum (watch for updates)
• various announcements, beskjeder, etc.

4 / 33

http://www.uio.no/studier/emner/matnat/ifi/INF5110

Course material and plan

• The material is based largely on [Louden, 1997], but also other
sources will play a role. A classic is “the dragon book”
[Aho et al., 1986]

• see also Errata list at
http://www.cs.sjsu.edu/~louden/cmptext/

• approx. 3 hours teaching per week
• mandatory assignments (= “obligs”)

• O1 published mid-February, deadline mid-March
• O2 published beginning of April, deadline beginning of May

• group work up-to 3 people recommended. Please inform us
about such planned group collaboration

• slides: see updates on the net
• exam: 8th June, 14:30, 4 hours.

5 / 33

http://www.cs.sjsu.edu/~louden/cmptext/

Motivation: What is CC good for?

• not everyone is actually building a full-blown compiler, but
• fundamental concepts and techniques in CC
• most, if not basically all, software reads, processes/transforms

and outputs “data”
⇒ often involves techniques central to CC
• Understanding compilers ⇒ deeper understanding of

programming language(s)
• new language (domain specific, graphical, new language

paradigms and constructs. . .)
⇒ CC & their principles will never be “out-of-fashion”.

6 / 33

Outline

1. Introduction
Introduction
Compiler architecture & phases
Bootstrapping and cross-compilation

7 / 33

Architecture of a typical compiler

Figure: Structure of a typical compiler

8 / 33

Anatomy of a compiler

9 / 33

Pre-processor

• either separate program or integrated into compiler
• nowadays: C-style preprocessing mostly seen as “hack” grafted
on top of a compiler.1

• examples (see next slide):
• file inclusion2

• macro definition and expansion3

• conditional code/compilation: Note: #if is not the same as
the if-programming-language construct.

• problem: often messes up the line numbers

1C-preprocessing is still considered sometimes a useful hack, otherwise it
would not be around . . . But it does not naturally encourage elegant and
well-structured code, just quick fixes for some situations.

2the single most primitive way of “composing” programs split into separate
pieces into one program.

3Compare also to the \newcommand-mechanism in LATEX or the analogous
\def-command in the more primitive TEX-language.

10 / 33

C-style preprocessor examples

#inc lude <f i l e name>

Listing 1: file inclusion

#v a r d e f #a = 5 ; #c = #a+1
. . .

#i f (#a < #b)
. .

#el se
. . .

#endi f

Listing 2: Conditional compilation

11 / 33

C-style preprocessor: macros

#macrodef hentda ta (#1,#2)
−−− #1−−−−
#2−−−(#1)−−−

#endde f

. . .
#hentda ta (k a r i , pe r)

Listing 3: Macros

−−− ka r i−−−−
per−−−(k a r i)−−−

12 / 33

Scanner (lexer . . .)

• input: “the program text” (= string, char stream, or similar)
• task

• divide and classify into tokens, and
• remove blanks, newlines, comments ..

• theory: finite state automata, regular languages

13 / 33

Scanner: illustration

a [i nd e x] ␣=␣4␣+␣2

lexeme token class value
a identifier "a"
[left bracket
index identifier "index"
] right bracket
= assignment
4 number "4"
+ plus sign
2 number "2"

14 / 33

Scanner: illustration

a [i nd e x] ␣=␣4␣+␣2

lexeme token class value
a identifier 2
[left bracket
index identifier 21
] right bracket
= assignment
4 number 4
+ plus sign
2 number 2

0
1
2 "a"

...

21 "index"
22

...

15 / 33

Parser

16 / 33

a[index] = 4 + 2: parse tree/syntax tree

expr

assign-expr

expr

subscript expr

expr

identifier
a

[expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2

17 / 33

a[index] = 4 + 2: abstract syntax tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

18 / 33

(One typical) Result of semantic analysis

• one standard, general outcome of semantic analysis:
“annotated” or “decorated” AST

• additional info (non context-free):
• bindings for declarations
• (static) type information

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

• here: identifiers looked up wrt. declaration
• 4, 2: due to their form, basic types.

19 / 33

Optimization at source-code level

assign-expr

subscript expr

identifier
a

identifier
index

number
6

t = 4+2;
a[index] = t;

t = 6;
a[index] = t;

a[index] = 6;

20 / 33

Code generation & optimization

MOV R0 , i nd e x ; ; v a l u e o f i nd e x −> R0
MUL R0 , 2 ; ; doub l e v a l u e o f R0
MOV R1 , &a ; ; a dd r e s s o f a −> R1
ADD R1 , R0 ; ; add R0 to R1
MOV ∗R1 , 6 ; ; c on s t 6 −> add r e s s i n R1

MOV R0 , i nd e x ; ; v a l u e o f i nd e x −> R0
SHL R0 ; ; doub l e v a l u e i n R0
MOV &a [R0] , 6 ; ; c on s t 6 −> add r e s s a+R0

• many optimizations possible
• potentially difficult to automatize4, based on a formal
description of language and machine

• platform dependent
4not that one has much of a choice. Difficult or not, no one wants to

optimize generated machine code by hand
21 / 33

Anatomy of a compiler (2)

22 / 33

Misc. notions

• front-end vs. back-end, analysis vs. synthesis
• separate compilation
• how to handle errors?
• “data” handling and management at run-time (static, stack,
heap), garbage collection?

• language can be compiled in one pass?
• E.g. C and Pascal: declarations must precede use
• no longer too crucial, enough memory available

• compiler assisting tool and infra structure, e.g.
• debuggers
• profiling
• project management, editors
• build support
• . . .

23 / 33

Compiler vs. interpeter

Compilation
• classically: source code ⇒ machine code for given machine
• different “forms” of machine code (for 1 machine):

• executable ⇔ relocatable ⇔ textual assembler code

full interpretation
• directly executed from program code/syntax tree
• often used for command languages, interacting with OS etc.
• speed typically 10–100 slower than compilation

compilation to intermediate code which is interpreted
• used in e.g. Java, Smalltalk,
• intermediate code: designed for efficient execution (byte code
in Java)

• executed on a simple interpreter (JVM in Java)
• typically 3–30 times slower than direct compilation
• in Java: byte-code ⇒ machine code in a just-in time manner
(JIT)

24 / 33

More recent compiler technologies

• Memory has become cheap (thus comparatively large)
• keep whole program in main memory, while compiling

• OO has become rather popular
• special challenges & optimizations

• Java
• “compiler” generates byte code
• part of the program can be dynamically loaded during run-time

• concurrency, multi-core
• graphical languages (UML, etc), “meta-models” besides
grammars

25 / 33

Outline

1. Introduction
Introduction
Compiler architecture & phases
Bootstrapping and cross-compilation

26 / 33

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). . . .

27 / 33

Two ways to compose “T-diagrams”

28 / 33

Using an “old” language and its compiler for write a
compiler for a “new” one

29 / 33

Pulling oneself up on one’s own bootstraps

bootstrap (verb, trans.): to promote or develop . . . with
little or no assistance
— Merriam-Webster

30 / 33

http://www.merriam-webster.com/dictionary/bootstrap

Bootstrapping 2

31 / 33

Porting & cross compilation

32 / 33

References I

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986).
Compilers: Principles, Techniques and Tools.
Addison-Wesley.

[Louden, 1997] Louden, K. (1997).
Compiler Construction, Principles and Practice.
PWS Publishing.

33 / 33

	Introduction
	Introduction
	Compiler architecture & phases
	Bootstrapping and cross-compilation

