
INF5110 – Compiler Construction

Parsing

Spring 2016

1 / 84

Overview

• First and Follow set: general concepts for grammars
• textbook looks at one parsing technique (top-down)

[Louden, 1997, Chap. 4] before studying First/Follow sets
• we: take First/Follow sets before any parsing technique

• two transformation techniques for grammars
• both preserving that accepted language

1. removal for left-recursion
2. left factoring

2 / 84

First and Follow sets

• general concept for grammars
• certain types of analyses (e.g. parsing):

• info needed about possible “forms” of derivable words,

First-set of A
which terminal symbols can appear at the start of strings derived
from a given nonterminal A

Follow-set of A
Which terminals can follow A in some sentential form.

• sentential form: word derived from grammar’s starting symbol
• later: different algos for First and Follow sets, for all
non-terminals of a given grammar

• mostly straightforward
• one complication: nullable symbols (non-terminals)
• Note: those sets depend on grammar, not the language

3 / 84

First sets

Definition (First set)

Given a grammar G and a non-terminal A. The First-set of A,
written FirstG (A) is defined as

FirstG (A) = {a | A⇒∗G aα, a ∈ ΣT}+ {ε | A⇒∗G ε} . (1)

Definition (Nullable)

Given a grammar G . A non-terminal A ∈ ΣN is nullable, if A⇒∗ ε.

4 / 84

Examples

• Cf. the Tiny grammar
• in Tiny, as in most languages

Follow(if -stmt) = {” if ”}

• in many languages:

Follow(assign-stmt) = {identifier , ”(”}

• for statements:

Follow(stmt) = {”; ”, ” end ”, ” else ”, ”until ”}

5 / 84

Remarks

• note: special treatment of the empty word ε

• in the following: if grammar G clear from the context
• ⇒∗ for ⇒∗G
• First for FirstG
• . . .

• definition so far: “top-level” for start-symbol, only
• next: a more general definition

• definition of First set of arbitrary symbols (and words)
• even more: definition for a symbol in terms of First for “other

symbol” (connected by productions)

⇒ recursive definition

6 / 84

A more algorithmic/recursive definition

• grammar symbol X : terminal or non-terminal or ε

Definition (First set of a symbol)

Given a grammar G and grammar symbol X . The First-set of X ,
written First(X) is defined as follows:
1. If X ∈ ΣT + {ε}, then First(X) = {X}.
2. If X ∈ ΣN : For each production

X → X1X2 . . .Xn

2.1 First(X) contains First(X1) \ {ε}
2.2 If, for some i < n, all First(X1), . . . ,First(Xi) contain ε, then

First(X) contains First(Xi) \ {ε}.
2.3 If all First(X1), . . . ,First(Xn) contain ε, then First(X) contains
{ε}.

7 / 84

For words

Definition (First set of a word)

Given a grammar G and word α. The First-set of

α = X1 . . .Xn ,

written First(α) is defined inductively as follows:
1. First(α) contains First(X1) \ {ε}
2. for each i = 2, . . . n, if First(Xk) contains ε for all

k = 1, . . . , i − 1, then First(α) contains First(Xi) \ {ε}
3. If all First(X1), . . . ,First(Xn) contain ε, then First(X)

contains {ε}.

8 / 84

Pseudo code

fo r all non-terminals A do
F i r s t [A] := {}

end
whi le there are changes to any F i r s t [A] do

fo r each production A→ X1 . . .Xn do
k := 1 ;
c on t i n u e := true
whi le con t i n u e = true and k ≤ n do

F i r s t [A] := F i r s t [A] ∪ F i r s t (Xk) \ {ε}
i f ε /∈ F i r s t [Xk] then con t i n u e := f a l s e
k := k + 1

end ;
i f con t i n u e = true
then F i r s t [A] := F i r s t [A] ∪ {ε}

end ;
end

9 / 84

If only we could do away with special cases for the empty
words . . .

for grammar without ε-productions.1

fo r all non-terminals A do
F i r s t [A] := {} // count s as change

end
whi le there are changes to any F i r s t [A] do

fo r each production A→ X1 . . .Xn do
F i r s t [A] := F i r s t [A] ∪ F i r s t (X1)

end ;
end

1production of the form A → ε.
10 / 84

Example expression grammar (from before)

exp → exp addop term | term
addop → + | −
term → termmulop term | factor

mulop → ∗
factor → (exp) | number

(2)

11 / 84

Example expression grammar (expanded)

exp → exp addop term
exp → term

addop → +
addop → −
term → termmulop term
term → factor

mulop → ∗
factor → (exp)
factor → number

(3)

12 / 84

Run of the “algo”

13 / 84

Collapsing the rows & final result

• results per pass:

1 2 3
exp {(,number}
addop {+,−}
term {(,number}
mulop {∗}
factor {(,number}

• final results (at the end of pass 3):

First[_]

exp {(,number}
addop {+,−}
term {(,number}
mulop {∗}
factor {(,number}

14 / 84

Work-list formulation

fo r all non-terminals A do
F i r s t [A] := {}
WL := P // a l l p r o d u c t i o n s

end
whi le WL 6= ∅ do

remove one (A→ X1 . . .Xn) from WL
i f F i r s t [A] 6= F i r s t [A] ∪ F i r s t [X1]
then F i r s t [A] := F i r s t [A] ∪ F i r s t [X1]

add a l l p r o d u c t i o n s (A→ X ′1 . . .X
′
m) to WL

e l s e s k i p
end

• worklist here: “collection” of productions
• alternatively, with slight reformulation: “collection” of
non-terminals also possible

15 / 84

Follow sets

Definition (Follow set (ignoring $))

Given a grammar G with start symbol S , and a non-terminal A.
The Follow-set of A, written FollowG (A), is

FollowG (A) = {a | S ⇒∗G α1Aaα2, a ∈ ΣT} . (4)

• More generally: $ as special end-marker

S$⇒∗G α1Aaα2, a ∈ ΣT + { $ } .

• typically: start symbol not on the right-hand side of a
production

16 / 84

Follow sets, recursively

Definition (Follow set of a non-terminal)

Given a grammar G and nonterminal A. The Follow-set of A,
written Follow(A) is defined as follows:
1. If A is the start symbol, then Follow(A) contains $.
2. If there is a production B → αAβ, then Follow(A) contains

First(β) \ {ε}.
3. If there is a production B → αAβ such that ε ∈ First(β), then

Follow(A) contains Follow(B).

• $: “end marker” special symbol, only to be contained in the
follow set

17 / 84

More imperative representation in pseudo code

Follow [S] := {$}
f o r all non-terminals A 6= S do

Follow [A] := {}
end
whi le there are changes to any Follow−s e t do

fo r each production A→ X1 . . .Xn do
fo r each Xi which i s a non−t e rm i n a l do

Follow [Xi] := Follow [Xi]∪(F i r s t (Xi+1 . . .Xn) \ {ε})
i f ε ∈ F i r s t (Xi+1Xi+2 . . .Xn)
then Follow [Xi] := Follow [Xi] ∪ Follow [A]

end
end

end

Note! First() = ε

18 / 84

Example expression grammar (expanded)

exp → exp addop term
exp → term

addop → +
addop → −
term → termmulop term
term → factor

mulop → ∗
factor → (exp)
factor → number

(3)

19 / 84

Run of the “algo”

20 / 84

Illustration of first/follow sets

a ∈ First(A) a ∈ Follow(A)

• red arrows: illustration of information flow in the algos
• run of Follow :

• relies on First
• in particular a ∈ First(E) (right tree)

• $ ∈ Follow(B)

21 / 84

More complex situation (nullability)

a ∈ First(A) a ∈ Follow(A)

22 / 84

Some forms of grammars are less desirable than others

• left-recursive production:

A→ Aα

more precisely: example of immediate left-recursion

• 2 productions with common “left factor”:

A→ αβ1 | αβ2 where α 6= ε

23 / 84

Some simple examples

• left-recursion

exp → exp+ term

• classical example for common left factor: rules for conditionals

if -stmt → if (exp) stmt end
| if (exp) stmt else stmt end

24 / 84

Transforming the expression grammar

exp → exp addop term | term
addop → + | −
term → termmulop term | factor

mulop → ∗
factor → (exp) | number

• obviously left-recursive
• remember: this variant used for proper associativity!

25 / 84

After removing left recursion

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | number

• still unambiguous
• unfortunate: associativity now different!
• note also: ε-productions & nullability

26 / 84

Left-recursion removal

Left-recursion removal
A transformation process to turn a CFG into one without left
recursion

• price: ε-productions
• 3 cases to consider

• immediate (or direct) recursion
• simple
• general

• indirect (or mutual) recursion

27 / 84

Left-recursion removal: simplest case

Before

A → Aα | β

After

A → βA′

A′ → αA | ε

28 / 84

Schematic representation

A → Aα | β

A

A

A

A

β

α

α

α

A → βA′

A′ → αA′ | ε

A

β A′

α A′

α A′

α A′

ε

29 / 84

Remarks

• both grammars generate the same (context-free) language (=
set of strings of terminals)

• in EBNF:

A→ β{α}

• two negative aspects of the transformation

1. generated language unchanged, but: change in resulting
structure (parse-tree), i.a.w. change in associativity, which
may result in change of meaning

2. introduction of ε-productions

• more concrete example for such a production: grammar for
expressions

30 / 84

Left-recursion removal: immediate recursion (multiple)

Before

A → Aα1 | . . . | Aαn

| β1 | . . . | βm

After

A → β1A
′ | . . . | βmA′

A′ → α1A
′ | . . . | αnA

′

| ε

Note, can be written in EBNF as:

A→ (β1 | . . . | βm)(α1 | . . . | αn)∗

31 / 84

Removal of: general left recursion

fo r i := 1 to m do
fo r j := 1 to i−1 do

replace each grammar rule of the form A→ Aiβ by
rule Ai → α1β | α2β | . . . | αkβ

where Aj → α1 | α2 | . . . | αk

is the current rule for Aj

end
remove, if necessary, immediate left recursion for Ai

end

32 / 84

Example (for the general case)

A → B a | A a | c
B → B b | A b | d

A → B a A′ | c A′

A′ → a A′ | ε
B → B b | A b | d

A → B a A′ | c A′

A′ → a A′ | ε
B → B b | B a A′ b | c A′ b | d

A → B a A′ | c A′

A′ → a A′ | ε
B → c A′ bB′ | d B′

B′ → bB′ | a A′ bB′ | ε

33 / 84

Left factor removal

• CFG: not just describe a context-free languages
• also: intende (indirect) description of a parser to accept that
language

⇒ common left factor undesirable
• cf.: determinization of automata for the lexer

Simple situation

A→ αβ | αγ | . . . A → αA′ | . . .
A′ → β | γ

34 / 84

Example: sequence of statements

Before

stmt-seq → stmt ; stmt-seq
| stmt

After

stmt-seq → stmt stmt-seq′

stmt-seq′ → ; stmt-seq | ε

35 / 84

Example: conditionals

Before

if -stmt → if (exp) stmt-seq end
| if (exp) stmt-seq else stmt-seq end

After

if -stmt → if (exp) stmt-seq else-or -end
else-or -end → else stmt-seq end | end

36 / 84

Example: conditionals

Before

if -stmt → if (exp) stmt-seq
| if (exp) stmt-seq else stmt-seq

After

if -stmt → if (exp) stmt-seq else-or -empty
else-or -empty → else stmt-seq | ε

37 / 84

Not all factorization doable in “one step”

Starting point

A → a b c B | a b C | a E

After 1 step

A → a bA′ | a E
A′ → c B | C

After 2 steps

A → a A′′

A′′ → bA′ | E
A′ → c B | C

• note: we choose the longest common prefix (= longest left
factor) in the first step

38 / 84

Left factorization

while there are changes to the grammar do
fo r each nonterminal A do

l e t α be a prefix of max. length that is shared
by two or more productions for A

i f α 6= ε
then

l e t A→ α1 | . . . | αn be all
prod. for A and suppose that α1, . . . , αk share α
so that A→ αβ1 | . . . | αβk | αk+1 | . . . | αn ,
that the βj ’s share no common prefix, and
that the αk+1, . . . , αn do not share α.
replace rule A→ α1 | . . . | αn by the rules
A→ αA′ | αk+1 | . . . | αn

A′ → β1 | . . . | βk
end

end
end

39 / 84

What’s a parser generally doing

task of parser = syntax analysis
• input: stream of tokens from lexer
• output:

• abstract syntax tree
• or meaningful diagnosis of source of syntax error

• the full “power” (i.e., expressiveness) of CFGs no used
• thus:

• consider restrictions of CFGs, i.e., a specific subclass, and/or
• represented in specific ways (no left-recursion, left-factored

. . .)

40 / 84

Lexer, parser, and the rest

lexer parser rest of the
front end

symbol table

source
program

tokentoken

get next

token

parse tree interm.
rep.

41 / 84

Top-down vs. bottom-up

• all parsers (together with lexers): left-to-right
• remember: parsers operate with trees

• parsing tree (concrete syntax tree): representing grammatical
derivation

• abstract syntax tree: data structure

• 2 fundamental classes.
• while the parser eats through the token stream, it grows, i.e.,
builds up (at least conceptually) the parse tree:

Bottom-up
Parse tree is being grown from
the leaves to the root.

Top-down
Parse tree is being grown from
the root to the leaves.

• while parse tree mostly conceptual: parsing build up the
concrete data structure of AST bottom-up vs. top-down.

42 / 84

Parsing restricted classes of CFGs

• parser: better be “efficient”
• full complexity of CFLs: not really needed in practice2

• classification of CF languages vs. CF grammars, e.g.:
• left-recursion-freedom: condition on a grammar
• ambiguous language vs. ambiguious grammar

• classification of grammars ⇒ classification of language
• a CF language is (inherently) ambiguous, if there’s not

unambiguous grammar for it.
• a CF language is top-down parseable, if there exists a grammar

that allows top-down parsing . . .

• in practice: classification of parser generating tool:
• based on accepted notation for grammars: (BNF or allows

EBNF etc.)
2Perhaps: if a parser has trouble to figure out if a program has a syntax

error or not (perhaps using back-tracking), probably humans will have similar
problems. So better keep it simple. And time in a compiler is better spent
elsewhere (optimization, semantical analysis).

43 / 84

Classes of CFG grammars/languages

• maaaany have been proposed & studied, including their
relationships

• lecture concentrates on
• top-down parsing, in particular

• LL(1)
• recursive descent

• bottom-up parsing
• LR(1)
• SLR
• LALR(1) (the class covered by yacc-style tools)

• grammars typically written in pure BNF

44 / 84

Relationship of some classes

unambiguous ambiguous

LR(k)

LR(1)

LALR(1)

SLR

LR(0)
LL(0)

LL(1)

LL(k)

taken from [Appel, 1998]

45 / 84

General task (once more)

• Given: a CFG (but appropriately restricted)
• Goal: “systematic method” s.t.

1. for every given word w : check syntactic correctness
2. [build AST/representation of the parse tree as side effect]
3. [do reasonable error handling]

46 / 84

Schematic view on “parser machine”

. . . if 1 + 2 ∗ (3 + 4) . . .

q0q1

q2

q3 . . .

qn

Finite control

. . .

unbouded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

Note: sequence of tokens (not characters)

47 / 84

Derivation of an expression

. . . 1 + 2 ∗ (3 + 4) . . .

exp term exp′ factor term′ exp′ number term′ exp′ number term′ exp′ number ε exp′ number exp′ number addop term exp′ number + term exp′ number + term exp′ number + factor term′ exp′ number + number term′ exp′ number + number term′ exp′ number + number mulop factor term′ exp′ number + number ∗ factor term′ exp′ number + number ∗ (exp) term′ exp′ number + number ∗ (exp) term′ exp′ number + number ∗ (exp) term′ exp′ number + number ∗ (term exp′) term′ exp′ number + number ∗ (factor term′ exp′) term′ exp′ number + number ∗ (number term′ exp′) term′ exp′ number + number ∗ (number term′ exp′) term′ exp′ number + number ∗ (number ε exp′) term′ exp′ number + number ∗ (number exp′) term′ exp′ number + number ∗ (number addop term exp′) term′ exp′ number + number ∗ (number + term exp′) term′ exp′ number + number ∗ (number + term exp′) term′ exp′ number + number ∗ (number + factor term′ exp′) term′ exp′ number + number ∗ (number + number term′ exp′) term′ exp′ number + number ∗ (number + number term′ exp′) term′ exp′ number + number ∗ (number + number ε exp′) term′ exp′ number + number ∗ (number + number exp′) term′ exp′ number + number ∗ (number + number ε) term′ exp′ number + number ∗ (number + number) term′ exp′ number + number ∗ (number + number) term′ exp′ number + number ∗ (number + number) ε exp′ number + number ∗ (number + number) exp′ number + number ∗ (number + number) ε number + number ∗ (number + number)

factors and terms

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | number

(5)

48 / 84

Remarks concerning the derivation

Note:
• input = stream of tokens
• there: 1 . . . stands for token class number (for
readability/concreteness), in the grammar: just number

• in full detail: pair of token class and token value 〈number , 5〉
Notation:

• underline: the place (occurrence of non-terminal where
production is used

• crossed out:
• terminal = token is considered treated,
• parser “moves on”
• later implemented as match or eat procedure

49 / 84

Not as a “film” but at a glance: reduction sequence

exp ⇒
term exp′ ⇒
factor term′ exp′ ⇒
number term′ exp′ ⇒
number term′ exp′ ⇒
number ε exp′ ⇒
number exp′ ⇒
number addop term exp′ ⇒
number + term exp′ ⇒
number + term exp′ ⇒
number + factor term′ exp′ ⇒
number + number term′ exp′ ⇒
number + number term′ exp′ ⇒
number + number mulop factor term′ exp′ ⇒
number + number ∗ factor term′ exp′ ⇒
number + number ∗ (exp) term′ exp′ ⇒
number + number ∗ (exp) term′ exp′ ⇒
number + number ∗ (exp) term′ exp′ ⇒
. . .

50 / 84

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

51 / 84

Non-determinism?

• not a “free” expansion/reduction/generation of some word, but

• reduction of start symbol towards the target word of terminals

exp ⇒∗ 1 + 2 ∗ (3 + 4)

• i.e.: input stream of tokens “guides” the derivation process (at
least it fixes the target)

• but: how much “guidance” does the target word (in general)
gives?

52 / 84

Two principle sources of non-determinism here

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

• α1, α2, β: word of terminals and nonterminals
• w : word of terminals, only
• A: one non-terminal

2 choices to make
1. where, i.e., on which occurrence of a non-terminal in α1Aα2 to

apply a productiona

2. which production to apply (for the chosen non-terminal).
aNote that α1 and α2 may contain non-terminals, including further

occurrences of A

53 / 84

Left-most derivation

• taking care of “where-to-reduce” non-determinism: left-most
derivation

• notation ⇒l

• the example derivation used that
• second look at the “guided” derivation proccess: ?

54 / 84

Non-determinism vs. ambiguity

• Note: the “where-to-reduce”-non-determinism 6= ambiguitiy of
a grammar3

• in a way (“theoretically”): where to reduce next is irrelevant:
• the order in the sequence of derivations does not matter
• what does matter: the derivation tree (aka the parse tree)

Lemma (left or right, who cares)
S ⇒∗l w iff S ⇒∗r w iff S ⇒∗ w .

• however (“practically”): a (deterministic) parser
implementation: must make a choice

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

S ⇒∗l w1 A α2 ⇒ w1 β α2 ⇒∗l w
3A CFG is ambiguous, if there exist a word (of terminals) with 2 different

parse trees.
55 / 84

What about the “which-right-hand side” non-determinism?

A→ β | γ

Is that the correct choice?

S ⇒∗l w1 A α2 ⇒ w1 β α2 ⇒∗l w

• reduction with “guidance”: don’t loose sight of the target w
• “past” is fixed: w = w1w2
• “future” is not:

Aα2 ⇒l βα2 ⇒∗l w2 or else Aα2 ⇒l γα2 ⇒∗l w2 ?

Needed (minimal requirement):
In such a situation, the target w2 must determine which of the two
rules to take!

56 / 84

Deterministic, yes, but still impractical

Aα2 ⇒l βα2 ⇒∗l w2 or else Aα2 ⇒l γα2 ⇒∗l w2 ?

• the “target” w2 is of unbounded length!
⇒ impractical, therefore:

Look-ahead of length k

resolve the “which-right-hand-side” non-determinism inspecting only
fixed-length prefix of w2 (for all situations as above)

LL(k) grammars
CF-grammars which can be parsed doing that.a

aof course, one can always write a parser that “just makes some decision”
based on looking ahead k symbols. The question is: will that allow to capture
all words from the grammar and only those.

57 / 84

Parsing LL(1) grammars

• in this lecture: we don’t do LL(k) with k > 1
• LL(1): particularly easy to understand and to implement
(efficiently)

• not as expressive than LR(1) (see later), but still kind of decent

LL(1) parsing principle
Parse from 1) left-to-right (as always anyway), do a 2) left-most
derivation and resolve the “which-right-hand-side” non-determinism
by looking 3) 1 symbol ahead.

• two flavors for LL(1) parsing here (both are top-down parsers)
• recursive descent4
• table-based LL(1) parser

4If one wants to be very precise: it’s recursive descent with one look-ahead
and without back-tracking. It’s the single most common case for recursive
descent parsers. Longer look-aheads are possible, but less common.
Technically, even allowing back-tracking can be done using recursive descent as
princinple (even if not done in practice)

58 / 84

Sample expr grammar again

factors and terms

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | number

(6)

59 / 84

Look-ahead of 1: straightforward, but not trivial

• look-ahead of 1:
• not much of a look-ahead anyhow
• just the “current token”

⇒ read the next token, and, based on that, decide
• but: what if there’s no more symbols?
⇒ read the next token if there is, and decide based on the the

token or else the fact that there’s none left5

Example: 2 productions for non-terminal factor

factor → (exp) | number

that’s trivial, but that’s not all . . .

5sometimes “special terminal” $ used to mark the end
60 / 84

Recursive descent: general set-up

• global variable, say tok, representing the “current token”
• parser has a way to advance that to the next token (if there’s
one)

Idea
For each non-terminal nonterm, write one procedure which:

• succeeds, if starting at the current token position, the “rest” of
the token stream starts with a syntactically correct nonterm

• fail otherwise

• ignored (for right now): when doing the above successfully,
build the AST for the accepted nonterminal.

61 / 84

Recursive descent

method factor for nonterminal factor

1 f i n a l i n t LPAREN=1,RPAREN=2,NUMBER=3,
2 PLUS=4,MINUS=5,TIMES=6;

1 vo id f a c to r () {
2 switch (tok) {
3 case LPAREN: ea t (LPAREN) ; expr () ; ea t (RPAREN) ;
4 case NUMBER: ea t (NUMBER) ;
5 }
6 }

62 / 84

Recursive descent

type token = LPAREN | RPAREN | NUMBER
| PLUS | MINUS | TIMES

l e t f a c t o r () = (∗ f u n c t i o n f o r f a c t o r s ∗)
match ! tok with

LPAREN −> eat (LPAREN) ; exp r () ; ea t (RPAREN)
| NUMBER −> eat (NUMBER)

63 / 84

Recursive descent principle

• recursive descent: aka predictive parser

Princple
one function (method/procedure) for each non-terminal and one
case for each production.

•

64 / 84

Slightly more complex

• previous 2 rules for factor : situation not always as immediate
as that

LL(1) principle (again)
given a non-terminal, the next token must determine the choice of
right-hand side, but it need not be a token directly mentioned on
the right-hand sides of the corresponding rules.

⇒ definition of the First set

Lemma (LL(1) (without nullable symbols))

A reduced context-free grammar without nullable non-terminals is
an LL(1)-grammar iff for all non-terminals A and for all pairs of
productions A→ α1 and A→ α2 with α1 6= α2:

First1(α1) ∩ First1(α2) = ∅ .

65 / 84

Common problematic situation

• sometimes: common left factors are problematic

if -stmt → if (exp) stmt
| if (exp) stmt else stmt

• requires a look-ahead of (at least) 2
• ⇒ try to rearrange the grammar

1. Extended BNF ([Louden, 1997] suggests that)

if -stmt → if (exp) stmt[else stmt]

1. left-factoring:

if -stmt → if (exp) stmt else_part
else_part → ε | else stmt

66 / 84

Recursive descent for left-factored if -stmt

1 procedure i f s tmt
2 begin
3 match (" i f ") ;
4 match (" (") ;
5 exp r ;
6 match (") ") ;
7 stmt ;
8 i f token = " e l s e "
9 then match (" e l s e ") ;

10 s ta t ement
11 end
12 end ;

67 / 84

Left recursion is a no-go

factors and terms

exp → exp addop term | term
addop → + | −
term → termmulop term | factor

mulop → ∗
factor → (exp) | number

(7)

• consider treatment of exp: First(exp)?
• whatever is in First(term), is in First(exp)6

• even if only one (left-recursive) production⇒ infinite recursion.

Left-recursion
Left-recursive grammar never works for recursive descent.

6And it would not help to look-ahead more than 1 token either.
68 / 84

Removing left recursion may help

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | number

procedure exp
begin

term ;
exp r ′

end

procedure exp ′

begin
case token of

"+": match ("+");
term ;
exp ′

"−": match ("−");
term ;
exp ′

end
end

1 procedure exp ′

2 begin
3 case token of
4 "+": match ("+");
5 term ;
6 exp ′

7 "−": match ("−");
8 term ;
9 exp ′

10 end
11 end

69 / 84

Recursive descent works, alright, but . . .

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

. . . who wants this form of trees?
70 / 84

The two expression grammars again

Precedence & assoc.

exp → exp addop term | term
addop → + | −
term → term mulop term | factor

mulop → ∗
factor → (exp) | number

• clean and straightforward
rules

• left-recursive

no left-rec.

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | number

• no left-recursion
• assoc. / precedence ok
• rec. descent parsing ok
• but: just “unnatural”
• non-straightforward
parse-trees

71 / 84

Left-recursive grammar with nicer parse trees

1 + 2 ∗ (3 + 4)

exp

exp

term

factor

Nr

addop

+

term

term

factor

Nr

mulop

∗

term

factor

(exp

Nr mulop

∗

Nr

)

72 / 84

The simple “original” expression grammar

Flat expression grammar

exp → exp op exp | (exp) | number
op → + | − | ∗

1 + 2 ∗ (3 + 4)

exp

exp

Nr

op

+

exp

exp

Nr

op

∗

exp

(exp

exp

Nr

op

+

exp

Nr

)

73 / 84

Associtivity problematic

Precedence & assoc.
exp → exp addop term | term

addop → + | −
term → term mulop term | factor

mulop → ∗
factor → (exp) | number

3 + 4 + 5

parsed “as”

(3 + 4) + 5

3− 4− 5

parsed “as”

(3− 4)− 5

exp

exp

exp

term

factor

number

addop

+

term

factor

number

addop

+

term

factor

number

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

74 / 84

Now use the grammar without left-rec

No left-rec.
exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | number

3− 4− 5

parsed “as”

3− (4− 5)

exp

term

factor

number

exp′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

75 / 84

“Designing” the syntax, its parsing, & its AST

• many trade offs:
1. starting from: design of the language, how much of the syntax

is left “implicit”7

2. which language class? Is LL(1) good enough, or something
stronger wanted?

3. how to parse? (top-down, bottom-up etc)
4. parse-tree/concrete syntax trees vs ASTs

7Lisp is famous/notorious in that its surface syntax is more or less an
explicit notation for the ASTs. Not that it was originally planned like this . . .

76 / 84

AST vs. CST

• once steps 1.–3. are fixed: parse-trees fixed!
• parse-trees = essence of a grammatical derivation process
• often: parse trees only “conceptually” present in a parser
• AST:

• abstractions of the parse trees
• essence of the parse tree
• actual tree data structure, as output of the parser
• typically on-the fly: AST built while the parser parses, i.e.

while it executes a derivation in the grammar

AST vs. CST/parse tree
The parser "builds" the AST data structurea while "doing" the
parse tree.

77 / 84

AST: How “far away” from the CST?

• AST: only thing relevant for later phases ⇒ better be clean
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed “weirdly”,

exp

term

factor

number

exp′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

parse-trees like that better be cleaned up as AST
exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

slightly more reasonable looking as AST (but underlying grammar
not directly useful for recursive descent)

exp

exp

number

op

−

exp

exp

number

op

−

exp

number

That parse tree looks reasonable clear and intuitive
−

number −

number number

exp:−

exp: number op: −

exp:number exp:number

Wouldn’t that be the best AST here?
Certainly minimal amount of node, which is nice as such. However,
what is missing (which might be interesting) is the fact that the 2
nodes labelled “−” are expressions!

78 / 84

This is how it’s done (a recipe for OO)

Assume, one has a “non-weird” grammar, like

exp → exp op exp | (exp) | number
op → + | − | ∗

• typically that means: assoc. and precedences etc. are fixed
outside the non-weird grammar

• by massaging it to an equivalent one (no left recursion etc)
• or (better): use a parser-generator that allows to specify things

like “ "∗" binds stronger than "+", it associates to the left
. . . ” without cluttering the grammar.

Recipe
• turn each non-terminal to an abstract class
• turn each right-hand side of a given non-terminal as
(non-abstract) subclass of the class for considered non-terminal

• chose fields & constructors of concrete classes appropriately
• terminal: concrete class as well, field/constructor for token’s
value 79 / 84

Example in Java

exp → exp op exp | (exp) | number
op → + | − | ∗

1 abs t rac t pub l i c c l a s s Exp {
2 }

1 pub l i c c l a s s BinExp extends Exp { // exp −> exp op exp
2 pub l i c Exp l e f t , r i g h t ;
3 pub l i c Op op ;
4 pub l i c BinExp (Exp l , i n t o , Exp r) {
5 l e f t=l ; op=o ; r i g h t=r ; }
6 }

1 pub l i c c l a s s Pa r en the t i cExp extends Exp { // exp −> (op)
2 pub l i c Exp exp ;
3 pub l i c Pa r en the t i cExp (Exp e) { exp = l ; }
4 }

1 pub l i c c l a s s NumberExp extends Exp { // exp −> NUMBER
2 pub l i c number ; // token va l u e
3 pub l i c Number (i n t i) {number = i ; }
4 }

1 abs t rac t pub l i c c l a s s Op { // non−t e rm i n a l = a b s t r a c t
2 }

1 pub l i c c l a s s Plus extends Op { // op −> "+"
2 }

1 pub l i c c l a s s Minus extends Op { // op −> "−"
2 }

1 pub l i c c l a s s Times extends Op { // op −> "∗"
2 }

80 / 84

3− (4− 5)

Exp e = new BinExp (
new NumberExp (3) ,
new Minus () ,
new BinExp (new Pa r e n t h e t i cE xp r (

new NumberExp (4) ,
new Minus () ,
new NumberExp (5))))

81 / 84

Pragmatic deviations from the recipe

• it’s nice to have a guiding principle, but no need to carry it too
far . . .

• To the very least: the ParentheticExpr is completely
without purpose: grouping is captured by the tree structure

⇒ that class is not needed
• some might prefer an implementation of

op → + | − | ∗

as simply integers, for instance arranged like

1 pub l i c c l a s s BinExp extends Exp { // exp −> exp op exp
2 pub l i c Exp l e f t , r i g h t ;
3 pub l i c Op op ;
4 pub l i c BinExp (Exp l , i n t o , Exp r) { pos=p ; l e f t=l ; oper=o ; r i g h t=r ; }
5 pub l i c f i n a l s t a t i c i n t PLUS=0, MINUS=1, TIMES=2;

and used as BinExpr.PLUS etc.

82 / 84

Recipe for ASTs, final words:

• space considerations for AST representations are irrelevant in
most cases

• clarity and cleanness trumps “quick hacks” and “squeezing bits”
• some deviation from the recipe or not, the advice still holds:

Do it systematically
A clean grammar is the specification of the syntax of the language
and thus the parser. It is also a means of communicating with
humans (at least pros who (of course) can read BNF) what the
syntax is. A clean grammar is a very systematic and structured
thing which consequently can and should be systematically and
cleanly represented in an AST, including judicious and systematic
choice of names and conventions (nonterminal exp represented by
class Exp, non-terminal stmt by class Stmt etc)

• a word on [Louden, 1997] His C-based representation of the
AST is a bit on the “bit-squeezing” side of things . . .

83 / 84

References I

[Appel, 1998] Appel, A. W. (1998).
Modern Compiler Implementation in ML/Java/C.
Cambridge University Press.

[Louden, 1997] Louden, K. (1997).
Compiler Construction, Principles and Practice.
PWS Publishing.

84 / 84

	Parsing
	First and follow sets
	Top-down parsing

