INF5110 - Compiler Construction

Parsing

Spring 2016

- First and Follow set: general concepts for grammars
- textbook looks at one parsing technique (top-down)
[Louden, 1997, Chap. 4] before studying First/Follow sets
- we: take First/Follow sets before any parsing technique
- two transformation techniques for grammars
- both preserving that accepted language

1. removal for left-recursion
2. left factoring

- general concept for grammars
- certain types of analyses (e.g. parsing):
- info needed about possible "forms" of derivable words,

First-set of A
which terminal symbols can appear at the start of strings derived from a given nonterminal A

Follow-set of A
Which terminals can follow A in some sentential form.

- sentential form: word derived from grammar's starting symbol
- later: different algos for First and Follow sets, for all non-terminals of a given grammar
- mostly straightforward
- one complication: nullable symbols (non-terminals)
- Note: those sets depend on grammar, not the language

Definition (First set)

Given a grammar G and a non-terminal A. The First-set of A, written First $_{G}(A)$ is defined as

$$
\begin{equation*}
\operatorname{First}_{G}(A)=\left\{a \mid A \Rightarrow{ }_{G}^{*} a \alpha, \quad a \in \Sigma_{T}\right\}+\left\{\epsilon \mid A \Rightarrow_{G}^{*} \epsilon\right\} . \tag{1}
\end{equation*}
$$

Definition (Nullable)
Given a grammar G. A non-terminal $A \in \Sigma_{N}$ is nullable, if $A \Rightarrow^{*} \epsilon$.

- Cf. the Tiny grammar
- in Tiny, as in most languages

$$
\text { Follow (if-stmt) }=\{\text { " if " }\}
$$

- in many languages:

$$
\text { Follow (assign-stmt) }=\{\text { identifier }, "("\}
$$

- for statements:

$$
\text { Follow }(\text { stmt })=\{" ; ", " \text { end ", "else"," until" }\}
$$

- note: special treatment of the empty word ϵ
- in the following: if grammar G clear from the context
- \Rightarrow^{*} for \Rightarrow_{G}^{*}
- First for First $_{G}$
- ...
- definition so far: "top-level" for start-symbol, only
- next: a more general definition
- definition of First set of arbitrary symbols (and words)
- even more: definition for a symbol in terms of First for "other symbol" (connected by productions)
\Rightarrow recursive definition

A more algorithmic/recursive definition

- grammar symbol X: terminal or non-terminal or ϵ

Definition (First set of a symbol)

Given a grammar G and grammar symbol X. The First-set of X, written $\operatorname{First}(X)$ is defined as follows:

1. If $X \in \Sigma_{T}+\{\epsilon\}$, then $\operatorname{First}(X)=\{X\}$.
2. If $X \in \Sigma_{N}$: For each production

$$
X \rightarrow X_{1} X_{2} \ldots X_{n}
$$

2.1 First (X) contains $\operatorname{First}\left(X_{1}\right) \backslash\{\epsilon\}$
2.2 If, for some $i<n$, all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{i}\right)$ contain ϵ, then First (X) contains First $\left(X_{i}\right) \backslash\{\epsilon\}$.
2.3 If all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain ϵ, then $\operatorname{First}(X)$ contains $\{\epsilon\}$.

Definition (First set of a word)

Given a grammar G and word α. The First-set of

$$
\alpha=X_{1} \ldots X_{n},
$$

written First (α) is defined inductively as follows:

1. First (α) contains $\operatorname{First}\left(X_{1}\right) \backslash\{\epsilon\}$
2. for each $i=2, \ldots n$, if $\operatorname{First}\left(X_{k}\right)$ contains $\boldsymbol{\epsilon}$ for all $k=1, \ldots, i-1$, then $\operatorname{First}(\alpha)$ contains $\operatorname{First}\left(X_{i}\right) \backslash\{\epsilon\}$
3. If all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain ϵ, then $\operatorname{First}(X)$ contains $\{\epsilon\}$.
for all non-terminals A do
First [A] := \{\}
end
while there are changes to any First [A] do
for each production $A \rightarrow X_{1} \ldots X_{n}$ do
$\mathrm{k}:=1$;
continue := true
while continue $=$ true and $k \leq n$ do
First $[A]:=$ First $[A] \cup$ First $\left(X_{k}\right) \backslash\{\epsilon\}$ if $\epsilon \notin$ First $\left[X_{k}\right]$ then continue $:=$ false $\mathrm{k}:=\mathrm{k}+1$
end;
if continue $=$ true
then First [A] $:=$ First $[A] \cup\{\epsilon\}$ end ;
end
for grammar without ϵ-productions. ${ }^{1}$
for all non-terminals A do
First $[\mathrm{A}]:=\{ \} \quad / /$ counts as change end
while there are changes to any First [A] do
for each production $A \rightarrow X_{1} \ldots X_{n}$ do First $[A]:=$ First $[A] \cup$ First $\left(X_{1}\right)$ end ;
end
${ }^{1}$ production of the form $A \rightarrow \epsilon$.
```
    exp }->\mathrm{ exp addop term | term
addop }->+|
    term }->\mathrm{ term mulop term | factor
mulop -> *
factor }->\mathrm{ (exp) | number
```

```
        exp }->\mathrm{ expaddop term
        exp }->\mathrm{ term
addop }->
addop }->\mathrm{ -
    term }->\mathrm{ term mulop term
    term }->\mathrm{ factor
mulop -> *
factor }->\mathrm{ ( exp)
factor }->\mathrm{ number
```

Grammar rule	Pass I	Pass 2	Pass 3
$\exp \rightarrow \exp$ addop term			
$\exp \rightarrow$ term			$\begin{aligned} & \text { First }(\text { exp })= \\ & \quad\{(, \text { number }\} \end{aligned}$
addop $\rightarrow+$	$\begin{aligned} & \text { First(addop) } \\ & \qquad=\{+\} \end{aligned}$		
addop \rightarrow -	First(addop) $=\{+,-\}$		
term \rightarrow term mulop factor			
term \rightarrow factor		$\begin{aligned} & \cdot \text { First }(\text { term })= \\ & \quad\{(, \text { number }\} \end{aligned}$	
mulop \rightarrow *	$\begin{aligned} & \text { First(mulop) } \\ & \qquad=\{\star\} \end{aligned}$		
factor \rightarrow (exp)	$\begin{aligned} & \text { First (factor) } \\ & \qquad=\{(\} \end{aligned}$		
factor \rightarrow number	$\begin{aligned} & \text { First }(\text { factor })= \\ & \quad\{(, \text { number }\} \end{aligned}$		

- results per pass:

	1	2	3
\exp			$\{\mathbf{(}$, number $\}$
addop	$\{+,-\}$		
term		$\{\mathbf{(}$, number $\}$	
mulop	$\{*\}$		
factor $\{\mathbf{(}$, number $\}$			

- final results (at the end of pass 3):

	First [_]
exp	$\{\mathbf{(}$, number $\}$
addop	$\{+,-\}$
term	$\{\mathbf{(}$, number $\}$
mulop	$\{*\}$
factor	$\{\mathbf{(}$, number $\}$

for all non-terminals A do
First[A] := \{\}
WL $\quad:=P \quad / /$ all productions
end
while $W L \neq \emptyset$ do
remove one $\left(A \rightarrow X_{1} \ldots X_{n}\right)$ from WL
if \quad First $[A] \neq$ First $[A] \cup$ First $\left[X_{1}\right]$
then First $[A]:=$ First $[A] \cup$ First $\left[X_{1}\right]$ add all productions $\left(A \rightarrow X_{1}^{\prime} \ldots X_{m}^{\prime}\right)$ to $W L$ else skip
end

- worklist here: "collection" of productions
- alternatively, with slight reformulation: "collection" of non-terminals also possible

Definition (Follow set (ignoring \$))

Given a grammar G with start symbol S, and a non-terminal A. The Follow-set of A, written Follow $G(A)$, is

$$
\begin{equation*}
\text { Follow }_{G}(A)=\left\{a \mid S \Rightarrow_{G}^{*} \alpha_{1} A^{2} \alpha_{2}, \quad a \in \Sigma_{T}\right\} \tag{4}
\end{equation*}
$$

- More generally: \$ as special end-marker

$$
S \$ \Rightarrow{ }_{G}^{*} \alpha_{1} A a \alpha_{2}, \quad a \in \Sigma_{T}+\{\$\} .
$$

- typically: start symbol not on the right-hand side of a production

Definition (Follow set of a non-terminal)

Given a grammar G and nonterminal A. The Follow-set of A, written $\operatorname{Follow}(A)$ is defined as follows:

1. If A is the start symbol, then Follow (A) contains $\$$.
2. If there is a production $B \rightarrow \alpha A \beta$, then Follow (A) contains First $(\beta) \backslash\{\boldsymbol{\epsilon}\}$.
3. If there is a production $B \rightarrow \alpha A \beta$ such that $\boldsymbol{\epsilon} \in \operatorname{First}(\beta)$, then Follow (A) contains Follow (B).

- \$: "end marker" special symbol, only to be contained in the follow set

Follow [S] := \{\$\}
for all non-terminals $A \neq S$ do
Follow $[A]:=\{ \}$

end

while there are changes to any Follow-set do
for each production $A \rightarrow X_{1} \ldots X_{n}$ do
for each X_{i} which is a non-terminal do Follow $\left[X_{i}\right]:=$ Follow $\left[X_{i}\right] \cup\left(\operatorname{First}\left(X_{i+1} \ldots X_{n}\right) \backslash\{\epsilon\}\right)$ if $\epsilon \in \operatorname{First}\left(X_{i+1} X_{i+2} \ldots X_{n}\right)$
then Follow $\left[X_{i}\right]:=$ Follow $\left[X_{i}\right] \cup$ Follow $[A]$ end
end
end
Note! First ()$=\epsilon$

$$
\begin{align*}
\exp & \rightarrow \text { exp addop term } \tag{3}\\
\exp & \rightarrow \text { term } \\
\text { addop } & \rightarrow+ \\
\text { addop } & \rightarrow- \\
\text { term } & \rightarrow \text { term mulop term } \\
\text { term } & \rightarrow \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow \text { (exp) } \\
\text { factor } & \rightarrow \text { number }
\end{align*}
$$

Grammar rule	Pass 1	Pass 2
exp \rightarrow exp addop term	$\begin{aligned} & \text { Follow(exp)=} \\ & \text { Follow(addop)=} \\ & \{(1, \text { number }\} \\ & \text { Follow }(\text { term })= \\ & \qquad\{\$,+-\} \end{aligned}$	$\begin{aligned} & \text { Follow }(\text { term })= \\ & \{\$,+,-, *,)\} \end{aligned}$
exp \rightarrow term		
term \rightarrow term mulop factor	$\begin{gathered} \text { Follow }(\text { term })= \\ \{\$,+,-*\} \\ \text { Follow }(\text { mulop })= \\ \{(, \text { number }\} \\ \text { Follow }(\text { factor })= \\ \{\$,+,-, *\} \end{gathered}$	$\begin{aligned} & \text { Follow }(\text { factor })= \\ & \left.\qquad\left\{\$,-,{ }^{*},\right)\right\} \end{aligned}$
term \rightarrow factor		
factor \rightarrow (exp)	$\begin{aligned} & \text { Follow }(\text { exp })= \\ & \qquad\{\$,+,-,)\} \end{aligned}$	

Illustration of first/follow sets

$a \in$ First (A)

- red arrows: illustration of information flow in the algos
- run of Follow:
- relies on First
- in particular $a \in \operatorname{First}(E)$ (right tree)
- $\$ \in$ Follow (B)

- left-recursive production:

$$
A \rightarrow A \alpha
$$

more precisely: example of immediate left-recursion

- 2 productions with common "left factor":

$$
A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2} \quad \text { where } \alpha \neq \boldsymbol{\epsilon}
$$

- left-recursion

$$
\exp \rightarrow \exp +\text { term }
$$

- classical example for common left factor: rules for conditionals

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt end } \\
& \mid \text { if }(\exp) \text { stmt else stmt end }
\end{aligned}
$$

exp	\rightarrow exp addop term \mid term
addop	$\rightarrow+\mid-$
term	\rightarrow term mulop term \mid factor
mulop	$\rightarrow *$
factor	$\rightarrow(\exp) \mid$ number

- obviously left-recursive
- remember: this variant used for proper associativity!

```
    exp }->\mathrm{ term exp'
    exp' }->\mathrm{ addop term exp' | 
addop }->+|
    term }->\mathrm{ factor term'
    term}\mp@subsup{}{}{\prime}->\mathrm{ mulop factor term' | |
mulop }->\mathrm{ *
factor }->\mathrm{ ( exp) | number
```

- still unambiguous
- unfortunate: associativity now different!
- note also: ϵ-productions \& nullability

Left-recursion removal

A transformation process to turn a CFG into one without left recursion

- price: ϵ-productions
- 3 cases to consider
- immediate (or direct) recursion
- simple
- general
- indirect (or mutual) recursion

Before
$A \rightarrow A \alpha \mid \beta$

After

$$
\begin{aligned}
A & \rightarrow \beta A^{\prime} \\
A^{\prime} & \rightarrow \alpha A \mid \boldsymbol{\epsilon}
\end{aligned}
$$

$A \rightarrow A \alpha \mid \beta$

$$
\begin{aligned}
A & \rightarrow \beta A^{\prime} \\
A^{\prime} & \rightarrow \alpha A^{\prime} \mid \boldsymbol{\epsilon}
\end{aligned}
$$

- both grammars generate the same (context-free) language (= set of strings of terminals)
- in EBNF:

$$
A \rightarrow \beta\{\alpha\}
$$

- two negative aspects of the transformation

1. generated language unchanged, but: change in resulting structure (parse-tree), i.a.w. change in associativity, which may result in change of meaning
2. introduction of ϵ-productions

- more concrete example for such a production: grammar for expressions

Before

After

$$
\begin{array}{rll|l|l}
A & \rightarrow & \beta_{1} A^{\prime} & \ldots & \beta_{m} A^{\prime} \\
A^{\prime} & \rightarrow & \alpha_{1} A^{\prime} & \ldots & \alpha_{n} A^{\prime} \\
& \mid & \epsilon & &
\end{array}
$$

Note, can be written in EBNF as:

$$
A \rightarrow\left(\beta_{1}|\ldots| \beta_{m}\right)\left(\alpha_{1}|\ldots| \alpha_{n}\right)^{*}
$$

```
for i := 1 to m do
    for j := 1 to i-1 do
        replace each grammar rule of the form A->\mp@subsup{A}{i}{}\beta\mathrm{ by}
        rule }\mp@subsup{A}{i}{}->\mp@subsup{\alpha}{1}{}\beta|\mp@subsup{\alpha}{2}{}\beta|\ldots|\mp@subsup{\alpha}{k}{}
        where }\mp@subsup{A}{j}{}->\mp@subsup{\alpha}{1}{}|\mp@subsup{\alpha}{2}{}|\ldots|\mp@subsup{\alpha}{k}{
        is the current rule for }\mp@subsup{A}{j}{
    end
    remove, if necessary, immediate left recursion for }\mp@subsup{A}{i}{
end
```

$$
\begin{array}{lll|l|l}
A & \rightarrow & B \boldsymbol{a} & A \boldsymbol{a} & \boldsymbol{c} \\
B & \rightarrow & B \boldsymbol{b} & A \boldsymbol{b} & \boldsymbol{d}
\end{array}
$$

$$
\begin{aligned}
A & \rightarrow B \boldsymbol{a} A^{\prime} \mid \boldsymbol{c} A^{\prime} \\
A^{\prime} & \rightarrow \boldsymbol{a} A^{\prime} \mid \epsilon \\
B & \rightarrow B \boldsymbol{b}|A \boldsymbol{b}| \boldsymbol{d}
\end{aligned}
$$

$$
\begin{aligned}
A & \rightarrow B \boldsymbol{a} A^{\prime} \mid \boldsymbol{c} A^{\prime} \\
A^{\prime} & \rightarrow \boldsymbol{a} A^{\prime} \mid \boldsymbol{\epsilon} \\
B & \rightarrow B \boldsymbol{b}\left|B \boldsymbol{a} A^{\prime} \boldsymbol{b}\right| \boldsymbol{c} A^{\prime} \boldsymbol{b} \mid \boldsymbol{d}
\end{aligned}
$$

$$
\begin{aligned}
A & \rightarrow B \boldsymbol{a} A^{\prime} \mid \boldsymbol{c} A^{\prime} \\
A^{\prime} & \rightarrow \boldsymbol{a} A^{\prime} \mid \boldsymbol{\epsilon} \\
B & \rightarrow \boldsymbol{c} A^{\prime} \boldsymbol{b} B^{\prime} \mid \boldsymbol{d} B^{\prime} \\
B^{\prime} & \rightarrow \boldsymbol{b} B^{\prime}\left|\boldsymbol{a} A^{\prime} \boldsymbol{b} B^{\prime}\right| \epsilon
\end{aligned}
$$

- CFG: not just describe a context-free languages
- also: intende (indirect) description of a parser to accept that language
\Rightarrow common left factor undesirable
- cf.: determinization of automata for the lexer

Simple situation

$$
A \rightarrow \alpha \beta|\alpha \gamma| \ldots
$$

Before

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt-seq end } \\
& \left\lvert\, \begin{array}{l}
\text { if }(\exp) \text { stmt-seq else stmt-seq end }
\end{array}\right.
\end{aligned}
$$

After
if-stmt \rightarrow if (exp) stmt-seq else-or-end else-or-end \rightarrow else stmt-seq end | end

Before

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt-seq } \\
& \mid \text { if }(\exp) \text { stmt-seq else stmt-seq }
\end{aligned}
$$

After
if-stmt \rightarrow if (exp) stmt-seq else-or-empty
else-or-empty \rightarrow else stmt-seq | $\boldsymbol{\epsilon}$

Not all factorization doable in "one step"

Starting point

$$
A \rightarrow \boldsymbol{a} \boldsymbol{b} \boldsymbol{c} B|\boldsymbol{a} \boldsymbol{b} C| \boldsymbol{a} E
$$

After 1 step

$$
\begin{aligned}
A & \rightarrow \boldsymbol{a} \boldsymbol{b} A^{\prime} \mid \boldsymbol{a} E \\
A^{\prime} & \rightarrow \boldsymbol{c} B \mid C
\end{aligned}
$$

After 2 steps

$$
\begin{aligned}
A & \rightarrow \boldsymbol{a} A^{\prime \prime} \\
A^{\prime \prime} & \rightarrow \boldsymbol{b} A^{\prime} \mid E \\
A^{\prime} & \rightarrow \boldsymbol{c} B \mid C
\end{aligned}
$$

- note: we choose the longest common prefix (= longest left factor) in the first step
while there are changes to the grammar do
for each nonterminal A do
let α be a prefix of max. length that is shared by two or more productions for A
if $\quad \alpha \neq \epsilon$
then
let $A \rightarrow \alpha_{1}|\ldots| \alpha_{n}$ be all prod. for A and suppose that $\alpha_{1}, \ldots, \alpha_{k}$ share α so that $A \rightarrow \alpha \beta_{1}|\ldots| \alpha \beta_{k}\left|\alpha_{k+1}\right| \ldots \mid \alpha_{n}$, that the β_{j} 's share no common prefix, and that the $\alpha_{k+1}, \ldots, \alpha_{n}$ do not share α. replace rule $A \rightarrow \alpha_{1}|\ldots| \alpha_{n}$ by the rules $A \rightarrow \alpha A^{\prime}\left|\alpha_{k+1}\right| \ldots \mid \alpha_{n}$ $A^{\prime} \rightarrow \beta_{1}|\ldots| \beta_{k}$
end
end
end
task of parser $=$ syntax analysis
- input: stream of tokens from lexer
- output:
- abstract syntax tree
- or meaningful diagnosis of source of syntax error
- the full "power" (i.e., expressiveness) of CFGs no used
- thus:
- consider restrictions of CFGs, i.e., a specific subclass, and/or
- represented in specific ways (no left-recursion, left-factored ...)

- all parsers (together with lexers): left-to-right
- remember: parsers operate with trees
- parsing tree (concrete syntax tree): representing grammatical derivation
- abstract syntax tree: data structure
- 2 fundamental classes.
- while the parser eats through the token stream, it grows, i.e., builds up (at least conceptually) the parse tree:

Bottom-up
Parse tree is being grown from the leaves to the root.

Top-down

Parse tree is being grown from the root to the leaves.

- while parse tree mostly conceptual: parsing build up the concrete data structure of AST bottom-up vs. top-down.
- parser: better be "efficient"
- full complexity of CFLs: not really needed in practice ${ }^{2}$
- classification of CF languages vs. CF grammars, e.g.:
- left-recursion-freedom: condition on a grammar
- ambiguous language vs. ambiguious grammar
- classification of grammars \Rightarrow classification of language
- a CF language is (inherently) ambiguous, if there's not unambiguous grammar for it.
- a CF language is top-down parseable, if there exists a grammar that allows top-down parsing...
- in practice: classification of parser generating tool:
- based on accepted notation for grammars: (BNF or allows EBNF etc.)
> ${ }^{2}$ Perhaps: if a parser has trouble to figure out if a program has a syntax error or not (perhaps using back-tracking), probably humans will have similar problems. So better keep it simple. And time in a compiler is better spent elsewhere (optimization, semantical analysis).
- maaaany have been proposed \& studied, including their relationships
- lecture concentrates on
- top-down parsing, in particular
- LL(1)
- recursive descent
- bottom-up parsing
- LR(1)
- SLR
- $\operatorname{LALR}(1)$ (the class covered by yacc-style tools)
- grammars typically written in pure BNF

taken from [Appel, 1998]
- Given: a CFG (but appropriately restricted)
- Goal: "systematic method" s.t.

1. for every given word w : check syntactic correctness
2. [build AST/representation of the parse tree as side effect]
3. [do reasonable error handling]

Note: sequence of tokens (not characters)
exp term exp' factor term' exp' number term' exp' number term' ${ }^{\prime}$ exp' $^{\prime}$ number ϵ exp'
factors and terms

$$
\begin{align*}
\exp & \rightarrow \text { term exp } \tag{5}\\
\text { exp }^{\prime} & \rightarrow \text { addop term } \exp ^{\prime} \mid \epsilon \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { term } & \rightarrow \text { mulop factor term } \mid \epsilon \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{align*}
$$

Note:

- input $=$ stream of tokens
- there: $1 \ldots$ stands for token class number (for readability/concreteness), in the grammar: just number
- in full detail: pair of token class and token value \langle number, 5\rangle

Notation:

- underline: the place (occurrence of non-terminal where production is used
- crossed out:
- terminal $=$ token is considered treated,
- parser "moves on"
- later implemented as match or eat procedure

exp	\Rightarrow
term exp ${ }^{\prime}$	\Rightarrow
factor term' exp^{\prime}	\Rightarrow
number term ${ }^{\prime} \exp ^{\prime}$	\Rightarrow
number term' ${ }^{\text {exp }}{ }^{\prime}$	\Rightarrow
number $\epsilon \exp ^{\prime}$	\Rightarrow
number $\exp ^{\prime}$	\Rightarrow
number $\overline{\text { addop }}$ term exp ${ }^{\prime}$	\Rightarrow
number + term exp ${ }^{\prime}$	\Rightarrow
number + term exp ${ }^{\prime}$	\Rightarrow
number + factor term' exp^{\prime}	\Rightarrow
number + number term' exp^{\prime}	\Rightarrow
number + number term' exp^{\prime}	\Rightarrow
number + number mulop factor term' ${ }^{\text {exp }}{ }^{\prime}$	\Rightarrow
number + number * factor term' exp ${ }^{\prime}$	\Rightarrow
number + number $*\left(\right.$ exp) term $^{\prime}$ exp $^{\prime}$	\Rightarrow
number + number $*(\exp)$ term' $\exp ^{\prime}$	\Rightarrow
number + number * (exp) term' exp $^{\prime}$	\Rightarrow

- not a "free" expansion/reduction/generation of some word, but
- reduction of start symbol towards the target word of terminals

$$
\exp \Rightarrow^{*} \mathbf{1}+2 *(3+4)
$$

- i.e.: input stream of tokens "guides" the derivation process (at least it fixes the target)
- but: how much "guidance" does the target word (in general) gives?

Using production $A \rightarrow \beta$

$$
S \Rightarrow^{*} \alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2} \Rightarrow^{*} w
$$

- $\alpha_{1}, \alpha_{2}, \beta$: word of terminals and nonterminals
- w : word of terminals, only
- A : one non-terminal

2 choices to make

1. where, i.e., on which occurrence of a non-terminal in $\alpha_{1} A \alpha_{2}$ to apply a production ${ }^{a}$
2. which production to apply (for the chosen non-terminal).
${ }^{a}$ Note that α_{1} and α_{2} may contain non-terminals, including further occurrences of A

- taking care of "where-to-reduce" non-determinism: left-most derivation
- notation $\Rightarrow_{\text {I }}$
- the example derivation used that
- second look at the "guided" derivation proccess: ?
- Note: the "where-to-reduce"-non-determinism \neq ambiguitiy of a grammar ${ }^{3}$
- in a way ("theoretically"): where to reduce next is irrelevant:
- the order in the sequence of derivations does not matter
- what does matter: the derivation tree (aka the parse tree)

Lemma (left or right, who cares)
$S \Rightarrow{ }_{l}^{*} w \quad$ iff $S \Rightarrow_{r}^{*} w \quad$ iff $S \Rightarrow^{*} w$.

- however ("practically"): a (deterministic) parser implementation: must make a choice

Using production $A \rightarrow \beta$

$$
\begin{aligned}
& S \Rightarrow^{*} \alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2} \Rightarrow^{*} w \\
& S \Rightarrow_{1}^{*} w_{1} A \alpha_{2} \Rightarrow w_{1} \beta \alpha_{2} \Rightarrow_{\imath}^{*} w
\end{aligned}
$$

${ }^{3} \mathrm{~A}$ CFG is ambiguous, if there exist a word (of terminals) with 2 different

$$
A \rightarrow \beta \mid \gamma
$$

Is that the correct choice?

$$
S \Rightarrow_{l}^{*} w_{1} A \alpha_{2} \Rightarrow w_{1} \beta \alpha_{2} \Rightarrow_{l}^{*} w
$$

- reduction with "guidance": don't loose sight of the target w
- "past" is fixed: $w=w_{1} w_{2}$
- "future" is not:

$$
A \alpha_{2} \Rightarrow_{1} \beta \alpha_{2} \Rightarrow_{1}^{*} w_{2} \quad \text { or else } A \alpha_{2} \Rightarrow_{1} \gamma \alpha_{2} \Rightarrow_{1}^{*} w_{2} ?
$$

Needed (minimal requirement):
In such a situation, the target w_{2} must determine which of the two rules to take!

$$
A \alpha_{2} \Rightarrow_{I} \beta \alpha_{2} \Rightarrow_{l}^{*} w_{2} \quad \text { or else } A \alpha_{2} \Rightarrow_{I} \gamma \alpha_{2} \Rightarrow_{l}^{*} w_{2} ?
$$

- the "target" w_{2} is of unbounded length!
\Rightarrow impractical, therefore:
Look-ahead of length k
resolve the "which-right-hand-side" non-determinism inspecting only fixed-length prefix of w_{2} (for all situations as above)

LL(k) grammars

CF-grammars which can be parsed doing that. ${ }^{\text {a }}$
a of course, one can always write a parser that "just makes some decision" based on looking ahead k symbols. The question is: will that allow to capture all words from the grammar and only those.

- in this lecture: we don't do $\operatorname{LL}(k)$ with $k>1$
- $\operatorname{LL}(1)$: particularly easy to understand and to implement (efficiently)
- not as expressive than LR(1) (see later), but still kind of decent

LL(1) parsing principle
Parse from 1) left-to-right (as always anyway), do a 2) left-most derivation and resolve the "which-right-hand-side" non-determinism by looking 3) 1 symbol ahead.

- two flavors for $\operatorname{LL}(1)$ parsing here (both are top-down parsers)
- recursive descent ${ }^{4}$
- table-based LL(1) parser
${ }^{4}$ If one wants to be very precise: it's recursive descent with one look-ahead and without back-tracking. It's the single most common case for recursive descent parsers. Longer look-aheads are possible, but less common. Technically, even allowing back-tracking can be done using recursive descent as princinple (even if not done in practice)
factors and terms

$$
\begin{aligned}
& \text { exp }^{\text {exp }} \rightarrow \text { term exp } \\
& \text { addop term } \text { exp }^{\prime} \mid \epsilon \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
& \text { term } \rightarrow \text { mulop factor term } \mid \epsilon \\
& \text { mulop } \rightarrow * \\
& \text { factor }\rightarrow \text { (exp }) \mid \text { number }
\end{aligned}
$$

- look-ahead of 1 :
- not much of a look-ahead anyhow
- just the "current token"
\Rightarrow read the next token, and, based on that, decide
- but: what if there's no more symbols?
\Rightarrow read the next token if there is, and decide based on the the token or else the fact that there's none left ${ }^{5}$

Example: 2 productions for non-terminal factor

$$
\text { factor } \rightarrow \mathbf{(e x p}) \mid \text { number }
$$

that's trivial, but that's not all ...

[^0]- global variable, say tok, representing the "current token"
- parser has a way to advance that to the next token (if there's one)

Idea

For each non-terminal nonterm, write one procedure which:

- succeeds, if starting at the current token position, the "rest" of the token stream starts with a syntactically correct nonterm
- fail otherwise
- ignored (for right now): when doing the above successfully, build the AST for the accepted nonterminal.

method factor for nonterminal factor

```
1 final int LPAREN=1,RPAREN=2,NUMBER=3,
    PLUS=4,MINUS=5,TIMES=6;
void factor () {
    switch (tok) {
    case LPAREN: eat(LPAREN); expr(); eat(RPAREN);
    case NUMBER: eat(NUMBER);
    }
}
```


type token = LPAREN | RPAREN | NUMBER PLUS | MINUS | TIMES

let factor () = (* function for factors *) match ! to with

LPAREN $->$ eat (LPAREN); expr(); eat(RPAREN) NUMBER \rightarrow eat(NUMBER)

- recursive descent: aka predictive parser

Princple

one function (method/procedure) for each non-terminal and one case for each production.

- previous 2 rules for factor: situation not always as immediate as that

LL(1) principle (again)
given a non-terminal, the next token must determine the choice of right-hand side, but it need not be a token directly mentioned on the right-hand sides of the corresponding rules.
\Rightarrow definition of the First set

Lemma (LL(1) (without nullable symbols))

A reduced context-free grammar without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and for all pairs of productions $A \rightarrow \alpha_{1}$ and $A \rightarrow \alpha_{2}$ with $\alpha_{1} \neq \alpha_{2}$:

$$
\operatorname{First}_{1}\left(\alpha_{1}\right) \cap \operatorname{First}_{1}\left(\alpha_{2}\right)=\emptyset .
$$

- sometimes: common left factors are problematic

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt } \\
& \left\lvert\, \begin{array}{l}
\text { if }(\exp) \text { stmt else stmt }
\end{array}\right.
\end{aligned}
$$

- requires a look-ahead of (at least) 2
- \Rightarrow try to rearrange the grammar

1. Extended BNF ([Louden, 1997] suggests that)

$$
\text { if-stmt } \rightarrow \text { if (exp) stmt[else stmt] }
$$

1. left-factoring:

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt else_part } \\
\text { else_part } & \rightarrow \boldsymbol{\epsilon} \mid \text { else stmt }
\end{aligned}
$$

```
procedure ifstmt
    begin
        match ("if ");
        match ("(");
        expr;
        match (")");
        stmt;
        if token = "else"
        then match ("else");
        statement
        end
    end ;
```

factors and terms

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop term } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

- consider treatment of exp: First(exp)?
- whatever is in First(term), is in First(exp) ${ }^{6}$
- even if only one (left-recursive) production \Rightarrow infinite recursion.

Left-recursion

Left-recursive grammar never works for recursive descent.

[^1]procedure exp
begin
\[

$$
\begin{aligned}
& \text { term; } \\
& \text { expr }
\end{aligned}
$$
\]

end

exp	\rightarrow term exp $^{\prime}$
exp $^{\prime}$	\rightarrow addop term exp $^{\prime} \mid \boldsymbol{\epsilon}$
addop	$\rightarrow+\mid-$
term	\rightarrow factor term
term	\rightarrow mulop factor term $\mid \boldsymbol{\epsilon}$
mulop	$\rightarrow *$
factor	$\rightarrow(\exp) \mid$ number

procedure exp' begin
case token of
" + ": match (" + ") ; term;
exp ${ }^{\prime}$
" - ": match (" - ");
term;
exp ${ }^{\prime}$
end
end

... who wants this form of trees?

Precedence \& assoc.

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term | term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop term } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

- clean and straightforward rules
- left-recursive

$$
\begin{aligned}
\exp & \rightarrow \text { term } \text { exp }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addop term } \text { exp }^{\prime} \mid \epsilon \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { term } & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow \epsilon{ }^{*} \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{aligned}
$$

- no left-recursion
- assoc. / precedence ok
- rec. descent parsing ok
- but: just "unnatural"
- non-straightforward parse-trees

Flat expression grammar

$$
\begin{aligned}
\exp & \rightarrow \exp \text { op } \exp |(\exp)| \text { number } \\
o p & \rightarrow+|-| *
\end{aligned}
$$

$$
1+2 *(3+4)
$$

Precedence \& assoc.

\exp	\rightarrow exp addop term \mid term
addop	$\rightarrow+\mid-$
term	\rightarrow term mulop term \mid factor
mulop	$\rightarrow *$
factor	$\rightarrow(\exp) \mid$ number

No left-rec.

$$
\begin{array}{rllll}
\exp & \rightarrow & \text { term exp } & \\
\text { exp }^{\prime} & \rightarrow & \text { addop term exp } & \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow & +\mid & \\
\text { term } & \rightarrow & \text { factor term' } & \\
\text { term' } & \rightarrow & \text { mulop factor term' } & \boldsymbol{\epsilon} \\
\text { mulop } & \rightarrow & * & \\
\text { factor } & \rightarrow & (\exp) \mid \text { number }
\end{array}
$$

$$
\begin{aligned}
& 3-4-5 \\
& \text { parsed "as" }
\end{aligned}
$$

$$
3-(4-5)
$$

- many trade offs:

1. starting from: design of the language, how much of the syntax is left "implicit""
2. which language class? Is $\operatorname{LL}(1)$ good enough, or something stronger wanted?
3. how to parse? (top-down, bottom-up etc)
4. parse-tree/concrete syntax trees vs ASTs
[^2]- once steps 1.-3. are fixed: parse-trees fixed!
- parse-trees $=$ essence of a grammatical derivation process
- often: parse trees only "conceptually" present in a parser
- AST:
- abstractions of the parse trees
- essence of the parse tree
- actual tree data structure, as output of the parser
- typically on-the fly: AST built while the parser parses, i.e. while it executes a derivation in the grammar

AST vs. CST/parse tree

The parser "builds" the AST data structurea while "doing" the parse tree.

- AST: only thing relevant for later phases \Rightarrow better be clean
- AST "=" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

parse-trees like that better be cleaned up as AST

Assume, one has a "non-weird" grammar, like

$$
\begin{aligned}
\exp & \rightarrow \exp \text { op } \exp |(\exp)| \text { number } \\
o p & \rightarrow+|-| *
\end{aligned}
$$

- typically that means: assoc. and precedences etc. are fixed outside the non-weird grammar
- by massaging it to an equivalent one (no left recursion etc)
- or (better): use a parser-generator that allows to specify things like " "*" binds stronger than " + ", it associates to the left ..." without cluttering the grammar.

Recipe

- turn each non-terminal to an abstract class
- turn each right-hand side of a given non-terminal as (non-abstract) subclass of the class for considered non-terminal
- chose fields \& constructors of concrete classes appropriately
- terminal: concrete class as well, field/constructor for token's value

```
    exp }->\mathrm{ exp op exp | ( exp) | number
op -> + | - |*
abstract public class Exp {
}
public class BinExp extends Exp { // exp -> exp op exp
    public Exp left, right;
    public Op op;
    public BinExp(Exp l, int o, Exp r) {
            left=l; op=o; right=r;}
}
public class ParentheticExp extends Exp { // exp -> (op )
    public Exp exp;
    public ParentheticExp(Exp e) {exp = I;}
}
public class NumberExp extends Exp { // exp -> NUMBER
    public number; // token value
    public Number(int i) {number = i;}
}
```

1 abstract public class $\operatorname{Op}\{\quad / /$ non-terminal $=$ abstract

```
Exp e = new BinExp(
    new NumberExp(3),
    new Minus(),
    new BinExp(new ParentheticExpr(
        new NumberExp(4),
        new Minus(),
        new NumberExp(5))))
```

- it's nice to have a guiding principle, but no need to carry it too far ...
- To the very least: the ParentheticExpr is completely without purpose: grouping is captured by the tree structure
\Rightarrow that class is not needed
- some might prefer an implementation of

$$
o p \rightarrow+|-| *
$$

as simply integers, for instance arranged like
public class BinExp extends Exp \{ // exp -> exp op exp public Exp left, right;
public Op op;
public BinExp(Exp l, int o, Exp r) \{pos=p; left=l; oper=o; righ public final static int $\operatorname{PLUS}=0, \mathrm{MINUS}=1$, $\mathrm{TIMES}=2$;
and used as BinExpr. PLUS etc.

- space considerations for AST representations are irrelevant in most cases
- clarity and cleanness trumps "quick hacks" and "squeezing bits"
- some deviation from the recipe or not, the advice still holds:

Do it systematically

A clean grammar is the specification of the syntax of the language and thus the parser. It is also a means of communicating with humans (at least pros who (of course) can read BNF) what the syntax is. A clean grammar is a very systematic and structured thing which consequently can and should be systematically and cleanly represented in an AST, including judicious and systematic choice of names and conventions (nonterminal exp represented by class Exp, non-terminal stmt by class Stmt etc)

- a word on [Louden, 1997] His C-based representation of the AST is a bit on the "bit-squeezing" side of things ...
[Appel, 1998] Appel, A. W. (1998).
Modern Compiler Implementation in ML/Java/C.
Cambridge University Press.
[Louden, 1997] Louden, K. (1997).
Compiler Construction, Principles and Practice.
PWS Publishing.

[^0]: ${ }^{5}$ sometimes "special terminal" $\$$ used to mark the end

[^1]: ${ }^{6}$ And it would not help to look-ahead more than 1 token either.

[^2]: ${ }^{7}$ Lisp is famous/notorious in that its surface syntax is more or less an explicit notation for the ASTs. Not that it was originally planned like this ...

