
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF5110 — Kompilatortteknikk

Day of examination: 7. June 2017

Examination hours: 09.00 – 13:00

This problem set consists of 22 pages.

Appendices: 3 pages

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

• You should read the whole problem set before you start, getting an
overview can help to make wise use of the time.

• Besides writing in a readable manner, draw requested figures in a clear
way.

• Give concise and clear explanations!

• You may answer Problem 4, 5, and part of Problem 6b by filling in the
pages in the appendix and hand them in together with the rest of the
answers (in the “white version”).

Good luck!

Exam questions + hints for a
solution

(Continued on page 2.)

Examination in INF5110, 7. June 2017 Page 2

Problem 1 Compiler front-end phases (weight 8%)

The front-end of a compiler contains typically the following phases: the
lexical phase (= scanner), the syntactic phase (= parser), and the semantic
analysis phase. The phases check and process elements of the language
being compiled in particular ways. For each of the following “language
rules”, specify which of the three mentioned phases is best suited to check
compliance. If a check can (reasonably) be done in more than one phase,
shortly give arguments for trade-offs involved.

(i) A function has to be called with the correct number of arguments.

(ii) Underscore characters “_” are allowed in the middle of identifiers, but
not at the beginning or the end (i.e. “my_id” is legal but “_id” is not).

(iii) Every variable must be declared before it is used.

(iv) Assignment statements must end with a semicolon “;”.

Solution:

(i) Semantics. One has to compare the declaration and the call of the
function. That cannot be done by the parser.

(ii) Scanner. There is no reason to postpone that. It is a very “standard”
thing for a scanner to do (as one can see by the fact that it’s possible
to write regular expressions capturing this condition). Identifiers (with
restrictions such as the one mentioned) are typical tokens (which are
the output of a scanner and the input of the parser).

(iii) Semantics, probably. At least that’s nowadays a probable arrange-
ment: the parser gives back the AST, and the semantic phase can
check it traversing the AST one time (maybe making use of a symbol
table, where a declaration adds info about a variable into the table, and
use of the variable tries to look it up, raising an appropriate error if
the look-up fails. In terms of AGs, being defined most probably would
be an inherited attribute (not part of the question, though).

It is possible do make the check by the parser as the parser will parse the
code from “beginning-to-end”. So the parser can maintain information
(like said symbol table) and do the “declare-before-use” check.

There’s no particular advantage doing that though (perhaps one may
save one traversal, in that it’s done while parsing, perhaps in a very
simple language, that’s all what is needed).

(iv) Parser. It’s not possible by the scanner, being a statement —variable
on the left, some compound expression or some other compound

(Continued on page 3.)

Examination in INF5110, 7. June 2017 Page 3

syntactic element on the right— is a notion covered and defined by
the parser. The scanner does not know if a semicolon is used in the
context of a assignment statement.1

Remarks how to correct/how correction was done: 4 subitems for
the 4 questions, 2 points each. Without explanation, but correct, full points.
So it’s mostly hit-or-miss for each of the 4 questions. In case there is 2
possible phases (mostly for the variable declaration question), if one phase
ok, the other not (or justification wrong), only 1 point for that one. Note: if
2 phases were given, the question required an explanation.

It was intended as warm-up, and overall, the answers were given correctly,
or almost fully correct in a high degree.

1It may be theoretically conceivable to have simplistic language (like straight-line code
consisting only of a list of assignments), where the scanner can do that. That’s an unlikely
answer.

(Continued on page 4.)

Examination in INF5110, 7. June 2017 Page 4

Problem 2 Regular expressions (weight 12%)

Remote file identifers look, in the most general, as follows:

user@hostname:filename

More precisely: The parts of the identifiers are made up of words, which are
sequences of one or more letters and digits. The user part contains a single
word. A hostname consists of one or more words separated by periods (as in
www.uio.no). A filename consists of one or more words separated by slash
characters (“/”) with an optional leading and/or trailing slash. The “user@”
part is optional and may be omitted. The entire “user@hostname:” may
also be omitted, including the trailing colon “:”. The “user@” part may not
appear unless the “hostname:” part is also present.

Now: specify the form of remote file identifiers using regular expressions.
Feel free to make use of the more “user-friendly” versions of the regular
expressions.

Solution:

word = [a − zA −Z0 − 9]+

((word @)?word(.word)∗ ∶)?(/)?word(/word)∗(/)?

Remarks how to correct/how correction was done: One can split it
into user, host, and filename and the global optionalities, 3 point max each.
Possible expected errors could be that the word is taken to start with a letter
(but the text of the exam question does not require that).

We expect that things like word or letter are spelled out (not just appealing
to general understanding of what letters are or def’s from the lecture).

(Continued on page 5.)

Examination in INF5110, 7. June 2017 Page 5

Problem 3 Top-down parsing (weight 24%)

Consider the following context-free grammar:

S → ABA
A → Bc ∣ dA ∣ ε
B → eA

(1)

3a First- and follow set (weight 10%)

Give the first- and follow-set for the non-terminals of the grammar.

3b LL(1)-parsing (weight 14%)

Give the LL(1) parsing table for the grammar. Is the grammar LL(1)?

Solution:

(i) The solution is given in Table 1.

first follow
S d,e $
A d,e, ε $,c,d,e
B e $,c,d,e

Table 1: First and follow sets

Computing the first- and follow-sets is a completely standard task.
Nullable information (ε) for the first-set and the end-of-parse marker
($) for the follow-set must be present for a complete answer. The only
case which is “tricky” (which might be overlooked if doing it carelessly)
is perhaps the c (and perhaps also the d) in the follow-set of A. The
follow set of B is easier, but one has to take into account that A is
nullable (as seen in A’s first-set).

(ii) The solution is given in Table 2. It’s obviously not LL(1) due to double
entries in the slots.

The calculation of the LL(1) table is described in [1], also on the slides
(the “table recipe” approx. on slide 189 in the corresponding section).
The tables in the book and the slides would copy in the rules literally
into the slots of the table. I assume the rules are numbered (from 1
to 5 in the order given), and I use just those numbers (accepable as
solution as well if the numbering is clear).

(Continued on page 6.)

Examination in INF5110, 7. June 2017 Page 6

c d e $
S 1 1
A 4 3,4 2,4 4
B 5

Table 2: LL(1) parsing table

For a better overview, here’s a numbering of the productions plus the
calculation of relevant information per rule (first-set of the right-hand
side, whether the right-hand side is nullable2 and the follow-set of the
non-terminal on the left-hand side).

first of RHS RHS nullable? Follow LHS
--

1: S -> ABA e,d - [no need]
2: A -> Bc e - [no need]
3: A -> dA d - [no need]
4: A -> eps esp + $,c,d,e
5: B -> eA e -

--

With this information, the required Table 2 is easy to be filled out. The
blue entries correspond to “condition one” for the table, adding a rule
based on the first-set. The red entries correspond to “condition two”,
adding entries for the left hand side for a nullable rhs.

Remarks how to correct/how correction was done:

(i) (i) For a): The follow set is (as always) harder to calculate than the
first set (especially due to ε). I weigh 4 vs. 6 points.

(ii) If the previous task resulted in a wrong follow set, but filled the
table here “relatively correctly” based on that, I will give (almost)
all points in this sub-problem. I will not give 100% full points, as
the second task does not 100% depend on the first (insofar that
first-sets have to be calculated here again, namely for the right-
hand sides). Note that a column for $ is required for a complete
solution.

(ii) For the table, also the form of the table should be LL(1) (not SLR(1)
or something else).

2Technically, this collumn can be seen as implied by the first-set, namely by our
conventions, ε in the first set represents nullability.

(Continued on page 7.)

Examination in INF5110, 7. June 2017 Page 7

The averaged level of answers was average, not too high variants (but the
question was pretty standard, especially the first- and follow sets. Mayb
drawing the parsing table was less often (mostly we did LR-tables in the
exercises/earlier exams).

(Continued on page 8.)

Examination in INF5110, 7. June 2017 Page 8

Problem 4 Bottom-up parsing (weight 20%)

start

0

1S

2

3

B

4A

5 6

7B

B

z

x

A

y

y

A

z

x

B

Figure 1: LR(0)-DFA (items missing inside states)

4a LR(0)-DFA (weight 14%)

Assume a context-free grammar with non-terminals S (the start symbol), A,
and B, and terminals x, y, and z. Consider the LR(0)-DFA in Figure 1.
Shown are all states and transitions, with the start state 0. Furthermore
indicated are states, which contain a complete item, i.e., an item with the
“.”-marker at the very end: For states containing such a complete item, the
corresponding non-terminal on the left-hand side of the complete item is
indicated, as well. For instance, the state numbered 1 is assumed to contain
a complete item with S as left-hand side of the production, i.e., an item of
the form

S → <right-hand-side> .

Correspondingly for states 2,4, and 7.

Now, fill in the missing information, i.e., the items that form the states 0
– 7, so that the filled-out DFA is the result of the standard LR(0)-DFA
construction of the grammar (by filling out the items correctly, you implictly
reconstruct the grammar, as well).

The automaton is reproduced in the attachment, which you can use for your
solution. It’s advisable to make a sketch first on a separate sheet, to copy it
in (readably) afterwards.

4b Classification (weight 6%)

For the grammar from problem 4a: is it LR(0), LR(1), SLR(1), LALR(1)?

(Continued on page 9.)

Examination in INF5110, 7. June 2017 Page 9

Solution:

LR(0)-DFA’s as such are standard. In principle the task should actually be
easy. The task, however, is formulated with a twist, in that one does not
have to construct the DFA from the grammar, but “reconstruct” the grammar
from the automaton, basically.

Parts of it should be really straightforward (the simple productions), but one
also needs to remember how to do the closure for the states of a LR(0)-DFA.

In state 6, one have to have the closure correct. Assuming that one has
figured out that an item B → Ay.B is “contained” in state 6, then adding
the closure is conceptually done in two steps. First the closure for B, and
then the one for A. The outgoing edges from 6 also indicate that there are
(at least) 4 items to be expected in this state.

S → .B

B → .z

A→ .xy

B → .AyB

start

0

S → B.

1S

B → z.

2

A→ x.y

3

B

A→ xy.

4A

B → A.yB

5 B → Ay.B

B → .z

B → .AyB

A→ .xy

6

B → AyB.

7B

B

z

x

A

y

y

A

z

x

B

Figure 2: Solution LR(0)-DFA

Remarks how to correct/how correction was done: This one was
answered correctly to a very high degree. When making the exam I was
afraid that it was too “hard” as it perhaps would look unclear what has to be
done (due to novelty of posing the problem). That was unfounded. It turned
out that the task was easy enough (and if so, got too many points perhaps).

If someone does not forgot the closure right (for state 6), I downgraded
already 50% as that is one half of the general setting of how those LR(0)-
automata work. Making an error in the closure was graded less harsh.

The task was in general also very easy to correct (with the appendix
automaton to fill out).

(Continued on page 10.)

Examination in INF5110, 7. June 2017 Page 10

Problem 5 Attribute grammars (weight 16%)

Consider the following grammar.

program → prog stmt-seq
stmt-seq → stmt stmt-seq
stmt-seq → stmt

stmt → do var = const upto const begin stmt-seq end
stmt → assign

It describes a (very simple) language, which allows to iterate through
sequences of statements, ultimately assignments. The terminals are given
in boldface, the non-terminals in italics. A do-loop is specified by the range
of the loop variable, given by integer constants, representing the loop’s lower
and upper bound. No production for assignments is given (as irrelevant for
the task). Thus, assignments, represented by assign, are treated here as
terminals.

A sample program is given in Listing 1 (i is the token value for var, similarly
for 1 and 42).

Listing 1: Sample program
1 prog
2 do i = 1 upto 42
3 begin
4 assign
5 assign
6 end
7 assign

Write an attribute grammar that determines for each assignment

how many times the assigmment will be executed

when running the program. Assume that the terminals representing
constants have an attribute val denoting their constant integer value. The
result should be found in an attribute for the assign-symbol, say iterated

or i for short. You may make use of that attribute for other symbols of the
grammar, as well, as needed for your solution.

Assume that for each loop the lower bound const0 is smaller or equal the
upper bound const1 (no need to check that in your solution). Make sure
you calculate the required attribute value exactly (not more or less correct,
plus/minus one).

(Continued on page 11.)

Examination in INF5110, 7. June 2017 Page 11

productions/grammar rules semantic rules

0 program → prog stmt-seq

1 stmt-seq0 → stmt stmt-seq1

2 stmt-seq → stmt

3 stmt → do var =

const0 upto const1

begin stmt-seq end

4 stmt → assign

Give your answer by filling out the given table. You may use the
corresponding form in the appendix (by tearing it out and deliver it with
the “white sheets”).

Solution: Here’s a possible solution. Crucial parts are the treatment
of the loop, obviously. Also that one starts at the top-level (i.e., for prog)
with 1. In general, the general works with inherited attributes. It’s not
really necessary that both prog and the top-level statement sequence carry
i = 1, there is some variations possible. Important is, that one stops at the
root of the tree “on top” and pushes the information down to the leaves, i.e.,
to the attribute i for the assign. Similarly the “. . . ” in the treatment of
the production for the loop. Whether or not one adds the attribute i to,
for instance var, is irrelevant for a correct solution. Note that the tasks
requires that the assign carries the attribute i, for the other elements, it’s
not required, that all of them carry it, so prog may or may not have it.

(Continued on page 12.)

Examination in INF5110, 7. June 2017 Page 12

productions/grammar rules semantic rules

0 program → prog stmt-seq program .i = 1

prog.i = 1

stmt-seq .i = 1

1 stmt-seq0 → stmt stmt-seq1 stmt .i = stmt-seq0 .i

stmt-seq1 .i = stmt-seq0 .i

2 stmt-seq → stmt stmt .i = stmt-seq .i

3 stmt → do var =

const0 upto const1

begin stmt-seq end

stmt-seq .i = stmt .i × (const1.val − const0.val + 1)

. . .

4 stmt → assign assign.i → stmt .i

Remarks how to correct/how correction was done: This question
had the biggest variance in the answers so far (quite a few with full points,
quite some 0 points, either by not filling it out, or else having a more or
less meaningless solution (not just wrong)). Few in between. For that
reason the task was easy to correct (with exception of 1 “strange but not
100% wrong” answer). If the boundaries were wrong (something which was
explicitly required): 3 points off.

The question was not answered particularly well (seen the average).

(Continued on page 13.)

Examination in INF5110, 7. June 2017 Page 13

Problem 6 Code generation (weight 20%)

6a Code generation and optmimization (weight 8%)

Consider the following transformation on three-address code, illustrated on
the following example.

Listing 2: Before
1 i f t == 0
2 then
3 x = y + z ;
4 <r e s t of then−branch>
5 else
6 x = y + z ;
7 <r e s t of else −branch>
8 endif

Listing 3: After
1 x = y + z ;
2 i f t == 0
3 then
4 <r e s t of then−branch>
5 else
6 <r e s t of else −branch>
7 endif

The idea is to move “common instructions” (like the assignment x = y + z in
the example) before the conditional, so long it does not change the semantics
of the code. The three address code in this sub-problem supports two-armed
conditionals (if-then-else), not the if-goto constract as in the lecture and in
sub-task 6b.

Assume code generation as covered in the “notat” which covers parts of
Chapter 9 of the old “dragon book” (Compilers: Principles, Techniques,
and Tools, A. V. Aho, R. Sethi, and J. D. Ullman, 1986). Assume further
that the code generator has access to local liveness information, i.e., liveness
information per basic block, but no global liveness information is available.

Under these assumptions, what are potential effects of the code transforma-
tion on the qualitity of the generated code? Discuss this question referring
to the cost model of the notat/lecture.

Note: neither exact sequences of possibly generated two-address code nor
detailed calculations of costs are expected/needed as answer, just a short
discussion of the influence of the transformation on factors of the cost model.

6b Global analysis (weight 12%)

Consider the program from Listing 4 in three address code. We do not
distinguish here between temporaries and standard variables.

(i) Indicate the basic blocks in giving start and end line for each block
(numbering the blocks like B0, B1, etc.) You can also use the
code repeated in the appendix, drawing clearly visible horizontal lines
indicating the boundaries of the blocks and give the Bi-numbers of the
blocks.

(ii) Draw the control flow graph of the program using B0, B1 from the

(Continued on page 14.)

Examination in INF5110, 7. June 2017 Page 14

previous question to identify the nodes of the graph.

(iii) Does the control-flow graph contain a loop? Use the notion of loops
for control-flow graphs from the lecture.

(iv) Give the inLive and outLive information for each block (best in the
form of a table).

Listing 4: Three-address code
1 x = input
2 y = input
3 label L1
4 b = x + y
5 z = b∗z
6 label L2
7 x = a + 1
8 i f_false x goto L3
9 x = y + x

10 if_true z goto L5
11 goto L1
12 label L3
13 z = b ∗ 2
14 goto L2
15 label L5
16 output x

(Continued on page 15.)

Examination in INF5110, 7. June 2017 Page 15

Solution:

(i) The task gives only 8 points and no huge calculations or deep or
long essays is expected. There is also no unique best answer, the
stituation is at least ambiguous. Factors that influence the effect of
that transformation are the following:

• memory-register traffic costs.

• since we have block-local information only, a variable (not a
temporary) at the end of a block is considered live.

• temporaries are stored back at the end of a block (they are treated
as if they were dead). The latter is the way temporaries are
supposed to be treated by the code generation.

All these are factors for an answer. One good answer could mention: if
one moves an assignment in front of such a two-armed conditional (in
the way sketched by the illustrative example): variables that occur in
there (like y) are then definitely considered dead (as they occur at the
end of the block before the branching. Therefore, if they happen to
be in a register, the register cannot be freed. By “freeing” I mean the
last step in the code generation, see the slides around slide 55 about
“recycling registers” using liveness information.3 If in term instead is in
the branches (before the optimization), it can be that in the rest of that
basic block, y (for instance) is not used any more, i.e., it’s clear that
it’s not live. Therefore, the code generator knows now locally that y is
dead and is able to register. With an additinal register free, that can
improve the performance (avoiding memory-register traffic for other
variables etc).

The above explanation used the transformation putting x = y + x right
in front of the block. It’s only an example, if one uses differnent such
transformations (pulling a line or even more) in front, that’s ok too.

Instead of concentrating on y (or z), one can also take x for an
argument. See the getreg-algo, which determines the location where x
is supposed to stay. For instance see slide 59 and around there. x will
be put into a register, if there is one free. If not, liveness information
for x will be taken into account, resp. next use in the block (in case
3).4 In case there is a next use, x can end up in a register (and if one is
lucky, the content of that register does not need to be written back!).

3That the register for, say y, can be freed would assume additionally, that the register
contains an up-to date value of y (and would contain not the value for other non-dead
variables on top). If the value in y’s “home location” is stale and if the register is freed,
then of course the register would have to be written back, before freeing it. We don’t
expect an argument on this level of detail, especially since the details of which register to
take when purging a register were not fully given in the book.

4If x is dead, then there’s no need to actually do the assignment. However, the code
generation does not take that into account. It will not omit the assignment to a dead x.
A more clever algo might do that though.

(Continued on page 16.)

Examination in INF5110, 7. June 2017 Page 16

If one moves the assignment in front, then the condition does no longer
apply, and x needs to be written back to main memory.

One particularly neat (and detailed/insightful) argument could take
into account x and y, where y is loaded to a register and y is dead
(see point 1 of getreg). There, one can simply reuse the register for
y. If one becomes “considered life”, point 1 does no longer apply, so in
the worst case 4 applies, so then x has to be stored back immediately.
Note that in case 4, the storing back is done unconditionally. Keeping
it in a register may save memory-traffic: if a register value and a home
location diagree, “reconciling” them is avoided by the code generation
for dead variables, when dead means: the next thing that happens is
overwriting them.

A non-argument is: the code gets shorter, therefore the cost model says
better. It’s true that the code gets shorter. But the question is not the
space is main-memory, but how many “lines of code” will have to be
loaded to the processor at run-time. Therefore the code for z = y + z
when given in both branches is nonetheless only executed one depending
on which branch is taken.5

(ii) This one should be rather standard. Finding the basic blocks should
be faster than the other, the second one is more cumbersome (but also
standard). I weight 6 (blocks, CFG, loop) vs. 8 (inlive and outlive).

In the suggested solution from Listing 5, I added a block (without
name) which contains only one goto-statement. One can make the
argument that this is a block. One may also see it as node that is empty
(it contains no real code, just a jump which should be represented
ultimately as edge in the cfg.) Wheter or not a node is drawn in the
CFG representing that block does not matter for the correctness of a
solution. In my solution, I did not bother to draw it. Being an empty
node, its inlive and outlive would coincide.

5Side remark: the code generator might of course generate different 2AC from x = y+z
in each of the two branches.

(Continued on page 17.)

Examination in INF5110, 7. June 2017 Page 17

Listing 5: Three-address code, BBs indicated
1 −−−−−−−−− B0 −−−−−−−−−−

2 x = input
3 y = input
4 −−−−−−−−− B1 −−−−−−−−−−−

5 label L1
6 b = x + y
7 z = b∗z
8 −−−−−−−−− B2 −−−−−−−−−−−

9 label L2
10 x = a + 1
11 i f_false x goto L3
12 −−−−−−− B3 −−−−−−−−−

13 x = y + x
14 if_true z goto L5
15 −−−−−−−−B4 −−−−−−−−−−−

16 goto L1
17 −−−−−−−−− B5−−−−−−−−−
18 label L3
19 z = b ∗ 2
20 goto L2
21 −−−−−−−−− B6−−−−−−−−−−−−−
22 label L5
23 output x
24 −−−−−−−−−−−−−−−−−−−−−−−−

input x
input y

b = x + y
z = b * z

x : = a +1
(x)

z = b *2
x = x +y
(z)

—

output x

l0

l1

l2

l3

l4

l5

(iii) A good answer should take into account the fact that there is only local

(Continued on page 18.)

Examination in INF5110, 7. June 2017 Page 18

Lin Lout

B0 {a, z} {a, x, y, z}
B1 {a, x, y, z} {a, b, y, z}
B2 {a, b, y, z} {a, b, x, y, z}
B3 {a, x, y, z} {a, x, y, z}
B4 {a, x, y, z} {a, x, y, z}
B5 {a, b, y} {a, b, y, z}
B6 {x} {}

Remarks how to correct/how correction was done:

• An answer that shows one has understood the code generation and the
cost-model and gives a reasonable explanation (perhaps an example)
would get full points. I expect that many would take the example with
x = y + z as basis for an argument (which is fine, but not required).

Often, the answer was skipped. In general, it was not answered very
well answered.

• for the global analysis, the blocks, the graph, and the loop question
were answered ok. Each gave 2 points. The liveness information: the
answers were mixed, it was below average.

(Continued on page 19.)

Examination in INF5110, 7. June 2017 Page 19

Appendix: DFA for Problem 4

Candidate nr.:

Date: .

start

0

1S

2

3

B

4A

5 6

7B

B

z

x

A

y

y

A

z

x

B

(Continued on page 20.)

Examination in INF5110, 7. June 2017 Page 20

Appendix: Form for Problem 5

Candidate nr.:

Date: .

productions/gram
m
ar

rules
sem

antic
rules

0
program

→
p
ro

g
stm

t-seq

1
stm

t-seq
0
→

stm
t

stm
t-seq

1

2
stm

t-seq
→

stm
t

3
stm

t
→

d
o
v
a
r
=

co
n
st

0
u
p
to

co
n
st

1

b
e
g
in

stm
t-seq

e
n
d

4
stm

t
→

a
ssig

n

(Continued on page 21.)

Examination in INF5110, 7. June 2017 Page 21

Appendix: The code for Problem 6b

Candidate nr.:

Date: .

1 x = input
2 y = input
3 label L1
4 b = x + y
5 z = b∗z
6 label L2
7 x = a + 1
8 i f_false x goto L3
9 x = y + x

10 if_true z goto L5
11 goto L1
12 label L3
13 z = b ∗ 2
14 goto L2
15 label L5
16 output x

(Continued on page 22.)

Examination in INF5110, 7. June 2017 Page 22

References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing,
1997.

