
Universitetet i Oslo
Institutt for Informatikk

PMA, PSE

Axelsen, Krogdahl, Møller-Pedersen, Steffen

INF 5110: Compiler construction
Spring 2017 10. 1. 2017Series 1

Topic: Scanning: automata and regular expressions

Issued: 10. 1. 2017

The exercises on this sheet refer to the lecture and material about scanning (or lexing). In
general, when talking about letters, we assume for instance an English lettered alphabet, i.e.,
when speaking about “letters”, we mean those letter characters as covered by the simple ASCII
character set. Remember also: the ASCII character set is, technically, an ordered alphabet.
Here, in this (and similar) exercises, we mostly restrict ourselves to alphabets of 2 or 3 different
letters, only (like a, b, c).

Similarly, when talking about digits, we naturally refer to the numeric symbols of the base-10
numerical notation.

Exercise 1 (Regular expressions (Ex. 2.1 from [1])) Use regular expressions to capture
the languages described informally as follows:

1. All strings of lowercase letters that begin and end with an a.

2. All strings of lowercase letters that begin or end with an a.

3. All strings of digits that do not contain leading zeroes.

4. All strings of digits that represents even numbers.

5. All strings of digits such that all the 2s precede all the 9s.

6. All strings of a’s and b’s (i.e., Σ = {a, b}) that don’t contain 3 consecutive b’s.

7. All strings of a’s and b’s that contain an odd number of a’s or an odd number of b’s.

8. All strings of a’s and b’s that contain an even number of a’s and an even number of b’s.

9. All strings of a’s and b’s that contain exactly as many a’s than b’s.

Exercise 2 (From regular expessions to automata (Exercise 2.12 from [1]) Assume the
following regular expression

(a | b)∗a(a | b | ε) (1)

Formulate a sentence (in English/Norwegian etc) which captures the meaning of the regular
expression. Now, turn the regular expression into the (deterministic, minimal) finite-state au-
tomaton which recognises that languages. To do so, follow the 3 standard steps:

1. use Thompson’s construction to obtain an non-deterministic finite-state automaton for the
regular expression (1).

www.uio.no
http://www.ifi.uio.no

Series 1 10. 1. 2017

2. Use the subset construction to turn that into an equivalent DFA (“determinization”).

3. Use the partition refinement algo to obtain the/a minimal equivalent DFA (“minimiza-
tion”)

Exercise 3 (Reflection) The lecture and exercises teaches the standard way to turn regular
expressions into deterministic and minimal finite-state automata, which goes through 3 separate
steps. A lexer (as first stage of most compilers) is typically interested only in the end-result, a
minimal, deterministic FSA. Why do we bother (and why do many lexer/scanner implementa-
tions bother) to go through these 3 different stages, why not go directly from regular expressions
to the end result?

Exercise 4 (Determinization (Exercise 2.14 from [1])) Determinize the automaton visu-
alized in the following graphics. Use for that the powerset construction.

start
a

ε

a

ε

ε

b

Exercise 5 (Minimization) (Exercise 2.16(a) from [1])] Minimize the automaton vizualized
in the following figure.

start

a

c

b

c

References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing, 1997.

2

