
Universitetet i Oslo
Institutt for Informatikk

PMA, PSE

Axelsen, Krogdahl, Møller-Pedersen, Steffen

INF 5110: Compiler construction
Spring 2017 8. 2. 2017Series 3

Topic: Chapter 4: grammars

Issued: 8. 2. 2017

Exercise 1 (LL(1)) Check if the following grammar is LL(1)?

S → (S)S | ε

Exercise 2 (Ambiguity) Given the following grammar.

exp → exp+ exp | (exp) | if exp then exp else exp | var
var → . . .

1. Come up with an unambiguous grammar for the language of the given grammar, where

(a) addition is left-associative, and where

(b) if x then y else z + y is meant to mean if x then y else (z+ y) .

2. Why don’t we have a dangling else problem here?

Exercise 3 (Ambiguity) Given the following grammar.

exp → exp op exp | (exp) | number
op → + | − | ∗ | / | ↑ | < | =

Do the following things.1

1. The grammar is pretty ambiguous. Make an unambiguous grammar capturing the same
language, under the following side conditions

precedence assoc

↑ highest (3) right
∗, / level 2 left
+, − level 1 left
<, = 0 non-associative

2. Give recursive-descent procedures for each non-terminal to check the grammar (using also
loops, if advisable). Divide the terminals representing op in an appropriate manner

1There’s a certain amount of repetition here, we won’t go through everything during class-time, but a proposal
for solution will be available.

www.uio.no
http://www.ifi.uio.no

Series 3 8. 2. 2017

3. Based on the previous point: add tree-building code into the procedures in such a way
that sequences of exponentiations ↑ are treated appropriately in the sense that the tree
reflects the intended right-associativity.

4. Take the unambiguous grammar done in the first point, remove left-recursion, and do
left-factorization (without destroying unambiguity).

5. Check whether the resulting grammar is LL(1).

References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing, 1997.

2

