
Universitetet i Oslo
Institutt for Informatikk

PMA, PSE

Axelsen, Krogdahl, Møller-Pedersen, Steffen

INF 5110: Compiler construction
Spring 2017 29. 3. 2017Series 5

Topic: Chapter 6: Attribute grammars

Issued: 29. 3. 2017

Exercise 1 (Post-fix printout) 1 Rewrite the attribute grammar of Table 6.2 from [1] to
compute a postfix string attribute instead of a value val , containing the postfix form for the
simple integer expression.2 For example, the postfix attribute for

(34− 3) ∗ 42 is ”34 3 − 42 ∗ ”

You may assume a string concatenation operator ‖ and the existence of a number.strval
attribute.3

The original attribute grammar is repeated here:

productions/grammar rules semantic rules
1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2− term exp1 .val = exp2 .val− term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val

Exercise 2 (Simple typing via AGs) 4 Consider the following grammar for simple Pascal-
style declarations.

decl → var -list : type
var -list → var -list , id | id

type → integer | real

Write an attribute grammar for the type of a variable.
1The task corresponds to [1, Exercise 6.5.].
2As a preview for one of the later chapters: in the context of intermediate code generation, we will cover a

specific form of intermediate code, so called p-code (or one address code, etc.) Generating intermediate p-code
from ASTs resembles the task at hand, in that code generation there involves post-fix emission of lines of code,
at least for straight-line code involving expressions.

3Postfix notation is otherwise also known as reverse polish notation, which is actually predates modern elec-
tronic computers (at least the non-reversed Polish notation), but has been kind of popular in certain pocket
calculators (especially Hewlett-Packard). Also in the context of depth-first tree traversal, there is pre-fix/post-
fix/in-order treatment of nodes of the traversal, which is related to the task here, as well.

4The task corresponds to [1, Exercise 6.7.].

www.uio.no
http://www.ifi.uio.no

Series 5 29. 3. 2017

Exercise 3 (Dependency graphs and evaluation) 5 Consider the following attribute gram-
mar.

productions/grammar rules semantic rules
S → ABC B.u = S.u

A.u = B.v + C.v
S.v = A.v

A → a A.v = 2 ∗A.u
B → b B.v = B.u
C → c C.v = 1

1. Draw the parse tree for the string abc (the only word in the language) and draw the
dependency graph for the associated attributes. Describe a correct order for the evaluation
of the attributes.

2. Suppose that the value 3 is assigned to S.u before attribute evaluation begins. What is
the value of S.v when the evaluation has finished.

3. Suppose the attribute equations are modified as follows:

production/grammar rule semantic rules
S → ABC B.u = S.u

C.u = A.v
A.u = B.v + C.v
S.v = A.v

A → a A.v = 2 ∗A.u
B → b B.v = B.u
C → c C.v = C.u− 2

What value does S.v have after attribute evaluation, if S.u = 3 before the evaluation
begins?

Exercise 4 (AG for classes) Consider the following grammar for class declarations:

class → class name superclass { decls }
decls → decls ; decl | decl
decl → variable-decl
decl → method -decl

method -decl → type name (params) body
type → int | bool | void

superclass → name

As usual, terminals are indicated in boldface, where for name, we assume that it represents
names the scanner provides; name is assumed to have an atrribute name.

Methods with the same name as the class they belong to are constructor methods. For those,
the following informal typing “rule” is given:

Constructors need to be specified with the type void.

Design semantical rules for this requirement for the following fragment of an AG.

5The task corresponds to [1, Exercise 6.13.].

2

Series 5 29. 3. 2017

productions/grammar rules semantic rules
class → class name superclass { decls }
decls → decls ; decl
decls → decl
decl → variable-decl not to be filled out
decl → method -decl

method -decl → type name (params) body
type → int
type → bool
type → void

(superclass → name) filled by lexer

References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing, 1997.

3

