
Universitetet i Oslo
Institutt for Informatikk

PMA, PSE

Axelsen, Krogdahl, Møller-Pedersen, Steffen

INF 5110: Compiler construction
Spring 2017 20. 4. 2017Series 6

Topic: Symbol tables and type checking (Chapter 6)

Issued: 20. 4. 2017

Exercise 1 (AG: collateral vs. sequential declarations) 1 Rewrite the grammar from Ta-
ble 6.9 from [1] to use collateral declarations instead of sequential ones.

The underlying grammar is given in Table 1.

S → exp
exp → (exp) | exp+ exp | id | num | let dec - list in exp

dec - list → dec - list , decl | decl
decl → id= exp

Table 1: Expression grammar with declarations

Exercise 2 (AG for expression evaluation) 2 Write an attribute grammar that computes
the value of each expression for the expression grammar of [1, Section 6.3.5]. The grammar is
repeated in Table 1 (it’s the same as in the previous exercise).

Exercise 3 (AG: type conversion resp. evaluation) 3 Consider the following (ambiguous)
expression grammar.

exp → exp+ exp | exp− exp | exp ∗ exp | exp / exp
| (exp) | num | num .num

Suppose that the rules of C are followed in computing the value of such expressions:

If two subexpressions are of mixed type, then the integer subexpression is converted
to floating point, and the floating-point operator is applied.

Write an attribute grammar that will convert such expressions in expressions that are legal
in Modula-2: conversions from integer to floating point are expressed by applying the FLOAT

function, and the division operator / is considered to be div if both operands are integers.
That was the task as in [1]. In the lecture: let’s use an AG to evaluate such expressions

(instead of converting them to Modula-2’s conventions).

1The task corresponds to [1, Exercise 6.17.]
2The task corresponds to [1, Exercise 6.18.]
3The task corresponds to [1, Exercise 6.20.]

www.uio.no
http://www.ifi.uio.no

Series 6 20. 4. 2017

Exercise 4 (Type equality and type checking) 4

1. Devise a suitable tree structure for the new function type structures, and write a typeEqual
function for two function types.

2. Write semantic rules for the type checking of function declarations and function calls,
represented by a rule

exp → id (exp) ,

similar to the rules of [1, Table 6.10, page 330].

Exercise 5 (Symbol table) 5 Consider the following ambiguity in C expressions. Consider
the expression (A)-x. If x is an integer variable and A is defined in a typedef as equivalent to
double, then this expression casts the value of -x to double. On the other hand, if A is an
integer variable, then this computes the integer difference of the two variables.

1. Describe how the parser might use the symbol table to disambiguate the two interpreta-
tions.

2. Describe how the scanner might use the symbol table disambiguate the two interpretations.

References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing, 1997.

4The task corresponds to [1, Exercise 6.21.]
5The task corresponds to [1, Exercise 6.22.]

2

