## UNIVERSITETET I OSLO Institutt for Informatikk



## PMA, PSE

Axelsen, Krogdahl, Møller-Pedersen, Steffen

## INF 5110: Compiler construction

Spring 2017 Series 7 26. 4. 2017

Topic: Run-time environments (Chapter 7)

Issued: 26. 4. 2017

Exercise 1 (Run-time environment) <sup>1</sup> Draw a possible organization for the runtime environment of the following C program, similar to that of Figure 7.4 on page 354 (for the gcd-example) from [1]:

- 1. after entry into block A in function f.
- 2. after entry into block B in function g.

```
int a[10];
   char * s = "hello";
2
3
   int f(int i, int b[])
4
   { int j=i;
6
    A: \{ int i=j ; \}
        char c = b[i];
7
        //...;
8
9
     return 0;
10
11
12
   void g(char * s)
   \{ char c = s[0]; 
14
    B:{ int a[5];
15
16
17
   }
18
19
   main ()
20
   \{ int x=1; 
21
      x = f(x,a);
22
      g(s);
23
      return 0;
24
```

Exercise 2 (Activation records)  $^2$  Draw the stack of activation reords for the following Pas-cal program, showing the control and access links, after the second call to procedure c. Describe how the variable x is accessed from within c.

<sup>&</sup>lt;sup>1</sup>The task corresponds to [1, Exercise 7.2.]

<sup>&</sup>lt;sup>2</sup>The task corresponds to [1, Exercise 7.4.]

Series 7 26. 4. 2017

```
program env;
2
   procedure a;
3
   var x: integer;
4
5
       procedure b;
6
           procedure c;
           begin
8
               x := 2;
9
               b;
10
           end;
11
       begin (* b *)
12
           c;
13
       end;
14
15
   begin (* a *)
16
17
   end;
18
19
   begin (* main *)
20
21
       a;
   \mathbf{end}.
22
```

Exercise 3 (Access chaining vs. display) <sup>3</sup> An alternative to access chaining in a language with local procedures is to keep the access links in an array *outside* the stack, *indexed* by the *nesting level*. This array is called the *display*. For example, the run-time stacks of Figure 7.12 resp. of Figure 7.13 from the book would look as Figure 1 resp. Figure 2.



Figure 1: RTE with display (1)

- 1. Describe how a display can improve *efficiency* of nonlocal references from deeply nested procedures
- 2. Redo Exercise 2 using a display.

<sup>&</sup>lt;sup>3</sup>The task corresponds to [1, Exercise 7.10.]

Series 7 26. 4. 2017



Figure 2: RTE with display (2)

Exercise 4 (Memory layout for classes)  $^4$  Draw the memory layout of objects of the following  $C^{++}$  classes, together with the virtual function tables, as described in [1, Section 7.4.2].

```
class A
   { public:
2
     int a;
3
     virtual void f();
4
     virtual void g();
5
   };
6
   class B: public A
8
   { public:
9
     int b;
10
     virtual void f();
11
     void h();
12
13
14
15
   class C: public B
16
   { public:
17
     int c;
19
     virtual void g();
20
```

**Exercise 5 (Parameter passing)** <sup>5</sup> Give the output of the following program (written in C syntax) using the 4 parameter passing methods discussed in [1, Section 7.5].

<sup>&</sup>lt;sup>4</sup>The task corresponds to [1, Exercise 7.13.]

<sup>&</sup>lt;sup>5</sup>The task corresponds to [1, Exercise 7.15.]

Series 7 26. 4. 2017

```
#include <stdio.h>
   int i = 0;
2
3
   void p(int x, int y)
   \{ x += 1; 
     i += 1;
6
     y += 1;
   main ()
10
   \{ \text{ int } a[2] = \{1,1\}; 
11
     p(a[i],a[i]);
12
     printf("%d_%d\n",a[0], a[1]);
13
     return 0;
14
15
```

Exercise 6 (Parameter passing) <sup>6</sup> Give the output of the following program (written in C syntax) using the 4 parameter passing methods discussed in [1, Section 7.5].

```
#include <stdio.h>
   int i = 0;
2
   void swap (int x, int y)
4
5
6
     x = x + y;
7
     y = x - y;
     x = x - y;
8
9
10
   main ()
   \{ \text{ int } a[3] = \{1,2,0\}; 
12
     swap(i,a[i]);
13
     printf("%d_%d_%d_%d\n", i, a[0], a[1], a[2]);
^{14}
     return 0;
15
16
```

## References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing, 1997.

<sup>&</sup>lt;sup>6</sup>The task corresponds to [1, Exercise 7.16.]