
INF5110:	Mandatory	Exercise	2

Eyvind	W.	Axelsen	
eyvinda@ifi.uio.no

@eyvindwa
http://eyvinda.at.ifi.uio.no

Slides	are	partly	based	on	material	from	previous	years,	made	by	Henning	
Berg,	Fredrik	Sørensen,	and	others.



Main	goals

• Determine	if	programs	written	in	the	language	
Compila17	are	semantically	valid
– I.e.	are	they	type-correct?	(static	semantics)
– Oblig 1:	syntactically	valid

• Generate	byte-code	for	Compila17(-ish)	
programs
–Write	a	code	generator



Last	time

• You	made
– a	Lexer
– a	Parser
– an	Abstract	Syntax	Tree

• This	time	we	expand	on	this
– Use	your	previous	delivery!
–Work	in	the	groups	you	already	have



Learning	outcomes

• Understand	how	type	checking	can	be	done	in	
practice,	implement	a	simple	variant

• Understand	what	bytecode is,	and	how	it	can	
be	generated	from	source	code

• Extend	an	existing	compiler	code	base	with	
new	functionality



Semantic	analysis/Type	checking

• A	parser	cannot	check	all	the	properties	of	the	
language	specification	
– Context-free	grammars	are	not	powerful	enough

• Thus,	we	shall	extend	our	compiler	with	a	type	
checker
– Use	the	AST	classes	you	defined	last	time
– Add	type-checking	code
– You	are	allow	to	make	any changes	you	want	to	
your	previous	delivery



Image	from	JTransformer website

Example:	Java/C#/etc:



The	Compila17	language	at	a(nother)	glance
programMyProgram begin

class Complex	begin
var Real	:	float;
var Imag :	float;

end;

proc Add(a	:	Complex,	b	:	Complex)	:	Complex	
begin
var retval :	Complex;
retval :=	new Complex;
retval.Real :=	a.Real +	b.Real;
retval.Imag :=	a.Imag +	b.Imag;

return retval;
end;

procMain()	
begin
var c1	:	Complex;
var c2	:	Complex;
var result	:	Complex;	
…
result	:=	Add	(	c1,	c2	);
…
return;

end;	end;

Real	and	Imag are	of	the	(built-in)	
float	type.

Complex	defines	a	new	(user-
defined)	type.

Check	that	the	+	operator	is	
compatible	with	its	operands’	

types,	and	that	the	assignment	is	
legal.

Check	that	the	actual	parameters	
to	Add(…)	are	of	the	correct	type,	

according	to	the	formal	
parameters,	and	that	the	

assignment	to	result	is	legal.



Type	checking	– example
class	IfStatement extends	Statement {
…
public	void	typeCheck()	{
String condType =	condition.getType();
if(condType !=	“bool”)	{
throw	new	TypeException(“condition	in	if-

statement	must	be	of	type	bool”);
}

}

Implement	
such	a	

method	in	
e.g.	the	
various	

Expression	
classes



Type	checking	– example
class Assignment extends Statement {
…
public	void	typeCheck()	{
String varType =	var.getType();
String expType =	exp.getType();
if(varType !=	expType &&	

!isAssignmentCompatible(varType,	expType))	{
throw	new	TypeException(“cannot	assign	“
+	vartype +	“	from	“ +	expType);

}
}

Check	supported	type	
conversions,	e.g.	float	to	int

Implement	
such	a	

method	in	
e.g.	the	
various	

Expression	
classes



Code	generation
• The	lecture	about	code	generation	has	not
been	held	yet
– So,	if	this	looks	a	bit	difficult	now,	don’t	worry!

• Byte	code	API	and	operations	are	described	in	the	
document	“Interpreter	and	bytecode for	INF5110”
– Available	on	the	course	page

• Add	bytecode generation	methods	to	your	AST	classes
– E.g.	AstNode.generateCode(…)
– Again,	any	changes	you	want	to	make	to	the	structure	is	
OK



Code	generation	- limitations

• The	interpreter	and	bytecode library	are	
somewhat	limited
– Cannot express full	Compila17
– No	block structures (only global	and	local variables)
– No	reference types

• You	delivery	should	support	generating	correct	
bytecode	for	the	Compila17	source	code	file	
RunMe.cmp
– Available	from	the	material	on	the	course	webpage



Code	generation	– creating	a	procedure

CodeFile codeFile =	new	CodeFile();
//	add	the	procedure	by	name	first
codeFile.addProcedure(”Main”);

//	then	define	it
CodeProcedure main	=	new	

CodeProcedure(	”Main”,	VoidType.TYPE,	
codeFile );

main.addInstruction(	new	RETURN()	);

//	then	update	it	in	the	code	file
codeFile.updateProcedure(	main	);



Code	generation	- assignment
//1:	proc add(a:	int,	b	:	int )	:	int {
//2:	var res	:	int;
//3:	res	:=	a	+	b;	//	only	bytecode for	this	line
//4:	return	res;
//5:	}

//	push	a	onto	the	stack
proc.addInstruction(new	LOADLOCAL(proc.variableNumber("a")));
//	push	b	onto	the	stack
proc.addInstruction(new	LOADLOCAL(proc.variableNumber("b")));
//	perform	addition	with	arguments	on	the	stack
proc.addInstruction(new	ADD());
//	pop	result	from	stack,	and	store	it	in	variable	res
proc.addInstruction(new	

STORELOCAL(proc.variableNumber("res")));



Code	generation	– writing	to	file

String filename	= “myfile.bin”;
byte[]	bytecode =	codeFile.getBytecode();
DataOutputStream stream	=	new

DataOutputStream(
new FileOutputStream (filename));

stream.write(bytecode);
stream.close();



Testing

• 42	supplied	tests	in	test	folder,	for	testing	the	
type	checker

• Run	tests	with	“ant	test”
• Tests	ending	with	“fail”	are	supposed	to	fail	
(i.e.,	they	contain	an	erroneous	program)
– Compiler	returns	error	code	2	for	semantic	failure

• 32	of	the	42	tests	must	pass	for	the	delivery	to	
be	successful



Provided	source	code

Three	example	programs,	
including	RunMe.cmp,	
that	you’re	going	to	
compile

Revised	version	of	
Compila.cmp (not	really	
needed	for	this	exercise)	

Revised	source	code,	see	next	slide

42	test	programs.	Use	these	to	
verify	your	type	checking	
implementation	(and	hand	in	a	
printout	of	the	results	with	your	
delivery)

See	also	the	patch.README file	at	the	root	directory	of	the	patch	code

You	are	given	a	patch	folder,	that	replaces	certain	files	in	your	existing	oblig 1	
directory	structure.	Create	a	backup	before	you	replace	your	existing	files!



Provided	source	code	(the	src folder)



DEADLINE

• May	7th,	2017	@	23:59
• Don’t	miss	the	deadline!
– Extensions	are	only	possible	if	you	have	an	agreement	
with	the	student	administration	(studadm)

– We	must	be	a	bit	strict,	because	of	deadlines	for	exam	
lists	etc

– Contact	them	if	you	are	sick,	etc.

• Even	if	you	are	not	100%	finished,	deliver	what	
you	have	before	the	deadline



Deliverables
• Working	type	checker	for	Compila17

– Run	the	supplied	tests
• Working	code	generator	for	(a	subset	of)	Compila17

– Test	with	RunMe.cmp
• Report

– Front	page	with	your	name(s)	and	UiO	user	name(s)
• Work	in	the	groups	from	oblig 1

– Discussion	of	your	solution,	choices	you’ve	made	and	
assumptions	that	you	depend	on

– Printout	of	test	run
– Printout	of	bytecode	from	RunMe.cmp (use	ant list-
runme)

• The	code	you	supply	must	build	with	“ant”
– Test	your	delivery	on	a	UiO	computer

• Deliver	through	Devilry
– Feel	free	to	send	questions	at	any	time	to	eyvinda@ifi.uio.no
– Read	the	exercise	description	thoroughly!


