
INF5110:	Mandatory	Exercise	1

Eyvind	W.	Axelsen	
eyvinda@ifi.uio.no

@eyvindwa
http://eyvinda.at.ifi.uio.no

Slides	are	partly	based	on	material	from	previous	years,	made	by	Henning	
Berg,	Fredrik	Sørensen,	and	others.

Main	goal

Determine	if	programs	written	in	the	language	
Compila17	are	syntactically	valid.

– Write	a	scanner
– And	a	parser
– That	is,	the	first	parts	of	your	own	compiler!
– Compila17	is	described	in	detail	in	a	separate	
document	available	on	the	course	page.

Learning	outcomes
• Using	tools	for	scanner	and	parser	generation

– JFlex and	CUP

• Variants	of	a	grammar	for	the	same	language
– Transforming	from	one	form	(extended	BNF)	to	another	
(grammars	compatible	with	tools	we	will	be	using).

– Controlling	precedence	and	associativity

• Defining	ASTs	as	node	classes	in	Java
– Using	the	parsing	tools	to	build	such	trees	
– Pretty-printing	ASTs.

The	Compila17	language	at	a	glance
program	MyProgram
begin	

class Complex	begin	
var Real	:	float;
var Imag :	float;

end ;

proc Add	(a	:	Complex,	b	:	Complex)	:	Complex	
begin	
var retval :	Complex;
retval :=	new Complex;
retval.Real :=	a.Real +	b.Real;
retval.Imag :=	a.Imag +	b.Imag;

return retval;
end ;

procMain()	
begin	
var c1	:	Complex;
var c2	:	Complex;
var result	:	Complex;	
…
result	:=	Add	(c1,	c2);
…
return;
end ;

end ;

The	language	supports	very	
simple	“classes”,	but	no	real	OO	
(inheritance,	polymorphism,	etc)

Programs	are	written	enclosed	in	
program	NAME	begin	…	end

Procedures	are	declared	within	
programs	(but	not	within	classes).	
They	perform	calculations	and	

create	new	objects.

Execution	starts	in	the	Main	
method.

The	Compila17	language	at	a	glance	(2)

proc	Swap(a	:	ref(int),	b	:	ref(int))
begin	
var tmp :	int;
tmp :=	deref(a);
deref(a)	:=	deref(b);
deref(b)	:=	tmp;

end;

The	“deref”	keyword	follows	a	
reference

Variables	and	parameters	can	be	
reference	types	(“pointers”)

deref and	can	be	used	both	as	an	
L-value	(assigning	to	the	location	
pointed	to	by	the	reference)	and	
as	an	R-value	(getting	the	value	at	
the	location	that	the	reference	

points	to

PROGRAM -> "program" NAME "begin" { DECL ";" } "end" ";"

DECL -> VAR_DECL | PROC_DECL | CLASS_DECL

VAR_DECL -> "var" NAME ":" TYPE

PROC_DECL -> "proc" NAME "(" [PARAM_DECL { "," PARAM_DECL }] ")"
[":" TYPE] "begin" { DECL ";" } { STMT ";" } "end"

CLASS_DECL -> "class" NAME "begin" { VAR_DECL ";" } "end"

PARAM_DECL -> NAME ":" TYPE

EXP -> EXP LOG_OP EXP | "not" EXP | EXP REL_OP EXP | EXP ARIT_OP EXP | "(" EXP ")"
| LITERAL | CALL_STMT | "new" NAME | VAR | REF_VAR | DEREF_VAR

REF_VAR -> "ref" "(" VAR ")"
DEREF_VAR -> "deref" "(" VAR ")" | "deref" "(" DEREF_VAR ")"

VAR -> NAME | EXP "." NAME

LOG_OP -> "&&" | "||"
REL_OP -> "<" | "<=" | ">" | ">=" | "=" | "<>"
ARIT_OP -> "+" | "-" | "*" | "/" | "#"

LITERAL -> FLOAT_LITERAL | INT_LITERAL | STRING_LITERAL
| "true" | "false" | "null"

STMT -> ASSIGN_STMT | IF_STMT | WHILE_STMT | RETURN_STMT | CALL_STMT
ASSIGN_STMT -> VAR ":=" EXP | DEREF_VAR ":=" EXP

IF_STMT -> "if" EXP "then" "begin" { STMT ";" } "end"
["else" "begin" { STMT ";" } "end"]

WHILE_STMT -> "while" EXP "do" "begin" { STMT ";" } "end"

RETURN_STMT -> "return" [EXP]

CALL_STMT -> NAME "(" [EXP { "," EXP }] ")"

TYPE -> "float" | "int" | "string" | "bool" | NAME
| "ref" "(" TYPE ")"

Compila17	grammar

“terminal”
NON-TERMINAL

[optional]
{	repetition	}

Alternative1	|	Alternative2

Tool:	JFlex

• A	tool	to	easily	(YMMV)	generate	scanners
– Input:	lexical	specification
– Output:	scanner	program	written	in	Java

• The	lexical	specification	is	written	in	a	.lex file
– Consists	of	three	separate	parts

• User	code
• Options	and	macros
• Lexical	rules

package oblig1parser;
import java_cup.runtime.*;

%%

%class Lexer
%unicode
%cup

%{
private Symbol symbol(int type) {
return new Symbol(type, yyline, yycolumn);

}

%}
LineTerminator = \r|\n|\r\n

%%

<YYINITIAL>
{

"program” { return symbol(sym.PROGRAM); }
"class” { return symbol(sym.CLASS); }
“begin” { return symbol(sym.BEGIN); }
“end” { return symbol(sym.END); }
“var” { return symbol(sym.VAR); }
…

}

User	code

Options/
macros

Lexical	
rules

Copied	to	the	generated	class,	before	
the	class	definition

Options	(class	name,	unicode support,	
CUP	integration)

Inserted	into	
generated	class

Macros,	defined	as	
regular	expressions

The	following	rules	are	applicable	from	the	initial	state

Lexical	rules

Defined	in	package	
java_cup.runtime.

Variables	holding	
current	line/column

oblig1.lex

Refers	to	names	in	
the	.cup	file	(next	

slides)

Tool:	CUP	– Construction	of	Useful	Parsers
- for	Java

• A	tool	to	easily	(YMMV)	generate	parsers
– Reads	tokens	from	the	scanner	using	next_token()

• The	%cup	option	(prev.	slide)	makes	this	work

– Input:	Grammar	defined	as	BNF	with	action	code

var_decl ::= VAR ID:name COLON type:vtype
{: RESULT = new VarDecl(name, vtype); :};

– Output:	a	parser	program	
written	in	Java

Build	AST	with	user	
defined	node	classes	
(java	code)

Assign	names	to	parts	of	production	so	
we	can	reuse	them	in	action	code

Symbol
list

package oblig1parser;
import java_cup.runtime.*;
import syntaxtree.*;

parser code {: :};

terminal PROGRAM, CLASS;
terminal BEGIN, END;
…
terminal String ID;
terminal String STRING_LITERAL;

non terminal Program program;
non terminal List<ClassDecl> decl_list;
non terminal ClassDecl class_decl, decl;

precedence left AND;

program := PROGRAM BEGIN decl_list:dl END SEMI {: RESULT = new Program(dl); :} ;

decl_list ::= decl:d
{: List<ClassDecl> l = new LinkedList<ClassDecl>(); l.add(d); RESULT = l; :} ;

decl ::= class_decl:sd {: RESULT = sd; :} ;

class_decl ::= CLASS ID:name BEGIN END
{: RESULT = new ClassDecl(name); :} ;

Package/
imports

User	code

Precedence

Grammar

Package	name	for	generated	code	and	imports	of	packages	we	need

Code	between	{:	and	:}	is	inserted	directly	into	the	generated	class	
(parser.java)

Terminals	and	non-terminals	are	defined	here.	They	can	also	be	
given	a	Java	type	for	the	“value”	that	they	carry,	e.g.	a	node	in	
the	AST

Precedence	declarations	are	listed	in	ascending	order,	last	=	highest

oblig1.cup

The	syntaxtree package	contains	our	own	AST	classes

AST	is	built	during	parsing.
The	left	hand	side	of	each	
production	is	implicitly	labeled	
RESULT.

AST	classes

ASTNode

Decl

ClassDecl ProcDecl VarDecl

Expr Statement

… …

…

• Make	a	reasonable	
structure

• This	slide	is	an	
EXAMPLE

• Do	not	copy	it	
verbatim	without	
thinking

Tool:

• A	Java-based	build	tool
– Configuration	in	build.xml

• Can	contain	different	targets,	for	instance	test,	clean,	
build,	run,	etc

– The	supplied	configuration	takes	care	of	calling	
jflex,	cup	and	javac for	you.

• Note	that	ant	might	continue	even	if	jflex or	cup	
encounter	errors!

Provided	source	codeOverview of provided code

buildbuild

grammarsgrammars

input-examplesinput-examples

liblib

compila-astcompila-ast

compila-codecompila-code

srcsrc

src-examplessrc-examples

src-gensrc-gen

Class files for compiler, lexer,
parser, syntaxtree, etc.

Three pairs of .lex/.cup files

Test file for example parser

JFlex and CUP libs

Generated abstract syntax tree

Compila source code

Java source code for
compiler, syntax tree, etc.

Java source code example
syntax tree

Generated Java source code
for lexer and parser

(Department of Informatics, UiO) Introduction to the 1st Obligatory Exercise INF5110/9110 2014 10 / 18

expression-eval.cup/lex
Example	expression	

language
expression-par.cup/lex
Example	language	that	
handles	parentheses

oblig1.cup/lex
Starting	point	for	your	

grammars	in	this	
exercise

compila.ast
Example	showing	how	
your	pretty-printed	AST	
could	(should)	look

compila.cmp
Compila source	file;	this	
is	the	file	you	need	to	
parse	in	this	exercise

ClassDecl.java,	
Starting	point	for	AST	
node	implementations	

in	Java
Compiler.java

The	main	entry	point	
for	the	compiler.	You	do	
not	necessarily	have	to	

change	this

Putting it all together

And	more	
AST	
classes

And	more	
AST	
classes

The	provided	
ant	build	file	
takes	care	of	
this	interaction

DEADLINE

• March	19th,	2017	@	23:59
• Don’t	miss	the	deadline!

– Extensions	are	only	possible	if	you	have	an	
agreement	with	the	student	administration	
(studadm)

– Contact	them	if	you	are	sick,	etc.
• Even	if	you	are	not	100%	finished,	deliver	
what	you	have	before	the	deadline

Deliverables
• Working	parser	for	Compila17

– Parse	the	supplied	example	program
• Must	parse	the	class	and	at	least	3	out	of	4	procedures	correctly

– Printout	of	the	resulting	AST	in	textual	form,	example	in	the	code	you	are	given

• Two	grammars	(two	.cup-files)
– One	ambiguous,	with	ambiguities	resolved	through	precedence	declarations	in	CUP

• E.g.	 precedence left AND;

– One	inherently	unambiguous	grammar:

From	Martin’s slides:		34	- 3	*	42

Deliverables
• Report

– Front	page	with	your	name(s)	and	UiO	user	name(s)
• We	strongly encourage	you	to	work	in	pairs
• Groups	of	three	can	be	allowed	after	an	application

– Discussion	of	your	solution
– A	comparison	of	the	two	grammars

• The	code	you	supply	must	build	with	“ant”
– Test	your	delivery	on	a	UiO computer

• Deliver	a	zipped	folder	via	Devilry	(devilry.ifi.uio.no)
– Tell	me	who	you	work	with,	so	that	I	can	create	groups	in	Devilry	for	

your	delivery
– Feel	free	to	send	questions	at	any	time!
– Read	the	exercise	description	thoroughly!

