
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF5110 — Kompilatortteknikk

Day of examination: 12. June 2018

Examination hours: 09.00 – 13:00

This problem set consists of 11 pages.

Appendices: 2 pages

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

• You should read the whole problem set before you start, getting an
overview can help to make wise use of the time.

• Besides writing in a readable manner, draw requested figures in a clear
way.

• Give concise and clear explanations!

• You may answer parts of Problem 4 and 5 by filling in the pages in the
appendix and hand them in together with the rest of the answers (in
the “white version”).

Good luck!

(Continued on page 2.)

Examination in INF5110, 12. June 2018 Page 2

Problem 1 Regular expressions (weight 10%)

1a Regular languages (weight 2%)

Are the following statements true or not?

(a) Every subset of a regular language is regular.

(b) The union of two regular languages is regular.

1b Automata and regular expressions (weight 4%)

Consider the following finite state automaton over the alphabet Σ = {a,b}:

start a

b

a

a

b

a b

b

Which of the following regular expressions captures the language of the
automaton? One answer only.

b∗ab∗ab∗ab∗ (1)
(a ∣ b)∗ (2)

b∗a(a ∣ b)∗ (3)
b∗ab∗ab∗ (4)

1c Regular languages (weight 4%)

Consider the following regular expression

a∗b∗(ba)∗a∗

over the alphabet Σ = {a, b}. Give the shortest word over Σ which is not in
the language specified by the regular expression.

(Continued on page 3.)

Examination in INF5110, 12. June 2018 Page 3

Problem 2 Context-free grammars (weight 10%)

Consider the following context-free grammar.

S → A B
A → xB ∣ ε
B → yA ∣ zB

(5)

2a Language (weight 3%)

Give 3 words in the language defined by the grammar.

2b Derivation (weight 3%)

Give an example of a derivation starting from S in two steps by a right-most
derivation, i.e., give an example of an α in the following situation

S ⇒r ⇒r α

2c Parse tree (weight 4%)

Draw a parse tree for a derivation for the sentential form xyyA, i.e., for the
deriviation

S ⇒∗ xyyA

(Continued on page 4.)

Examination in INF5110, 12. June 2018 Page 4

Problem 3 Top-down parsing (weight 25%)

Consider the following context-free grammar (for a simple form of “email-
addresses”):

Addr → Name@Name . id
Name → id ∣ id .Name

(6)

3a LL(1)-table (weight 5%)

Give the LL(1) parsing table for the grammar. Point out LL(1)-conflict(s)
in the table.

3b Left factorization (weight 4%)

One reason for the conflict in the previous subtask is that the grammar suffers
from a common left factor. Repair this conflict by transforming the given
grammar from equation (6) using the left-factorisation algorithm. Giving the
resulting left-factored grammar suffices as answer.

3c LL(1)-table again (weight 8%)

Give the LL(1) parsing table for the grammar after having performed left-
factorization in subproblem 3b.

3d LL(1) parsing (weight 8%)

Find an equivalent grammar for the language described by the grammar (6)
which is LL(1)-parseable. It’s not required to provide another table as part
of the solution, an LL(1)-grammar is enough.

(Continued on page 5.)

Examination in INF5110, 12. June 2018 Page 5

Problem 4 Bottom-up parsing (weight 25%)

Consider the following context-free grammar.

S → Ab
A → (bA) ∣ (A) ∣ x

(7)

Note: the start symbol S does not occur on the right-hand side of any
production, so don’t extend the grammar by an additional start symbol S′.
The following figure partially shows an LR(0)-DFA for the grammar. All
states and all transitions of the automaton are given. Left out are some of
the LR(0)-items inside the states. Also some of the transition labels are left
out.

S → A.b

S → .Ab

⋮

start

0

S → Ab.

A→ (bA.)
x

(

x
x

)

1 2

3

45 6

7

8

9

4a Fill in state 0 (weight 5%)

Fill out the remaining items in the starting state 0.

(Continued on page 6.)

Examination in INF5110, 12. June 2018 Page 6

4b Fill in the rest (weight 8%)

Fill out the remainder of the automaton, including all items and including
the labels on the transitions.

The automaton is reproduced in the attachment, which you can use for your
solution. It’s advisable to make a sketch first on a separate sheet, to copy it
in (readably) afterwards.

4c Complete items (weight 5%)

• List the states (giving their numbers) of the states containing a
complete item.

• Which role do such states play in the context of bottom-up parsing.

4d Reduction (weight 7%)

Assume the parser parses the following string of terminals:

(b (x))b

List the actions or steps the parser does when parsing this word.

For shift-steps, indicate the state into which the automaton moves to. For
example: write “shift-to-5” or S5 when the action is do a shift step and moving
to state 5. For reduce step, indicate also the rule of the grammar used for
reduction. Assume the rules of the grammar from equation (7) numbered
from I, II, III, and IV in the order of appearance. For example, when
doing a reduce step accoding to the second production A → (bA), write
“reduce with II ” or “R II” for the action.

It’s not required to give the sequence of stack contents during the parse or
the remaining inputs; the list of actions in the form indicated is enough as
answer.

(Continued on page 7.)

Examination in INF5110, 12. June 2018 Page 7

Problem 5 Attribute grammars (weight 15%)

We want to do symbolic differentiation of polynomials using attribute
grammars. As a reminder or illustration: the following is a polynomial
expression over x and y in math notation:

x3 + 10x + 4x7 + 17y

It represents a function, let’s call it f(x, y), over real numbers. The derative
of f over, for instance, the variable x, is often noted as ∂f

∂x . The result of the
differentiation, its derivative, is the following polynomial:

∂f

∂x
= 3x2 + 10 + 28x6

Now: consider the following grammar specifying a (simplified) syntax
of polynomials,1 represented by the non-terminal P ; the right-hand side
deriv (var , P) of D represent the derivative of the polynomial over the
specified variable represented by var .

D → deriv (var , P)
P → P +T ∣ T
T → C ∣ C ∗ var ↑ C
C → const

var → id

Assume that the nonterminal C has an attribute val, with the value of the
constant already filled out. Assume for the value a positive integer. Assume
further an attribute name for the nonterminal var , which also is already filled
in.

Now:

design an attribute grammar that, when evaluated on a syntax
tree, gives the “symbolic derivation” of a given non-terminal D.

Use an attributeD.deriv to contain the symbolic derivation and an attribute
name containing the name of the variable which is used in the derivative (x
in the example ∂f

∂x). Concretely:

(a) fill out the semantic rules in the following table, making appropriate
use of attributes. C.val is already filled out with a positive integer,
var .name with a string.

1The simplification is: we don’t consider “mixed” summands like 7x3y4; this is for
making the task easier. We also simplify in that we don’t consider negative numbers and
−, as it would just add cases analogous to +.

(Continued on page 8.)

Examination in INF5110, 12. June 2018 Page 8

(b) Indicate for each of our attributes whether its synthesized, inherited, or
neither-nor.

You can use string as the type for the attribute deriv. Also: for convenience,
you can make use of “+” for concatenating strings (as in Java).

You may use the corresponding form in the appendix (by tearing it out and
deliver it with the “white sheets”).

productions/grammar rules semantic rules

1 D → deriv (var , P)

2 P0 → P1 +T

3 P → T

4 T → C1 ∗ var ↑ C2

5 T → C

6 var → id var .name = valueof (id)

7 C → const C.val = valueof (const)

(Continued on page 9.)

Examination in INF5110, 12. June 2018 Page 9

Problem 6 Code generation (weight 15%)

Assume code generation as covered in the “notat” which corresponds to parts
of Chapter 9 of the old “dragon book” (Compilers: Principles, Techniques,
and Tools, A. V. Aho, R. Sethi, and J. D. Ullman, 1986).

For all subproblems here: it’s not required to give exactly the generated code
as answer.

6a Registers (weight 5%)

Assume 3 registers, all initially free. With the code generation from the
notat and assuming local liveness information: Would increasing the number
of registers beyond 3 improve (“optimize”) the code generated from Listing
1? Explain.

Listing 1: Three address intermediate code
1 z := x + y ;
2 t1 := z + y ;
3 z := y + x ;

6b No liveness information (weight 5%)

The code generator from the lecture makes use of liveness information, Give
a simple example of straight-line three-address intermediate code, where
ignoring all liveness information leads to less good code. Point out in your
three-address example one occurence of a variable where this happens (“line
2, variable x on the right-hand side” or similar). Explain.

6c Optimization (weight 5%)

Concerning the code generated from Listing 1: give two possible ways one
could improve the generated code compared to the code generator from the
lecture.

(Continued on page 10.)

Examination in INF5110, 12. June 2018 Page 10

Appendix: DFA for Problem 4

Candidate nr.:

Date: .

S → A.b

S → .Ab

⋮

start

0

S → Ab.

A→ (bA.)
x

(

x
x

)

1 2

3

45 6

7

8

9

(Continued on page 11.)

Examination in INF5110, 12. June 2018 Page 11

Appendix: Form for Problem 5

Candidate nr.:

Date: .

productions/gram
m
ar

rules
sem

antic
rules

1
D
→

d
e
riv
(
var

,P
)

2
P
0
→

P
1
+
T

3
P
→

T

4
T
→

C
1
∗
var
↑
C

2

5
T
→

C

6
var

→
id

var
.n
a
m
e
=
valu

eof
(id
)

7
C
→

co
n
st

C
.v
a
l
=
valu

eof
(co

n
st
)

