
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen, Gianluca Turin

INF 5110: Compiler construction
Spring 2021 17. 1. 2021Series 2

Topic: Context free grammars

Issued: 17. 1. 2021

This exercise set covers more than one lecture. It’s about grammars, and partly for the
lectures about parsing. We might not be able to cover it within 2 hours.

Exercise 1 (First- and follow sets) Compute the First and Follow -sets for the grammar
Figure 1.

exp → term exp ′

exp′ → addop term exp ′ | ε
addop → + | −
term → factor term ′

term ′ → mulop factor term ′ | ε
mulop → ∗
factor → (exp) | n

Figure 1: Expression grammar (left-recursion removed)

Exercise 2 (Nullable) Describe an algorithm that finds all nullable non-terminals without
first finding the first-sets.

Exercise 3 (Associativity and precedence) Take the binary ops +, −, ∗, / and ↑. Let’s
agree also on the following precedences and associativity

op precedence associativity

+,− low left assoc.
∗,/ higher left. assoc.
↑ highest right. assoc

Write an unambiguous grammar that captures the given precedences and associativies (of course,
directly with a BNF grammar, without allowing yourself specifying those requirements as extra
side-conditions).

Exercise 4 (Tiny grammar) For the grammar given answer the following questions:

• Is the grammar unambiguious?

www.uio.no
http://www.ifi.uio.no

Series 2 17. 1. 2021

• How can we change the grammar, so that TINY allows empty statements?

• How can we arrange it that semicolons are required in between statements, not after
statements?

• What’s the precedence and associativity of the different operators?

program → stmt-seq
stmt-seq → stmt-seq ; stmt | stmt

stmt → if -stmt | repeat-stmt | assign-stmt
| read -stmt | write-stmt

if -stmt → if expr then stmt end
| if expr then stmt else stmt end

repeat-stmt → repeat stmt-seq until expr
assign-stmt → identifier := expr
read -stmt → read identifier
write-stmt → write expr

expr → simple-expr comparison-op simple-expr | simple-expr
comparison-op → < | =

simple-expr → simple-expr addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗ | /
factor → (expr) | number | identifier

2

Series 2 17. 1. 2021

Exercise 5 (AST) The book [1] give some illustration and proposal for an AST data structure
for TINY:

The tree representation corresponds to the following piece of source code.

Listing 1: Sample TINY program

1 read x; { input as integer }

2 if 0 < x then { don ’t compute if x <= 0 }

3 fact := 1;

4 repeat

5 fact := fact * x;

6 x := x -1

7 until x = 0;

8 write fact { output factorial of x }

9 end

Design an appropriate AST data structure, using object-oriented structuring. In particular,
make use if an appropriately define class hierarchy (i.e., use inheritance). This should give a
“better-structured” AST data structure compared to [1], where all the nodes of the AST tree
are ultimately just “nodes”.

References

[1] K. Louden. Compiler Construction, Principles and Practice. PWS Publishing, 1997.

3

