
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen, Gianluca Turin

INF 5110: Compiler construction
Spring 2021 12. 3. 2021Series 4

Topic: Chapter 5: LR parsing (Exercises with hints for solution)

Issued: 12. 3. 2021

Exercise 1 (LR(0)-items, SLR(1) parsing) Consider the following grammar for well-balanced
parentheses:

S → S (S) | ε

1. Construct the DFA of LR(0) items for the grammar.

2. Construct the SLR(1) parsing table.

3. Show the parsing stack and the actions of an SLR(1) parser for the input string

(() ()) .

4. Is the grammar LR(0)? If not, describe a resulting LR(0) conflict. If yes, construct the
LR(0) parsing table and describe how a parse might differ from an SLR(1) parse.

Solution: In the lecture, we had almost the same grammar. The grammar here is left-
recursive. That makes it non-LL(1) (which is not part of this exercise, as we are now focusing in
this exersize-set on bottom-up parsing). The “other one” from the lecture, with the production
S → (S)S, is not left-recursive and was LL(1).

DFA For the construction, we have learnt two ways (which ultimately the same outcome). The
first construction is via an NFA (a non-deterministic finite automaton), and subsequent
determinization, the other one goes directly to the DFA. I think, the direct one is faster
to do.

The construction should, for a written exam, be routine and comparatively fast. Apart
from knowing what an LR(0) item is and being able to list them (which is easy), it involves
the following routine steps:

• build the closure of a set of items. It’s not directly the ε-closure construction as learnt
earlier in the lecture, at least not in the way it’s done (i.e., the construction does not
mention any ε). It does correspond implicitly to the ε-construction if one would have
taken the route over the NFA, which contains a lot of ε-transitions.1

It involves looking at (partially constructed) states containing an item where the .
stands in front of a non-terminal and then add the corresponding right-hand sides as

1In the lecture, the ε-closure was introduced in connection with determinizing NFA with ε-transitions.

www.uio.no
http://www.ifi.uio.no

Series 4 (+ Hints for solutions) 12. 3. 2021

initial items. That process needs to be continued till saturation.2 It’s fairly easy to
do in the example given in this exercise.

Once done, one can already look out for conflicts. In absence of first- and follow-sets,
only for LR(0) conflicts.3 In this particular situation, there’s one in state 1. Note
also that states 0 and 2 do not indicate conflicts. It may seems that one could do
either an S transition or a reduce: but : “S does not count”: Doing a transition on S
is not a shift (it does not eat an input). So: reduction is the only alternative.

One can also ponder if there’s a reduce/reduce conflict: one has to look at the com-
pleted items as they indicate the production used for reducings. No state contains
more than one completed item, so we are gold here.

Figure 1: LR(0)-DFA

For the result, see Figure 1, and to sum up the above discussion: The automaton is not
LR(0). See state 1. It contains a complete item (which means a reduce step is possible)
and an outgoing transition (labelled with the left-parenthesis).

States 0 and 2 are not problematic in the same way! Reduction there is the only way to
react.

SLR(1) parsing table For the SLR(1) parsing approach: first thing to do is always: (the first
and the) follow sets.4 Since, except for state 1, the situation is LR(0) already, we need to
check if the follow-sets are enough to defuse that particular conflict. See the information
contained in Figure 1.

To see for SLR(1), we have to look at state 1 again, which broke the LR(0)-property:
The automaton from Figure 1 is SLR(1). Shift is done for (and reduce is done for $.
Alternatively one could say, the corresponding table is “unambiguous” (each slot contains
at most one entry). See Table 1. In the table, the reduce steps contain an “r” for reduce
and the rule. The rules numbered from 0 to 2, as in the following grammar:

2That’s why it’s called “closure”.
3For LR(0) conflicts, one does not need those. One will need them for more complex conditions, as for

SLR(1)-parsing.
4For the question of SLR(1) conflicts, we are interested primarily in the follow-sets, but to determine those

systematically, we need the first-sets first.

2

Series 4 (+ Hints for solutions) 12. 3. 2021

S′ → S
S → S (S)
S → ε

Remember: we routinely need an extra start system, say S′, which gives 3 rules, as opposed
to only 2. In the lecture, the table contained not numbers of the rules, but the rules
themselves “copied in” (but it’s just a representational issue). Note also the accept slot.
It corresponds to the reduction with the “extra start production” S′ → S, which is here
numbered as production 0. The numbers after the “shifts” s of course don’t refer to the
number of a production, but to a state (the production numbers are written boldface
here for make clear that here are two different “numbers”).5

state input goto

() $ S

0 r : 2 r : 2 r : 2 1
1 s : 2 accept/r : 0
2 r : 2 r : 2 r : 2 3
3 s : 2 s : 4
4 r : 1 r : 1 r : 1

Table 1: SLR(1) table

Stack and reduction: If the rest has been done properly, this one is rather easy. See Table 2

stage parsing stack input action

1 $0 (() ()) $ reduce[S → ε]
2 $0S1 (() ()) $ shift
3 $0S1(2 () ()) $ reduce[S → ε]
4 $0S1(2S3 () ()) $ shift
5 $0S1(2S3(2) ()) $ reduce[S → ε]
6 $0S1(2S3(2S3) ()) $ shift
7 $0S1(2S3(2S3)4 ()) $ reduce[S → S (S)]

8 $0S1(2S3 ()) $. . .
9 $0S1(2S3(2)) $
10 $0S1(2S3(2S3)) $
11 $0S1(2S3(2S3)4) $

12 $0S1(2S3) $
13 $0S1(2S3)4 $

14 $0S1 $
15 accept $

Table 2: Reduction

LL(0)? See the remark earlier (no LL(0)).

Exercise 2 (LR(1) parsing)

5Of course, in a one can also write down the rules themselves, as in the lecture. Or else have states A, B, C,
and rules 0, 1, 2.

3

Series 4 (+ Hints for solutions) 12. 3. 2021

1. Show that the following grammar is not LR(1):

A→ aAa | ε

2. Is the grammar ambiguous or not?

Solution: Note that the grammar is pretty similar to the “simple parentheses” grammar we
had in the lecture. In this example (unlike what we mostly concentrate on) we are doing an
automaton based on LR(1) items not LR(0) items. That may lead to pretty large constructions,
but in the exercise, the grammar is rather simple. Also the construction of LR(1)-DFAs is rather
similar to the one we normally concentrate on.

Figure 2: LR(1)-DFA

We start initially with $ as extra element in the initial item (initial state). The lecture did
not 100% cover the direct construction. Also the example does not show the full picture. The
new thing is the treatment of the addition terminals (the look-ahead) in the items. We had the
construction for the NFA, though. If we need to make the same direct construction, we need to
understand/remember how that works. The non-ε-transitions are easy, because they keep that
extra non-terminal look-ahead. But not the ε-transitions: They change it, and they change it
to an arbitrary non-terminal in the first set of the γa for an item of the form A→ α.Bγ:

[A→ α.Bγ,a]
ε−→ [B → .βi,b] (1)

Knowing that, the construction of the DFA is straightforward. See Figure 2.
Wrt. the construction (and the effect of ε from equation (1)), see in particular state 2. Equa-

tion (1) illustrates ε-transition as they would connect states of the non-deterministic automaton
in a first stage. If one directly goes to the DFA, the ε-closure is immedated added to the states.

For instance in the example here, state 2 contains the ε-closure (of the first item in there).
Similarly state 4.

4

Series 4 (+ Hints for solutions) 12. 3. 2021

Note in particular, that the look ahead symbol of the first item and the look ahead symbols
of the items in the ε-closure are different! That reflect the change of the symbol in equation
(1). Applied to the situation for the given grammar, we have to check First of Aa

Now: we have constructed the LR(1)-automaton. But is the grammar LR(1)-parsable? Note
that this is not the same (an observation that should be clear).6 Let’s look at states 2 and 4.
In both cases, there’s both a shift and a reduce possible with a as next symbol.

Thus, the grammar is not LR(1)!

The grammar does all words with an even number of a’s. For each such word, there is exactly
one parse-tree of the form of Figure 3. In other words: the grammar is unambiguous.

A

A

A

A

ε a a aaaa

Figure 3: Parse tree

Some extra remarks beyond the actual question from the exercise: the grammar is actually
not LR(k), for any k. It might be worthwhile to reflect upon why that intuitively is the case.
It has to do (intuitively) with the fact, that while doing the parsing, the parser would not
know when the “middle” of the word has been achieved. It could do some guessing (using
“non-determinism”) but anyway, that would not be an LR-parser.

We may compare the situation also to the grammar

A→ a1Aa2 | ε

The grammar corresponds to one of the grammars for “parentheses” See also the following
2 grammars which produce the same language than the one from the task:

A → Aaa | ε
A → aaA | ε

Those are SLR(1)!

Exercise 3 (Bottom-up parsing) The following ambiguous grammar generates the same lan-
guage as the grammar of Exercise 1 in this collection (namely all strings of well-balanced paren-
theses):

A→ AA | (A) | ε (2)

Will a yacc-generated parser using this grammar recognize all legal strings? Why or why
not?

Extra: Try to change the order: put the production A→ AA at the end.

5

Series 4 (+ Hints for solutions) 12. 3. 2021

Figure 4: Two parse trees for ()

Solution: The grammar accepts the same language as other well-known ones. But the
question is about the grammar, not the language. The new one is clearly ambiguous. Already
for a string of terminals (), there is more than one parse tree (see Figure 4).

Follow(A) = {(,), ε}

• We see many shift-reduce conflicts: in those cases we do shifts.

• There is a reduce/reduce conflict in state 5.7 The question is what would yacc (and cup)
do (besides warning us about it). The answer: it would chose to reduce according to the
production which comes first (among those which are available for a reduce-step at the
given point). In the given grammar from equation (2), there are three productions, and
the order is from left to right. In state 5, there are therefore production 1) and production
3)

A→ AA and A→ ε

available for reduction. Since 1) is first, that takes priority. More concretely:

with $ or) as next symbol, state 5 will reduce according to production 1

That choice is encoded also in Table 6. See Figure 7 for a reduction.

Note: if we had written the grammar differently, swapping the order of 1) and 3), state
5 would obviously reduce acccording to A→ ε. In that case, the original language would
not be parsed properly!

There is also the possibility of a reduce/reduce conflict. The follow set of A contains every-
thing.

Exercise 4 (Priorities & associativity by manual conflict resolution) Take the follow-
ing variant of the “expression grammar”

exp′ → exp
exp → exp + exp | exp ∗ exp | n

and extend it with exponentiation as follows

6Still a different question would be: is the corresponding language LR(1) parseable (perhaps by a different
grammar)

7In state 5, there are also shift-reduce conflicts. As mentioned, if a shift is possible, that uniformely takes
precedence over reduce-steps, in yacc-style conventions. Specifically discussed here is, what happens if in state 5
no shift is possible, in which case we have to decide between the two reduce-steps.

6

Series 4 (+ Hints for solutions) 12. 3. 2021

Figure 5: LR(0)-DFA

state input goto

() $ A

0 s : 2 r : 3 r : 3 1
1 s : 2 accept/r : 0 5
2 s : 2 r : 3 r : 3 3
3 s : 2 s : 4 5
4 r : 2 r : 2 r : 2
5 s : 2 r : 1 r : 1 5

Figure 6: Table

exp′ → exp
exp → exp + exp | exp ∗ exp | exp ↑ exp | n

Assume that the usual associativities and precedences are intended (which includes right-
associativity for exponentiation).

Now: indicate how conflicts in an LR-parse-table are to be resolved (if possible) to obtain
the indicated behavior.

Solution:
The first Figure 8 shows the LR(0)-DFA for the grammar without exponentiation. Figure 9

later shows the one for the grammar with exponentiation (there written as **).
The grammar is ambiguous, but does not contain ε-productions. The first and follow sets

are therefore rather straightforward to compute. Indirectly, the high ambiguity of the grammar
is reflected by the fact that the follow-set of exp contains all terminals (and additionally $).

Already for the simpler DFA from Figure 8, there are consequently many conflicts. We
should have a closer look at the following three states (again the simpler Figure 8 first, even if
the automaton of Figure 9 is the one which the exercise is really about).

State 5: There is a shift-reduce conflict (check again the follow-set of E against the outgoing
“shift”-edges). We have 3 symbols to consider +, ∗, and $. The shift-reduce conflict is
on + and ∗. Now, the manual disambiguation, we are requested to do, is done as follows.
Note, that in the given state, the stack contains

exp + exp

“on top”. That observation is the key to understand what to do.

7

Series 4 (+ Hints for solutions) 12. 3. 2021

stage parsing stack input action

1 $0 () () $
2 $0(2) () $
3 $0(2A3) () $
4 $0(2A3)4 () $
5 $0A1 () $
6 $0A1(2) $
7 $0A1(2A3) $
8 $0A1(2A3)4 $
9 $0A1A5 $
10 $0A1 $

Figure 7: Reduction

Figure 8: LR(0)-DFA

• $: reduce is the only option, we cannot shift $.

• +: pick reduce. Reason: + is left-associative. The mental picture is as follows. We
have just parsed a plus-expression, as that’s now on the top of the stack. Now we
see that there is another + coming. To pick the right reaction then is a question of
associativity. We should arrange the reaction in such a way that the already parsed
addition, the one on the stack is “handled first”. Handled means, we do a reduce.
Doing that reduce step builds up the parent node of the mentioned exp + exp, that’s
the bottom-up working of the parser. Since + is intended to be left-associative,
that’s exactly what we need to do in the current situation: a reduce step wrt. the
corresponding production.

• ∗: shift. Reason: ∗ has precedence over +. The reason is now sort of opposite from the
previous subcase. We have to arrange it in such a way that it’s not (exp + exp)∗
That would be the result of a reduce-step. Instead we need to glue the “second”
expression to whatever comes after the ∗, indicated by “. . . ” but we don’t have a
look-ahead to know already what it concretely is. Thus we pick the shift-option

State 6: The stack now contains exp ∗ exp on top.8 The argument of what to choose works
analogous to the previous one.

• $: reduce, same argument as above.

8How do we actually know that?

8

Series 4 (+ Hints for solutions) 12. 3. 2021

Figure 9: LR(0)-DFA

• +: reduce, since ∗ as precedence over +, we therefore need to treat the ∗ “first”.

• ∗: reduce, as ∗ is left-assoc.

state input goto

n + ∗ $ exp

0 s : 2 1
1 s : 3 s : 4 accept
2 r : (exp → n) r : (exp → n)
3 s : 2 5
4 s : 2 6
5 r : (exp → exp + exp) s : 4 r : (exp → exp + exp)
6 r : (exp → exp ∗ exp) r : (exp → exp ∗ exp) r : (exp → exp ∗ exp)

Figure 10: Parse table (simpler grammar)

For the more complex DFA from Figure 9, we do it analogously. Focus on the three states
6, 7, and 8.

State 6: The stack now contains exp + exp

• $: same argument as above only option, we cannot shift $

• +: reduce (exp → exp + exp) (left-assoc)

• ∗: shift 3

• ↑: shift 4

State 7: Note, the top of the stack now contains exp ∗ exp

• $: same argument as above

• +: reduce (exp → exp ∗ exp),

• ∗: reduce (exp → exp ∗ exp) (left-assoc). Note it’s the same procuction than the first
case (of course).

9

Series 4 (+ Hints for solutions) 12. 3. 2021

• ↑: shift 4

State 8: Note, the top of the stack now contains exp ↑ exp

• $: same argument as above

• +: reduce (exp → exp ↑ exp)

• ∗: reduce (exp → exp ↑ exp)

• ↑: shift 4 (right-assoc)

Note: all that is done automatically (in yacc, CUP etc), if one gives the associativites and
precedences appropriately

Exercise 5 (Bottom-up parsing routine) 9 Consider the following grammar G, where S is
the start symbol, and the terminals as # and a

S → T S
S → T
T → #T
T → a

Now do:

1. calculate the first and follow sets of S and T . Use, as in the lecture, $ to stand for the
end-of-input.

2. formulate, in your own words, which words of terminals are derivable from S.10

3. Decide if you can formulate a regular expression that captures words of # and a derivable
from S.11 If the answer is yes, give a regular expression that captures the language.

4. Introduce a new start symbol S′ and construct the LR(0)-DFA for G directly from that
grammar. Enumerate the states.

5. Give the parsing table for that grammar, and let the type of the grammar should determine
the form of the parsing table.

6. Show how
a # a

is being parsed; do that in the form presented in the book/lecture, making use of the
yet-to-parse input and the stack and indicate the shift and stack operations appropriately
during the parsing process.

Solution:

1. The first and follow set are easy, especially, the follow set is simpler than usual, since ε is
not used (which implies there are no nullable symbols.)

2. The language could be described as follows following form,

It consists of words containing one or more a’s, where each a is preceded by zero
or more #.

9It corresponds to an exam question from 2006, minus one sub-question.
10The “language of S”.
11Is L(G) regular?

10

Series 4 (+ Hints for solutions) 12. 3. 2021

First Follow

S a,# $
T a,# a,#,$

Table 3: First and follow

3. As could be seen by the previous informal description, a regular expression capturing the
same language could be

(#∗a)+ .

4. The LR(0)-DFA is given in Figure 11. Note: the grammar does not contain an ε-
production. Nonetheless: the states do contain ε-closure. You may reflect on that.

Figure 11: LR(0)-DFA

Looking at the automaton: the grammar is not LR(0). We see that in state 2 (there’s a
shift-reduce conflict). There is no reduce-reduce conflict.

For SLR(1): concentrate in the conflicting state 2 and see if it “goes away” using the
technique which SLR(1)-parsing is built upon. That requires looking at the Follow -sets
(which are done earlier in this exercise).

Important: One common trap here is to apply the Follow -set considerations onto the
“wrong” symbols. See the slide called “Resolving LR(0) shift-reduce conflicts”. In par-
ticular: in the conflicting state 2, the follow set of T is irrelevant, it’s only the follow set
of S which counts, as S is the left-hand side of the production which corresponds to the
complete item in the state!

In an exam, making an argumuent about the follow-set of non-relevant symbols (like T
here) would reduce points not only if this would lead a wrong outcome. In the example
here: considering T would lead to the erroneous conclusion that there seem to be a SLR-
conflict.

But: since Follow(S) ∩ {#,a} = ∅, everything is fine, the grammar is SLR(1).

Since the grammar is SLR(1), it’s immediately also LALR(1) and LR(1).

5. The corresponding SLR(1) parsing table is given in Figure 12. Note that the line for state 2
contains shifts and reduce steps (actually one reduce entry). That’s not directly taken from
the automaton, of course. It’s the disambiguation done via the follow-set consideration
from above (in particular here for S).

11

Series 4 (+ Hints for solutions) 12. 3. 2021

state input goto

a # $ S T

0 s : 5 s : 3 1 2
1 accept
2 s : 5 s : 3 r : (S → T) 4 2
3 s : 5 s : 3 6
4 r : (T → T S)
5 r : (T → a) r : (T → a) r : (T → a)
6 r : (T →#T) r : (T →#T) r : (T →#T)

Figure 12: SLR(1) table

6. The requested reduction is given in Figure 13

Figure 13: Reduction of a # a

12

