
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen, Gianluca Turin

INF 5110: Compiler construction
Spring 2021 12. 3. 2021Series 4

Topic: Chapter 5: LR parsing

Issued: 12. 3. 2021

Exercise 1 (LR(0)-items, SLR(1) parsing) Consider the following grammar for well-balanced
parentheses:

S → S (S) | ε

1. Construct the DFA of LR(0) items for the grammar.

2. Construct the SLR(1) parsing table.

3. Show the parsing stack and the actions of an SLR(1) parser for the input string

(() ()) .

4. Is the grammar LR(0)? If not, describe a resulting LR(0) conflict. If yes, construct the
LR(0) parsing table and describe how a parse might differ from an SLR(1) parse.

Exercise 2 (LR(1) parsing)

1. Show that the following grammar is not LR(1):

A → aAa | ε

2. Is the grammar ambiguous or not?

Exercise 3 (Bottom-up parsing) The following ambiguous grammar generates the same lan-
guage as the grammar of Exercise 1 in this collection (namely all strings of well-balanced paren-
theses):

A → AA | (A) | ε (1)

Will a yacc-generated parser using this grammar recognize all legal strings? Why or why
not?

Extra: Try to change the order: put the production A → AA at the end.

www.uio.no
http://www.ifi.uio.no

Series 4 12. 3. 2021

Exercise 4 (Priorities & associativity by manual conflict resolution) Take the follow-
ing variant of the “expression grammar”

exp′ → exp
exp → exp + exp | exp ∗ exp | n

and extend it with exponentiation as follows

exp′ → exp
exp → exp + exp | exp ∗ exp | exp ↑ exp | n

Assume that the usual associativities and precedences are intended (which includes right-
associativity for exponentiation).

Now: indicate how conflicts in an LR-parse-table are to be resolved (if possible) to obtain
the indicated behavior.

Exercise 5 (Bottom-up parsing routine) 1 Consider the following grammar G, where S is
the start symbol, and the terminals as # and a

S → T S
S → T
T → #T
T → a

Now do:

1. calculate the first and follow sets of S and T . Use, as in the lecture, $ to stand for the
end-of-input.

2. formulate, in your own words, which words of terminals are derivable from S.2

3. Decide if you can formulate a regular expression that captures words of # and a derivable
from S.3 If the answer is yes, give a regular expression that captures the language.

4. Introduce a new start symbol S′ and construct the LR(0)-DFA for G directly from that
grammar. Enumerate the states.

5. Give the parsing table for that grammar, and let the type of the grammar should determine
the form of the parsing table.

6. Show how
a # a

is being parsed; do that in the form presented in the book/lecture, making use of the
yet-to-parse input and the stack and indicate the shift and stack operations appropriately
during the parsing process.

1It corresponds to an exam question from 2006, minus one sub-question.
2The “language of S”.
3Is L(G) regular?

2

