
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen, Gianluca Turin

INF 5110: Compiler construction
Spring 2021 12. 3. 2021Series 6

Topic: Symbol tables and type checking (Chapter 6)

Issued: 12. 3. 2021

Exercise 1 (AG: collateral vs. sequential declarations) Extend the grammar of Table 1
into an AG to capture “collateral” (simultaneous) declarations.

S → exp
exp → (exp) | exp+ exp | id | num | let dec - list in exp

dec - list → dec - list , decl | decl
decl → id= exp

Table 1: Expression grammar with declarations

As a starting point, use the grammar from the lecture, which is reproduced here. So: Rewrite
the grammar from Table 2 on the next page to use collateral declarations instead of sequential
ones.

Exercise 2 (AG for expression evaluation) Write an attribute grammar that computes the
value of each expression for the expression grammar Table 1 (it’s the same as in the previous
exercise).

Exercise 3 (AG: type conversion resp. evaluation) Consider the following (ambiguous)
expression grammar.

exp → exp+ exp | exp− exp | exp ∗ exp | exp / exp
| (exp) | num | num .num

Assume you are dealing with two numerical types, for integers and for floats. Suppose that
the rules of C are followed in computing the value of such expressions:

If two subexpressions are of mixed type, then the integer subexpression is converted
to floating point, and the floating-point operator is applied.

Write an attribute grammar that will convert such expressions in expressions that are legal
in Modula-2: conversions from integer to floating point are expressed by applying the FLOAT

function, and the division operator / is considered to be div if both operands are integers.

www.uio.no
http://www.ifi.uio.no

Series 6 12. 3. 2021

Table 2: Sequential declarations (from the lecture)

Exercise 4 (Type equality and type checking)
Consider the following grammar which in particular features procedure or function declara-

tions (Table 3)

1. Devise a suitable tree structure for the new function type structures, and write a typeEqual
function for two function types.

2

Series 6 12. 3. 2021

Table 3: Grammar with function declarations

2. Write semantic rules for the type checking of function declarations and function calls,
represented by a rule

exp → id (exp) ,

Similar to the rules in the slide “Type checking as semantic rules” in the type checking
section of Chapter 7 in the slides.

Exercise 5 (Symbol table) Think about the following ambiguity in C expressions. Consider
the expression (A)-x. If x is an integer variable and A is defined in a typedef as equivalent to
double, then this expression casts the value of -x to double. On the other hand, if A is an
integer variable, then this computes the integer difference of the two variables.

1. Describe how the parser might use the symbol table to disambiguate the two interpreta-
tions.

2. Describe how the scanner might use the symbol table disambiguate the two interpretations.

3

