© 0 N O o ks W N =

I N R T O e
AR W N = O © 0 N O Uk W N = O

M
5

UNIVERSITETET I OSLO
Institutt for Informatikk

Reliable Systems

Martin Steffen, Gianluca Turin

INF 5110: Compiler construction

Spring 2021 12. 3. 2021

Series 7

Topic: Run-time environments (Chapter 7)

Issued: 12. 3. 2021

Exercise 1 (Run-time environment) Draw a possible organization for the runtime environ-
ment of the following C program, for the following two situations. See corresponding figures
from the lecture as inspiration (for example, the slide entitled “Stack ged”, approximately at
slide 8.18):

1. after entry into block A in function f.

2. after entry into block B in function g.

int a[10];
char *x s = 7hello”;

int f(int i, int b[])
{ int j=i;
A:{ int i=j;
char ¢ = b[i];
S/
}

return 0;

}

void g(char * s)
{ char ¢ = s[0];
B:{ int a[5];
2.
}
}

main ()

{ int x=1;
x = f(x,a);
g(s);
return O0;

}

Exercise 2 (Activation records (Pascal)) Draw the stack of activation reords for the fol-
lowing Pascal program, showing the control and access links, after the second call to procedure
c. Describe how the variable x is accessed from within c.

www.uio.no
http://www.ifi.uio.no

© 0w NN O A W N =

NN R R R R R R R e e e
N O O © 0 N O Ok W N = O

1
2

Series 7 12. 3. 2021

program env ;

procedure a;
var x: integer;

procedure b;
procedure c;

begin
X = 2
b;
end;
begin (x b *)
c;
end;

begin (x a *)
b;
end;

begin (* main x)
a;
end.

Exercise 3 (Access chaining vs. display) An alternative to access chaining in a language
with local procedures is to keep the access links in an array outside the stack, indexed by the
nesting level. This array is called the display. For example, the run-time stacks of the program
chain and the corresponding stack picture on the slide entitled “access chaining” at approx.
8-36 fromx the lecture would now look as Figure [I] resp. Figure [2}

Activation record of SV display([1]
main program

- display([2]
Activation record of

calltop

Activation record of

callto g
£p Activation record of
calito x
Bp— F—m———————— -—
free space

Figure 1: RTE with display (1)

1. Describe how a display can improve efficiency of nonlocal references from deeply nested
procedures.

2. Redo Exercise [2] from this sheet, using a display.

Exercise 4 (Virtual function tables and memory layout for classes) Draw the memory
layout of objects of the following C*+ classes, together with the virtual function tables.

class A
{ public:

I

© oo ~ [e

10
11
12
13
14
15
16
17
18
19
20

© 0w 9 O ks W N =

e e e =
Gk W N = O

Series 7 12. 3. 2021

Activation record of displayl[l]
main program
display[2]
Lay([1] Activation record of
Lay[2] call to p

Activation record of
call to g

Activation record of
calltor

Activation record of
calltop

Activation record of

callto g
£p Activation record of
calltor
8D —=
free space

1ces from

Figure 2: RTE with display (2)

int a;
virtual void f();

virtual void g();
s
class B : public A
{ public:

int b;

virtual void f();

void h();
}s
class C: public B
{ public:

int c;

virtual void g();
}

Exercise 5 (Parameter passing) Give the output of the following program (written in C
syntax) using the 4 parameter passing methods discussed in in the lecture.

#include <stdio.h>
int i = 0;

void p(int x, int y)

{ x+=1
i += 1;
y +=1;

}

main ()

{ int a[2] = {1,1};
p(ali].ali]);
printf ("%d %d\n” ,a[0], a[l]);
return 0;

}

© 0 9 A W N

e e e e e
D A W N = O

Series 7 12. 3. 2021

Exercise 6 (Parameter passing) Give the output of the following program (written in C
syntax) using the 4 parameter passing methods discussed in the lecture.

#include <stdio.h>
int i = 0;

void swap (int x, int y)

{

X =X+ y;
y =X s
X =X —y;
}

main ()

{ int a[3] = {1,2,0};
swap (i,a[i]);
printf ("%d %d %d _%d\n” ,i,a[0], a[l],a[2]);
return 0;

}

