
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems
Martin Steffen, Gianluca Turin

INF 5110: Compiler construction
Spring 2021 11. 05. 2021Series 8

Topic: (Intermediate) code generation (collection of exam questions)

Issued: 11. 05. 2021

Most of the exercises here are from earlier (written) exams. Some quite some years ago. They
are also incorporated in the exam collection.

The first exercise here is not from an exam, but it’s more of a recap anyway. The remainder
are from the exams 2007, 2009, 2010, 2011, 2013, 2016. There might be even more years with
questions about intermediate code generation or code generation. No need to include them all
in this sheet, one can look at them in the exam collections.

Except 2016, the exams were not formulated by me. I somehow got hold of the exams, partly
via students who had copies, and by previous lecturers. The older exams were mostly in Nor-
wegian, so the text for those qis not the official exam text (but the meaning is preserved). I
sometimes don’t have access to official solutions in those years (of the exams resp. the correspond-
ing exercises). Neither do I know how it was graded, for instance to which degree alternative
formulations gave points, nor did I myself try to find all possible ways one could halfway correctly
give an answer.

Actually, in some cases, I don’t give a solution at all, because I have not solved them yet.
Not because they are too complicated, simply because I have not found the time to work out
solutions to all past generations of exams.

The purpose of the exercises (and going through old exams) is anyay not that I solve them,
but that the participants try their knowledge and gain experience by doing them themselves.

Exercise 1 (Code generation) In this exercise we look at the code generation from the notat
(i.e., from (Aho et al., 1986, page 538. . .))

(a) This is mean as repetition from the lecture. In the section for code generation, there is an
example for which we showed at the very end of the section the resulting machine code.
Look at the details how this algo generates this sequence. Try to determine a code sequence
which is better (but does the same) than the one from that example. For the code, see the
slide with the title Code sequence at the end.

(b) Discuss possibilities how one could improve the given algorithm from the lecture (taken
from that book/notat).

(c) Translate the TAIC from Listing 1 to machine code using the algo from the notat/lecture.
Consider some variations and improvements discussed in the previous point.

Assume that

• there are two registers initially “empty” and
• assume that for division “/”, both source and destination have to reside in registers.

www.uio.no
http://www.ifi.uio.no

Series 8 11. 05. 2021

Listing 1: 3AIC
1 t := a − c
2 u := a + c
3 w := a / t
4 d := w + u

Solution:

(a) The task here is just to read and think through the corresponding material. Cf. the notat,
resp. the slides of the corresponding chapter with headers like “Code generation algo for x
:= y op z” and the following, also the material/slides about getreg-function).

(b) The answer to this question is (partly) implicitly given by remarks in the lecture and the
script in which way the code generation is “simple” and restricted.

One remark was that the code generation is unaware of the “semantics”. One simple example
is that some operations are symmetric (addition, multiplication). So, semantically and as
far as the result is concerned, x := y op z and x := z op y are the same. It might, of
course, happen that, for example the values of y and/or z are contained in the registers in
such a way that one of the two (otherwise equivalent) variants is preferable (less “cost” in
the given cost model). There are other such improvements (like for instance, the addition
in x := y + 0 needs not to be performed).

These are simple examples that can be understood as transformations on the “source code”
(which in this case means 3AIC). These improvements are simple in that they concern one
line only.

Possibilities of improving the code generation taking into account more than one such line
are basically limitless (depending on how much “intelligence” and “semantic analysis” and
computational effort one is willing to invest. An improvement could for instance try to
swap 2 neighboring lines (or more) in case the semantics is unaffected by that (no data
dependencies) an see if it leads to an improvement.

Attempting a truly optimal code (even restricted to basic blocks), while theoretically think-
able, is typically not attempted.

In the lecture we have hinted at the liveness information gives a good handle on an im-
provement. Already the simplest form, taking into account one single basic block, is an
important improvement (and the algo sketched in the code generation chapter takes that
into account). As mentioned, one could make the liveness information also “global” span-
ning more than one basic block. One might debate, whether that should count as an
improvement of code generation or rather basically the same code generation, only relying
on better liveness information. The code generation algo, though, would need an adapta-
tion (and improvement thereby), as at the end of the block, registers need not be “flushed
back” unconditionally.

Liveness analysis is important, but there are other “semantical properties” which one could
analyze (for instance to avoid re-computation).

If one moves one value from the memory into a register, and the op destroys that due to
the specific form of the code generation here (for instance as done by the first instruction
in our example), then it might be worthwhile to copy the value into a second register (to
keep it for further use). That would rely on liveness information, as well. One may also
take into account, how “long” in the future the value will be needed again. If the next
use is in the very near future, such a copy should lead to an improvement, if far into the
future, it may not (the register way well be purged until the next use, and the copy was
for nothing, resp. the copy costed time in the cost model for no other gain.)

2

Series 8 11. 05. 2021

(c) The code is given in Listing 2. For the alternative, where the 3AIC replaces d := w+ u by
d := u+w: We only have to look at the last 2 lines, as the previous lines are unaffected. In
first approximation, the code generation works line by line. The code generated by one line
is influenced by the code generated from the previously lines in that it takes into account
the current status of the registers. However, the code generated “in the future” does not
influence the code generated for one line of 3AC. On the other hand, it’s not strictly true
that the “future source code” has no influence on the code generation.

3

Series 8 11. 05. 2021

Listing 2: Generated code
1 MOV a R0
2 SUB b R0 // t in R0
3

4 MOV a R1 // what a p i ty : r e l oad a
5 ADD c R1 // u in R1
6 // both r eg s f u l l , one o f
7 // them needs to be ‘ ‘ purged ’ ’
8 // We choose R1 (conta in ing u)
9 // as t (in R0) w i l l soon be

10 // used :
11 MOV R1 u // save value f o r u ‘ ‘ back home ’ ’
12

13 MOV a R1 // t s t i l l in R0
14 DIV R0 R1 // w in R1
15 // R0 i s ‘ ‘ f r e e ’ ’ as t i s no
16 // longe r needed (not l i v e)
17

18 ADD u R1 // w i s l i e s p e r f e c t l y in R1 a l ready
19 MOV R1 d // copy d ’ s va lue to home po s i t i o n

Listing 3: Generated code, changed last 3AIC line
1 MOV a R0
2 SUB b R0 // t in R0
3

4 MOV a R1 // what a p i ty : r e l oad a
5 ADD c R1 // u in R1
6 // both r eg s f u l l , one o f
7 // them needs to be ‘ ‘ purged ’ ’
8 // We choose R1 (conta in ing u)
9 // as t (in R0) w i l l soon be

10 // used :
11 MOV R1 u // save value f o r u ‘ ‘ back home ’ ’
12

13 MOV a R1 // t s t i l l in R0
14 DIV R0 R1 // w in R1
15 // R0 i s ‘ ‘ f r e e ’ ’ as t i s no
16 // longe r needed (not l i v e)
17 −−−−−−−−− below here : a l t e r n a t i v e code d := u + w −−−−−−−−−−−−−−−−−−−
18 MOV u R0
19 ADD R0 R1
20 MOV R1 d

Exercise 2 (Code generation (-%))

(a) Given is the program from Listing 4. The code is basically three-address code, except that
we also allow ourselves in the code two-armed conditionals and a while-construct (with
the conventional meaning). The input and output instructions in the first two lines resp.
the last two lines are considered as standard three-address instructions, with the obvious
meaning of “inputting” a value into the mentioned variable resp. “outputting” its value.
We assume that no variable is live at the end of the code.

Listing 4: 3-address code example
1 a := input
2 b := input
3 d := a + b
4 c := a ∗ b // <− looky here
5 i f (b < 5) {
6 while (b < 0) {
7 a := b + 2
8 b := b + 1

4

Series 8 11. 05. 2021

9 }
10 d := 2 ∗ b
11 } else {
12 d := b ∗ 3
13 a := d − b
14 }
15 output a
16 output b

Which variables are live immediately at the end of line 4. Give a short explanation of your
answer.

Solution: One way to answer that problem is to draw the control-flow graph (just for the
overview) and go through the steps of the liveness algo. But actually, the program is simple
enough so one might even more easily just look at the program and figure out by “carefully
thinking” which of the variables at the specific line are live and which are not. Note: it’s not
required to give the values for the inLive and outLive points throughout the CFG. Other exam
questions do require the full construction (partition the intermediate code, show the CFG, and
show the liveness result for all positions in the graph), but here one is allowed to simply give the
result (it’s easy enough).

But even more central is, to simply list the variables for which the info is needed (a, b, c, d).
Since the task does not require to formally use the algorithm to derive the answer or even give
the CFG, we simply give the liveness status straight:

a: That’s a tricky one. But it’s live! In the else-branch, the first thing to happen to a is that
it’s assigned to (“defined”). So in that branch, it is dead. In the true-branch, it’s assigned
to also, but it’s inside the while-loop. If it so happens that the while-loop is not executed
at all, then obviously the assignment to a will not happen. Which means, the first thing
to happen to a is the output-statement in line 15. That most definitely counts as “use”
of a. It is important to realize that it does not matter whether the while-loop actually
is executed or not (we are technically dealing with static liveness). We are conceptually
operating on the CFG, where there are 2 possiblities: the while-loop is entered, or not.
Since statically we don’t know what actually happens, we have to take both options into
account. Therefore, as said, a is live.

b: The variable is immediately live as it is used in the next line.

c: There variable is never “used”. It’s only mentioned in live 4, where it’s assigned to (“defined”)
but afterwards never even mentioned (and not before either). So, being a “write-only”
variable, it’s completely useless, and more specifically dead after line 4.

d: This variable is more interesting again. Like b, it’s assigned to in both branches of the
conditional, but unlike b, it’s not assigned-to (in the false-branch) inside the while-loop. So,
unavoidably, in both cases, d is overwritten before it’s used again in the output statement
in line 16. Therefore, d is dead.

Exercise 3 (Code generation (%))

Consider the following program in 3-address intermediate code.

Listing 5: 3-address code example
1 a := input
2 b := input
3 t1 := a + b // l i n e 3
4 t2 := a ∗ 2
5 c := t1 + t2
6 i f a < c goto 8

5

Series 8 11. 05. 2021

7 t2 := a + b
8 b := 25 // l i n e 8
9 c := b + c

10 d := a − b
11 i f t2 = 0 goto 17
12 d := a + b
13 t1 := b − c
14 c := d − t1
15 i f c < d goto 3
16 c := a + b
17 output c // l i n e 17
18 output d

(a) Indicate where new basic blocks start. For each basic block, give the line number such that
the instruction in the line is the first one of that block.

(b) Give names B1, B2, . . . for the program’s basic blocks in the order the blocks appear in the
given listing. Draw the control flow graph making use of those names. Don’t put in the
code into the nodes of the flow graph, the labels Bi are good enough.

(c) The developer who is responsible for generating the intermediate TA-code assures that
temporary variables in the generated code are dead at the end of each basic block as well
as dead at the beginning of the program, even if the same temporary variable may well be
used in different basic blocks.

Formulate a general rule to check locally in a basic block whether or not the above claim
is honored or violated in a given program.

Assume that all variables are dead after the last instruction.

(d) Use the rule formulated in the previous sub-problem on the TA-code given, to check if the
condition is met or not. The temporary variables are called t1, t2 etc. in the code.

(e) Draw the control flow graph of the problem and find the values for inLive and outLive for
each basic block. Consider the temporaries as ordinary variables.

Point out how one can answer the previous Question 4.d directly after having solved the
current sub-problem.

Are there instructions which can be omitted (thus optmizing the code)? Are there variables
which are potentially uninitialized the first time they are used.

Solution:

(a) The basic blocks are indicated as comments in the code. The line numbers shift therefore,
of course.1 The first line indicates a basic block, targets of (conditional) jumps indicated
basica blocks, and lines after (conditional) jumps indicate basic blocks.

Listing 6: 3-address code example: basic blocks added
1 // −−−−−−−−−−−− B1 −−−−−−−−−−−−−−
2 a := input
3 b := input
4 // −−−−−−−−−−−− B2 −−−−−−−−−−−
5 t1 := a + b // l i n e 3
6 t2 := a ∗ 2
7 c := t1 + t2
8 i f a < c goto 8
9 −−−−−−−−−−−−− B3 −−−−−−−−−−−−−−−−−

10 t2 := a + b

1Note that many representations, for instance in our lecture, favor 3AIC, where one uses symbolic labels not
actual line numbers. That’s a better way of dealing with the issue of (conditional) jumps in intermediate code,
anyway. The same applies to assembly code.

6

Series 8 11. 05. 2021

11 −−−−−−−−−−−− B4 −−−−−−−−−−−−−−−
12 b := 25 // l i n e 8
13 c := b + c
14 d := a − b
15 i f t2 = 0 goto 17
16 −−−−−−−−− B5 −−−−−−−−−−−−−−−−−−−
17 d := a + b
18 t1 := b − c
19 c := d − t1
20 i f c < d goto 3
21 −−−−−−−−−− B6 −−−−−−−−−−−−−−−−−−
22 c := a + b
23 −−−−−−−−−−− B7 −−−−−−−−−−−−−−−−−−−−−
24 output c // l i n e 17
25 output d
26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(b) For the CFG. see below in e)

(c) A possible rule could be

All temporaries which are used in a given basic block must be assigned to (“de-
fined”) in the same before the (first) use.

Another way of saying it is:

No temporary variable must have a “next-use” at the beginning of a basic block.

(d) sanitary check: In block B4, the temporary t2 violates the formulated rule.

(e) Liveness:

7

Series 8 11. 05. 2021

Exercise 4 (Code generation (–%))

(a) Arne has looked into the code generation algo at the end of the notat (from (Aho et al.,
1986, Chapter 9)). He surmises that for the following 3AIC

1 t1 := a − b
2 t2 := b − c

the code generation algorithm will produce the machine instructions below. He assumes
two registers, both empty at the start.

Listing 7: 2AC
1 MOV a , R0
2 MOV b , R1
3 SUB R1 , R0
4 SUB c , R1

Ellen disagrees. Who is right? Explain your answer.

Solution: Arne is wrong. The code is not as it is generated. The code as such makes
“semantical” sense, it’s just not code that is being generated according to the code generation
from Aho et al. (1986). How can we easily see that? What makes the code generation a bit weird
is that the machine code is a two-address code and that it uses the two operands in some peculiar
way, in particular, it determines first a location where the result should go. The preference is
strongly that the result is supposed to end up in a register. Even if the registers are all “full” still
the code will put the result in a register (but of course saving the content back to main memory).
The circumstances when or how that happens are not fully given in the book. However, as long
as there are free registers, a register is taken for the result. The second step is: is the first operand
(by happenstance) already in that register. Well, as the exercise states: we have 2 registers, both
are empty. Therefore 1) the result will end up in a register, say R0, and 2), we have to move
the first operand into that register. So the first line of the code is still fine. It’s the second line
where the shown code deviates from the presented code generator: The “second” step is always
the execution of the operation itself (of course, if the first step is missing, the “second” step is
actually the first).

So: an easy way to see that the code generation won’t generate the code of Listing 7 is: the
code generator always translates the prototypical 3AIC assignment with a binary operator (the
one we discussed in the lecture)

8

Series 8 11. 05. 2021

into 1 or to 2AC assinments: either just “OP...” or MOV followed by “OP”.

Therefore, independent from whether the above sequence makes semantically sense or not: the
code generator won’t generate it.

It’s not part of the question, but here’s the code which would be generated

Listing 8: 2AC (not part of required answer)
1 // t1 i s not in a r e g i s t e r , so we choose one (R0) and then
2 MOV a , R0 // load f i r s t operand to that r e g i s t e r .
3 // This r e g i s t e r i s a l s o which conta in s the r e s u l t
4 SUB b , R0 // do the sub s t r a c t i on .
5 MOV b , R1 // the second l i n e i s t r an s l a t ed ana logous ly .
6 SUB c , R1 // a i s not l i v e a f t e r the f i r s t 3AIC code , we could
7 // reuse R0 t h e r e f o r e !

Exercise 5 (Code generation & P-code (25%))

lda v “load address” Determine the address of variable v and push it on top
of the stack. An address is an integer number, as well.

ldv v “load value” Fetch the value of variable v and push it on top of the
stack

ldc k “load constant” Push the constant value k on top of the stack
add “addition” calculate the sum of the stack’s top two elements, re-

move (“pop”) both from the stack and push the result
onto the top of the stack.

sto “store”
jmp L “jump” goto the designated label
jge L “jump on greater-or-equal” similar conditional jumps (“greater-than”, “less-than”

. . .) exist.
lab L “label” label to be used as targets for (conditional) jumps.

Table 1: P-code instructions

(a) This sub-task is to design a “verifier” for programs in P-code, i.e., for sequences of P-code
instructions.

(i) List a many possible “properties” that the verifier can or should check or test in P-
code programs. Explain in which sense a P-code program is correct given the list of
properties being checked for.

(ii) Sketch which data structures

(b)

(c) We want to translate the P-code to machine code for a platform where all operations,
including comparisons, must be done between values which reside in registers and that
register-memory transfers must be done with dedicated LOAD and STORE operations. During
the translation, we have a stack of descriptors.

Consider the P-instruction
ldv b

where b is a variable whose value resides in the home position. This instruction therefore
pushes the value of b onto the top of the stack. When translating that to machine code, a

9

Series 8 11. 05. 2021

question there is what is better: 1) doing a LOAD instruction so that the value of b ends up
in register or alternatively 2) push a descriptor onto the stack marking that b resides in its
home position.

Discuss the two alternatives under different assumptions and side conditions. These may
include the whether the user-level source language assures an order of evaluation of com-
pound expressions. Other factors you think relevant can be discussed as well.

(d) Again we translate our P-code to machine code and, as in the previous sub-problem, we
assume we translate again one block at a time, in isolation, and that consequently all
registers have to be “emptied” at the end of a basic block in a controlled manner.

The question is to find out which data descriptors in the stack are needed and if other
kinds of descriptors are needed.

We assume that we can search through all the descriptors of the elements on the stack
each time this information is needed. In that way, we avoid having to add another layer of
descriptor(s).

With your descriptor design: describe how to find information needed during code gener-
ation and, if your design contains additional descriptor, how to make use of them.

Solution:

(a) (i)
(ii)
(iii)

(b)

(c) The following is from the given solution at that time.

(i) If the language definition specifies that the evaluation order is fixed from left-to-right,
one should generate a LOAD instruction to get the value into the registers. If the
language definition leaves the order open, it may be better not to load the variable
but a corresponding descriptor into the stack. Remember that the stack is not a run-
time stack, it’s a data structure the code generator uses to perform it’s task. Insofar
that the code generator goes through the intermediate code (here P-code) of the basic
block instruction by instruction, it does some form of “static simulation” of the P-code
execution, including doing a form of simulation of the stack (in the simulation however,
operating with descriptors). In that sense, it’s a kind of “simulation” of a stack at run-
time, but it’s not what we call the stack of ARs of a typical, stack-allocated run-time
environment.

(ii) The situation leaves room for many optimizations. One situation discussedq is that
if the expression contains a function call (or method call etc). I would not cover that
in this tasks, since I would not really consider that the expression then is part of one
basic block. The call would lead to the situation that the basic block is split into (at
least) two sub-blocks: before the call and after. It’s not part of the lecture how the
blocks and edges are done (i.e. how the CFG is done) in the presence of function
calls. One proposed solution ignores that and treats a function call as being “inside”
the basic block. The problem with function calls is that they can change values (the
may have side effects). If there are side effects, the order of evaluation matters, if
there are no side effects, the order does not matter. If therefore the expression is
side-effect free there’s no need to load the value directly, as it effectively does not
matter when it’s loaded. Therefore one may be better off simply using the descriptor
stack marking where the variable is being found in memory.

10

Series 8 11. 05. 2021

(d) In any case we need the following

• if the argument is a constant (and which)

• if the value of the argument is a program variable (and which)

• if the value resides in a register (and in which)

Not everything possible will be recorded on the stack. Note that we don’t record on the
stack what is the content of the registers (only indirectly by saying whether or not a value
can be found in this-and-that register).

It should be noted that the descriptors stack is not really good enough to keep track of
all the information the code generator wants to keep an eye on. At least if it wants to
keep a level of overview over registers and variables comparable to the code generator from
the lecture. The reason why the stack itself is not good for that, no matter how much
info we plan to store into the stack entries, is simply that popping arguments off the stack
means, forgetting all information stored for the corresponding operand. The stack may
easily become empty during the expression evaluation in the middle of a basic block, after
which the code generator would not know where variables are etc.

Thus, one needs additionally to store such information, independent from the stack. Bas-
cially, one would need, besides the stack, register descripters and address descriptors in the
same way the code-generator from the lecture for 3AIC uses.

Exercise 6 (Code generation and analysis (25%))

(a) We partition a method in a program into basic blocks and draw the flow graph for the
method. At the end we figure out which variable is live at the beginning and at the end
of each basic block (for example useing the “iteration”-method). Answer the following
questions:

(i) How can one find TA-instructions (if any) which are guaranteed not to have any
influence when executing the program?

(ii) How can one determine whether there is a variable (optionally which ones) that are
read (“used”) before they have been given a value in the program?

(b) Take a look at the following control-flow graph

B0

B1

B2 B3

B4

B5

11

Series 8 11. 05. 2021

Knut opines that the graph contains the following loops (where loop is understood as
defined in connection with code generation and control-flow graphs)

B1, B2, B4, B5

B1, B3, B4, B5

B1, B2, B3, B4, B5

Astrid disagrees. Who is right? Give an explanation. If Astrid got it right, give the correct
loops of the graph.

(c) The following TA-instructions are contained in block B2 of the previous subproblem:
1 . . .
2 k = j + x
3 k = k ∗ k
4 . . .

To save execution time, we wonder whether it is possible to move this code out of the
smallest loop L what B2 is part of. So:

(i) What do you have to check in the different basic blocks before you can do such a move
safely, and in exact which blocks must such checks be done?

(ii) concretely: such an intended move will include that we add at one place outside L
the following lines

1 . . .
2 k ’ = j + x // k ’ : new va r i ab l e
3 k ’ = k ’ ∗ k ’
4 . . .

In addition, will we replace the original sequence (in B2) with the assignment k = k’.
Now: where outside loop L is it appropriate to move the (adapted) sequence to, which
gives the value for k’?

(d) We now do code-generation (and making use of the procedure getreg) to produce code of
the same kind as in the notat (from (Aho et al., 1986, Chapter 9)). The intermediate
code, for which machine code is to be generated, is a basic block containing the following
3 TA-instructions:

1 e = a − b
2 f = a − c
3 d = f − e

All variables here are ordinary program variables and we assume all of them are live at
the end of the block. Different from the situation in the notat, we assume there is only 1
register R0. You may assume that the analysis which gives the next-use information, has
been done before the code generation starts.

What is the generated sequence of machine instructions? Which machine instruction orig-
inates from which TA-instruction. You are not required to give formally the descriptors,
but write in the comments to the right of the code what the corresponding content of the
descriptors are.

Solution:

(a) (i) Take as TA-instruction in a block B an assignment to a variable x. This instruction
can be removed if the following condition both hold

12

Series 8 11. 05. 2021

i. the variable is not used later in the block.
ii. x is not contained in outLive(B).

(ii) If there is a variable in inLiveB0 where B0 is the initial block, then that variable is
potentially used before it obtains a value, in one or another execution of the program.

Remark: the answers here are the “expected ones” given the pensum and the formulation of
this problem which states that the control-flow graph plus liveness-information for variables
is available. Generally speaking, there are other situations, where instructions can safely be
removed from a program (it’s only that the course did not cover it). “Dead-code” would be
an example (i.e., instructions where the control-flow is garanteed never to execute). Note
that this is slightly different from the answer given above: there it’s about assignment which
are (possibly) executed, but have no effect whether they are executed or not. Dead code
is about statements guaranteed not to be executed, dead variables (i.e., non-live variables)
is about variables which are not used.

For the second question (“initialized variables”): intuitively, one could think of situations
where a variable is “declared” but not given a value. That might happen in a high-level
language which allows to do that and does not specify that in such a situation (“declare-
without-define”) the variable should obtain a well-defined default value.

However, the problem here does not speak about a high-level programming language,
but about 3AIC. In this course (and elsewhere), the 3AIC, while not yet being outright
machine code (working on registers etc), is rather restricted already and does not feature
variable declarations! Variable declarations may well be part of the (perhaps high-level)
source language, and the 3AIC may well have access to the symbol-table which reflects
the scoping rules of the source language. But on the level of 3AIC, there are no variable
declarations or lexical scopes in the program texts. So answers using those concepts don’t
capture what is asked here.

(b) Astrid is right. According to the definition of loops from the lecture, neither {B1, B2, B4, B5}
or {B1, B3, B4, B5} are loops. For example, the first set of nodes has two entry points: B1

can entered via B0 (which is not in the “loop”-set), and B4, which has B3 as predecessor
outside the given set.

Analogously for the second set {B1, B3, B4, B5}.
The third given set is a loop. And: there is another one, namely the singleton set {B3}.

(c) Trivial things first: to move it out of the loop means to move it before the loop (not
afterwards), obviously. The canonical place thus is immediately before the loop we are
moving out of. As we are dealing with loops in the specific sense discussed (as opposed to
general cycles in a graph), there is exactly one well-defined entry point to the loop, and
that is exactly where the code needs to be moved to. More precisely, it need to be moved
immediately before that node. In our example, the entry node of the “big” loop is B1 and
the predecessor outside of the loop is B0. To place the code, one simply introduces a new
block, say B6, placed between B0 and the loop’s entry node B1. In particular, the code
cannot be placed inside B1 (at the beginning, say)2 and the arc back from B5 still has B1

as successor, and not the new node.

(d) With one register, there’s a lot of register-memory traffic
2One reason is: in that case it’s still part of the loop, which is something we wanted to “optimize”. There is a

different way of seeing it. If we think that we are not moving code around in a control-flow graph, but actually
moving lines in a sequence of TA-instructions (and the control-flow graph is implict in the code). In that view,
placing the lines directly before the beginning of block B1 simply does not put them inside B1, simply by the
way the control-flow graph blocks are defined. That placement may well, however, “glue” the new code directly
at the end of B0 without “creating” a new node. Those are rather fine points, introducing a new node in the way
described right in front of B1 is acceptable.

13

Series 8 11. 05. 2021

1 //−−−−−−−−−−−−−−−−−−−−−− e = a − b
2 MOV a R0
3 SUB b R0 // e ∈ r0 , ‘ ‘ a l l ’ ’ reg ’ s f u l l
4 // −−−−−−−−−−−−−−−−−−−−− f = a − c
5 MOV R0 e // f has a next−use , so , c l e a r
6 // the only r e g i s t e r r0
7 MOV a R0 //
8 SUB c R0 // f ∈ r0
9 // −−−−−−−−−−−−−−−−−−−−− d = f − e

10 MOV R0 f
11 SUB e R0 // f i s l i v e a f t e r the block
12 // and must t h e r e f o r e be saved
13 // f be f o r e the SUB s tep i s a l r eady
14 // in the r i g h t p lace (in r0)
15 // afterwards , d i s in r0
16 //−−−−−−−−−−−−−−−−−−−−−− end−of−bas i c b lock
17 MOV R0 d // save value f o r d back to main memory
18 // a l l other v a r i a b l e s are a l r eady up−to
19 // data in t h e i r re sp . ‘ ‘ home po s i t i on s ’ ’

Exercise 7 (Code generation (%))

In this problem we look at code generation as discussed in the lecture, i.e., as covered by
the “notat” which had been made available and which covers parts of Chapter 9 of the old
“dragon book” (Compilers: Principles, Techniques, and Tools, A. V. Aho, R. Sethi, and J.
D. Ullman, 1986).

(i) Register descriptors indicate, for each register, which variables have their value in this
register.

(i) A single register can contain the values of more than one variable. Give a short
explanation/example of how a situation like that can occur. You can keep it really
short.

To get more efficient (i.e., faster) executable code, we want to consider transformations of
three-address intermediate code, but we restrict ourselves to transformations local to basic
blocks. We again assume the code generation as done in the “notat”

So assume a basic block consisting of three-address instructions. Those look typically as
follows x := y op z, where x, y, and z are ordinary variables or temporaries. But constants
are allowed as well (for instance, as in x := 6), to allow examples with not to many variables.

We consider as the only allowed optmization to interchange lines of three-address instruc-
tions.

(ii) Describe a concrete situation where such an interchange makes the generated
code faster without of course changing the semantics.

Concrete means, lines of three-address code. Use one register only (called R). Make all
assumptions explicit (“at the beginning of my example, R is empty/R contains . . . ”). Explain
why the interchange leads to a speed-up, referring to the cost-model of the notat/lecture.

Solution:

(a) Register descriptors:

(i) The answer should simply be x:=y where x and y are different variables (resp. have
different home positions), or an explanation to that effect. It’s not required to give
the machine code, an argument suffices. If one does not mention that x and y are
different, it’s accepted as ok as well.

14

Series 8 11. 05. 2021

We have not looked at the concrete code generation procedure for the x := y. But, it
was discussed in the lecture, it’s fairly obvious, and it is explicitly mentioned in the
notat. It should be immediate.

(b) Local optimization: It should be fairly easy to figure out one example covering at least
the spirit. To get a speed-up, we need to avoid register-memory traffic. One can different
points of the code generator to illustrate the speed-up.

For a correct answer, one should give

• original 3AC program plus clear indication of what is swapped

• the generated machine codes resp. the generated machine code from the original and
explain what changes and why

• mention how that affects the costs in the cost model. Exact calculation of the given
“program” is not needed, but reference to the cost model is.

The code generation has some fine points (like liveness etc). For a full answer, let’s not
insist on that.

0.0.0.1 One example: “purging” a/the register In the cost model (and in general)
register-memory traffic costs. Especially it costs more than operations on registers. The
idea of an example is therefore: before the swap, the only register is being used for one step
of the code, after the swap, it cannot be used for that step, as it’s being used for something
else. That requires that the value has to be stored back to the home position and reloaded
later. That makes the program “more costly”.The example from Listing 9 and 10 makes
use of that.

Listing 9: Reuse of a register for y
1 // i n i t i a l l y , R empty
2 −−
3 y := x + 1 // use R f o r the r e s u l t :
4 // Load x 1
5 // R −> y (not up−to date)
6 z := y + 1 // re−use R (conta in ing y) : 0 Reg−Mem move 0
7 // f o r l oad ing i t . So , (2) o f code−gen omits
8 // the MOV
9 // however : y needs to be saved (which

10 // i s r equ i r ed by get−reg , case (3)
11 // Store y (because i t ’ s assumed to be l i v e) 1
12 // R −> z (not up−to date)
13 a := t1 + t2 // Store R z (save z) 1
14 // load t1 1
15 // load t2 1
16 // R −> A (not up−to date)
17 −−−
18 // end o f b lock : save a 1

Listing 10: Reuse of register no longer possible
1 // i n i t i a l l y , R empty
2 −−−
3 y := x + 1 // use R f o r the r e s u l t :
4 // Load x : 1
5 // R |−> y (not up−to date)
6 a := t1 + t2 // Store R −> y (get−reg −(3) 1
7 // Load t1 1
8 // Load t2 1
9 // R |−> a (not up−to date)

10 z := y + 1 // Store a (no reuse) 1
11 // Load y 1
12 // r e s u l t : R <− z (not up−to date)

15

Series 8 11. 05. 2021

13

14 // end o f b lock : s t o r e z 1
15 −−

References
Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools. Addison-

Wesley.

16

	Code generation
	Code generation
	Code generation
	Code generation & P-code
	Code generation and analysis
	Code generation

