UNIVERSITETET I OSLO Institutt for Informatikk

Reliable Systems Martin Steffen, Gianluca Turin

INF 5110: Compiler construction

Spring 2021

Handout 3

 $15.\ 2.\ 2021$

Handout 3: Grammars

Issued: 15. 2. 2021

The handout contains basic definitions. Additionally, for reference, to follow the slides during the lecture, the handout includes some grammars we repeteadly used for illustration, especially for the LR-parsing principles and the construction of the NFA/DFA

Some definitions

Definition 1 (CFG) A context-free grammar G is a 4-tuple $G = (\Sigma_T, \Sigma_N, S, P)$:

- 1. 2 disjoint finite alphabets of terminals Σ_T and
- 2. non-terminals Σ_N
- 3. 1 start-symbol $S \in \Sigma_N$ (a non-terminal)
- 4. productions $P = \text{finite subset of } \Sigma_N \times (\Sigma_N + \Sigma_T)^*$

Definition 2 The language of a CFG G, written as $\mathcal{L}(G)$, is defined as follows:

 $\mathcal{L}(G) = \{ s \mid start \Rightarrow^* s \text{ and } s \in \Sigma_T^* \}$

Definition 3 (Ambiguous grammar) A grammar is *ambiguous* if there exists a word with *two different* parse trees.

	rule format	languages	machines	closed
3	$A \to aB$, $A \to a$	regular	NFA, DFA	all
2	$A \to \alpha_1 \beta \alpha_2$	CF	pushdown	∪, *, ∘
			automata	
1	$\alpha_1 A \alpha_2 \to \alpha_1 \beta \alpha_2$	context-	(linearly re-	all
		sensitive	stricted au-	
			tomata)	
0	$\alpha \to \beta, \alpha \neq \epsilon$	recursively	Turing ma-	all, except
		enumerable	chines	comple-
				ment

The table uses the following conventions

• terminals $a, b, \ldots \in \Sigma_N$,

- non-terminals $A, B, \ldots \in \Sigma_T$
- general words $\alpha, \beta \ldots \in (\Sigma_T \cup \Sigma_N)^*$

Some grammars

 $\begin{array}{rcl} E' & \rightarrow & E \\ E & \rightarrow & E + {\bf number} & | & {\bf number} \end{array}$

Table 1: Simple grammar for addition

$$\begin{array}{rccc} S' & \rightarrow & S \\ S & \rightarrow & (S)S & \mid \epsilon \end{array}$$

Table 2: Grammar for parentheses

 $A \rightarrow (A) \mid \mathbf{a}$

Table 3: Grammar for simplistic parentheses