
Chapter 2
Scanning

Course “Compiler Construction”
Martin Steffen
Spring 2021

Chapter 2
Learning Targets of Chapter “Scanning”.

1. alphabets, languages
2. regular expressions
3. finite state automata / recognizers
4. connection between the two concepts
5. minimization

The material corresponds roughly to [1, Section 2.1–2.5]
or a large part of [3, Chapter 2]. The material is pretty
canonical, anyway.

Chapter 2
Outline of Chapter “Scanning”.
Introduction
Regular expressions
DFA
Implementation of DFAs
NFA
From regular expressions to NFAs (Thompson’s construc-
tion)
Determinization
Minimization
Scanner implementations and scanner generation tools

Section
Introduction

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-5

_

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-5

Scanner section overview

What’s a scanner?
• Input: source code.
• Output: sequential stream of tokens

• regular expressions to describe various token classes
• (deterministic/non-determinstic) finite-state automata
(FSA, DFA, NFA)
• implementation of FSA
• regular expressions → NFA
• NFA ↔ DFA

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-6

What’s a scanner?

• other names: lexical scanner, lexer, tokenizer

A scanner’s functionality
Part of a compiler that takes the source code as input and
translates this stream of characters into a stream of tokens.

• char’s typically language independent.
• tokens already language-specific.
• works always “left-to-right”, producing one single token
after the other, as it scans the input
• it “segments” char stream into “chunks” while at the
same time “classifying” those pieces ⇒ tokens

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-7

Typical responsibilities of a scanner

• segment & classify char stream into tokens
• typically described by “rules” (and regular expressions)
• typical language aspects covered by the scanner

• describing reserved words or key words
• describing format of identifiers (= “strings” representing

variables, classes . . .)
• comments (for instance, between // and NEWLINE)
• white space

• to segment into tokens, a scanner typically “jumps
over” white spaces and afterwards starts to determine
a new token

• not only “blank” character, also TAB, NEWLINE, etc.
• lexical rules: often (explicit or implicit) priorities

• identifier or keyword? ⇒ keyword
• take the longest possible scan that yields a valid token.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-8

“Scanner = regular expressions (+
priorities)”

Rule of thumb
Everything about the source code which is so simple that it
can be captured by reg. expressions belongs into the scanner.

How does scanning roughly work?

. . . a [i n d e x] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q2
Reading “head”

(moves left-to-right)

a[index] = 4 + 2

How does scanning roughly work?

. . . a [i n d e x] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q0
Reading “head”

(moves left-to-right)

a[index] = 4 + 2

How does scanning roughly work?

. . . a [i n d e x] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q1
Reading “head”

(moves left-to-right)

a[index] = 4 + 2

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-10

How does scanning roughly work?

• usual invariant in such pictures (by convention): arrow
or head points to the first character to be read next
(and thus after the last character having been
scanned/read last)
• in the scanner program or procedure:

• analogous invariant, the arrow corresponds to a specific
variable

• contains/points to the next character to be read
• name of the variable depends on the scanner/scanner

tool
• the head in the pic: for illustration, the scanner does

not really have a “reading head”

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-11

The bad(?) old times: Fortran
• in the days of the pioneers
• main memory was smaaaaaaaaaall
• compiler technology was not well-developed (or not at
all)
• programming was for very few “experts”.1
• Fortran was considered high-level (wow, a language so
complex that you had to compile it . . .)

1There was no computer science as profession or university
curriculum.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-12

(Slightly weird) lexical ascpects of Fortran

Lexical aspects = those dealt with by a scanner
• whitespace without “meaning”:

I F(X 2. EQ. 0) TH E N vs. IF (X2.
EQ.0) THEN

• no reserved words!
IF (IF.EQ.0) THEN THEN=1.0

• general obscurity tolerated:
DO99I=1,10 vs. DO99I=1.10

DO 99 I =1 ,10
−
−
99 CONTINUE

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-13

Fortran scanning: remarks
• Fortran (of course) has evolved from the pioneer days
. . .
• no keywords: nowadays mostly seen as bad idea
• treatment of white-space as in Fortran: not done
anymore: THEN and TH EN are different things in all
languages
• however: both considered “the same”:

i f ␣b␣ then ␣ . .

i f ␣␣␣b␣␣␣␣ then ␣ . .

• since concepts/tools (and much memory) were missing,
Fortran scanner and parser (and compiler) were
• quite simplistic
• syntax: designed to “help” the lexer (and other phases)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-14

A scanner classifies
• “good” classification: depends also on later phases, may
not be clear till later

Rule of thumb
Things being treated equal in the syntactic analysis (=
parser, i.e., subsequent phase) should be put into the same
category.

• terminology not 100% uniform, but most would agree:

Lexemes and tokens
Lexemes are the “chunks” (pieces) the scanner produces
from segmenting the input source code (and typically
dropping whitespace). Tokens are the result of classifying
those lexemes.

• token = token name × token value

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-15

A scanner classifies & does a bit more

• token data structure in OO settings
• token themselves defined by classes (i.e., as instance of

a class representing a specific token)
• token values: as attribute (instance variable) in its

values
• often: scanner does slightly more than just classification

• store names in some table and store a corresponding
index as attribute

• store text constants in some table, and store
corresponding index as attribute

• even: calculate numeric constants and store value as
attribute

One possible classification

name/identifier abc123
integer constant 42
real number constant 3.14E3
text constant, string literal "this is a text constant"
arithmetic op’s + - * /
boolean/logical op’s and or not (alternatively /\ \/)
relational symbols <= < >= > = == !=

all other tokens: { } () [] , ; := . etc.
every one it its own group

• this classification: not the only possible (and not
necessarily complete)
• note: overlap:

• "." is here a token, but also part of real number
constant

• "<" is part of "<="

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-17

One way to represent tokens in C

typede f s t r u c t {
TokenType t o k en v a l ;
char ∗ s t r i n g v a l ;
i n t numval ;

} TokenRecord ;

If one only wants to store one attribute:
typede f s t r u c t {

Tokentype t o k en v a l ;
union
{ char ∗ s t r i n g v a l ;

i n t numval
} a t t r i b u t e ;

} TokenRecord ;

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-18

How to define lexical analysis and
implement a scanner?

• even for complex languages: lexical analysis (in
principle) not hard to do
• “manual” implementation straightforwardly possible
• specification (e.g., of different token classes) may be
given in “prosa”
• however: there are straightforward formalisms and
efficient, rock-solid tools available:
• easier to specify unambigously
• easier to communicate the lexical definitions to others
• easier to change and maintain

• often called parser generators typically not just generate
a scanner, but code for the next phase (parser), as well.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-19

Sample prosa spec

Section
Regular expressions

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-21

General concept: How to generate a
scanner?

1. regular expressions to describe language’s lexical aspects

• like whitespaces, comments, keywords, format of
identifiers etc.

• often: more “user friendly” variants of reg-exprs are
supported to specify that phase

2. classify the lexemes to tokens
3. translate the reg-expressions ⇒ NFA.
4. turn the NFA into a deterministic FSA (= DFA)
5. the DFA can straightforwardly be implementated
• step done automatically by a “lexer generator”
• lexer generators help also in other user-friendly ways of

specifying the lexer: defining priorities, assuring that the
longest possible lexeme is tokenized

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-22

Use of regular expressions
• regular languages: fundamental class of “languages”
• regular expressions: standard way to describe regular
languages
• not just used in compilers
• often used for flexible “ searching ”: simple form of
pattern matching
• e.g. input to search engine interfaces
• also supported by many editors and text processing or
scripting languages (starting from classical ones like
awk or sed)
• but also tools like grep or find (or general
“globbing” in shells)

find . -name "*.tex"

• often extended regular expressions, for user-friendliness,
not theoretical expressiveness

https://en.wikipedia.org/wiki/Glob_(programming)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-23

Alphabets and languages

Definition (Alphabet Σ)

Finite set of elements called “letters” or “symbols” or
“characters”.

Definition (Words and languages over Σ)

Given alphabet Σ, a word over Σ is a finite sequence of
letters from Σ. A language over alphabet Σ is a set of finite
words over Σ.

• practical examples of alphabets: ASCII, Norwegian
letters (capital and non-capitals) etc.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-24

Languages

• note: Σ is finite, and words are of finite length
• languages: in general infinite sets of words
• simple examples: Assume Σ = {a, b}
• words as finite “sequences” of letters

• ε: the empty word (= empty sequence)
• ab means “ first a then b ”

• sample languages over Σ are
1. {} (also written as ∅) the empty set
2. {a, b, ab}: language with 3 finite words
3. {ε} (6= ∅)
4. {ε, a, aa, aaa, . . .}: infinite languages, all words using

only a ’s.
5. {ε, a, ab, aba, abab, . . .}: alternating a’s and b’s
6. {ab, bbab, aaaaa, bbabbabab, aabb, . . .}: ?????

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-25

How to describe languages
• language mostly here in the abstract sense just defined.
• the “dot-dot-dot” (. . .) is not a good way to describe to
a computer (and to many humans) what is meant
• enumerating explicitly all allowed words for an infinite
language does not work either

Needed
A finite way of describing infinite languages (which is
hopefully efficiently implementable & easily readable)

Beware
Is it apriori to be expected that all infinite languages can
even be captured in a finite manner?

• small metaphor

2.727272727 . . . 3.1415926 . . . (1)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-26

Regular expressions

Definition (Regular expressions)

A regular expression is one of the following
1. a basic regular expression of the form a (with a ∈ Σ),

or ε, or ∅
2. an expression of the form r | s, where r and s are

regular expressions.
3. an expression of the form r s, where r and s are regular

expressions.
4. an expression of the form r∗, where r is a regular

expression.

Precedence (from high to low): ∗, concatenation, |

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-27

A “grammatical” definition

Later introduced as (notation for) context-free grammars:

r → a
r → ε
r → ∅
r → r | r
r → r r
r → r∗

(2)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-28

Same again

Notational conventions
Later, for CF grammars, we often use capital letters to
denote “variables” of the grammars (then called
non-terminals). If we like to be consistent with that
convention in the parsing chapters and use capitals for
non-terminals, the grammar for regular expression looks as
follows:

R → a
R → ε
R → ∅
R → R | R
R → RR
R → R∗

(3)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-29

Symbols, meta-symbols,
meta-meta-symbols . . .

• regexprs: notation or “language” to describe
“languages” over a given alphabet Σ (i.e. subsets of Σ∗)
• language being described ⇔ language used to describe
the language

⇒ language ⇔ meta-language
• here:

• regular expressions: notation to describe regular
languages

• English resp. context-free notation: notation to describe
regular expressions (a notation itself)

• for now: carefully use notational or typographic
conventions for precision

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-30

Notational conventions

• notational conventions by typographic means (i.e.,
different fonts etc.)
• you need good eyes, but: difference between

• a and a
• ε and ε
• ∅ and ∅
• | and | (especially hard to see :-))
• . . .

• later (when gotten used to it) we may take a more
“relaxed” attitude towards it, assuming things are clear,
as do many textbooks.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-31

Same again once more

R → a | ε | ∅ basic reg. expr.
| R | R | RR | R∗ compound reg. expr.

(4)

Note:
• symbol | : (bold) as symbol of regular expressions
• symbol | : (normal, non-bold) meta-symbol of the

CF grammar notation
• the meta-notation used here for CF grammars will be
the subject of later chapters
• this time: parentheses “added” to the syntax.

Semantics (meaning) of regular expressions
Definition (Regular expression)

Given an alphabet Σ. The meaning of a regexp r (written
L(r)) over Σ is given by equation (5).

L(∅) = {} empty language
L(ε) = {ε} empty word
L(a) = {a} single “letter” from Σ
L(rs) = {w1w2 | w1 ∈ L(r), w2 ∈ L(s)} concatenation
L(r | s) = L(r) ∪ L(s) alternative
L(r∗) = L(r)∗ iteration

(5)
• conventional precedences: ∗, concatenation, |.
• Note: left of “=”: reg-expr syntax, right of “=”:

semantics/meaning/math 2

2Sometimes confusingly “the same” notation.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-33

Examples

In the following:
• Σ = {a, b, c}.
• we don’t bother to “boldface” the syntax

words with exactly one b (a | c)∗b(a | c)∗
words with max. one b ((a | c)∗) | ((a | c)∗b(a | c)∗)

(a | c)∗ (b | ε) (a | c)∗
words of the form anban,
i.e., equal number of a’s
before and after 1 b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-34

Another regexpr example

words that do not contain two b’s in a row.

(b (a | c))∗ not quite there yet
((a | c)∗ | (b (a | c))∗)∗ better, but still not there

= (simplify)
((a | c) | (b (a | c)))∗ = (simplifiy even more)
(a | c | ba | bc)∗
(a | c | ba | bc)∗ (b | ε) potential b at the end
(notb | b notb)∗(b | ε) where notb , a | c

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-35

Additional “user-friendly” notations

r+ = rr∗

r? = r | ε

Special notations for sets of letters:

[0− 9] range (for ordered alphabets)
~a not a (everything except a)
. all of Σ

naming regular expressions (“regular definitions”)

digit = [0− 9]
nat = digit+

signedNat = (+|−)nat
number = signedNat(”.”nat)?(E signedNat)?

Section
DFA

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-37

Finite-state automata

• simple “computational” machine
• (variations of) FSA’s exist in many flavors and under
different names
• other well-known names include finite-state machines,
finite labelled transition systems, . . .
• “state-and-transition” representations of programs or
behaviors (finite state or else) are wide-spread as well
• state diagrams
• Kripke-structures
• I/O automata
• Moore & Mealy machines

• the logical behavior of certain classes of electronic
circuitry with internal memory (“flip-flops”) is described
by finite-state automata.

https://en.wikipedia.org/wiki/Saul_Kripke

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-38

FSA

Definition (FSA)

A FSA A over an alphabet Σ is a tuple (Σ, Q, I, F, δ)
• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ ⊆ Q× Σ×Q transition relation

• final states: also called accepting states
• transition relation: can equivalently be seen as function
δ : Q× Σ→ 2Q: for each state and for each letter, give
back the set of sucessor states (which may be empty)
• more suggestive notation: q1

a−→ q2 for (q1, a, q2) ∈ δ
• we also use freely —self-evident, we hope— things like

q1
a−→ q2

b−→ q3

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-39

FSA as scanning machine?
• FSA have slightly unpleasant properties when
considering them as decribing an actual program (i.e., a
scanner procedure/lexer)
• given the “theoretical definition” of acceptance:

Mental picture of a scanning automaton
The automaton eats one character after the other, and,
when reading a letter, it moves to a successor state, if any,
of the current state, depending on the character at hand.

• 2 problematic aspects of FSA
• non-determinism: what if there is more than one

possible successor state?
• undefinedness: what happens if there’s no next state for

a given input
• the 2nd one is easily repaired, the 1st one requires more

thought
• [1]: recogniser corresponds to DFA

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-40

DFA: deterministic and total automata

Definition (DFA)

A deterministic, finite automaton A (DFA for short) over an
alphabet Σ is a tuple (Σ, Q, I, F, δ)
• Q: finite set of states
• I = {i} ⊆ Q, F ⊆ Q: initial and final states.
• δ : Q× Σ→ Q transition function

• transition function: special case of transition relation:
• deterministic
• left-total (“complete”)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-41

Meaning of an FSA

Semantics
The intended meaning of an FSA over an alphabet Σ is the
set of all the finite words, the automaton accepts.

Definition (Accepted words and language of an
automaton)

A word c1c2 . . . cn with ci ∈ Σ is accepted by automaton A
over Σ, if there exists states q0, q2, . . . , qn from Q such that

q0
c1−→ q1

c2−→ q2
c3−→ . . . qn−1

cn−→ qn ,

and were q0 ∈ I and qn ∈ F . The language of an FSA A,
written L(A), is the set of all words that A accepts.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-42

FSA example

q0 q1 q2

a

b

a

b

c

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-43

Example: identifiers
Regular expression

identifier = letter(letter | digit)∗ (6)

start in_idletter

letter

digit

• transition function/relation δ not completely defined (=
partial function)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-43

Example: identifiers
Regular expression

identifier = letter(letter | digit)∗ (6)

start in_id

error

letter

other

letter

digit
other

any

• transition function/relation δ not completely defined (=
partial function)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-44

Automata for numbers: natural numbers

digit = [0− 9]
nat = digit+

(7)

digit

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-45

Signed natural numbers

signednat = (+ | −)nat | nat (8)

+
−

digit

digit

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-46

Signed natural numbers: non-deterministic

+
−

digit

digit

digit

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-47

Fractional numbers

frac = signednat(”.”nat)? (9)

+
−

digit

digit

digit

. digit

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-48

Floats

digit = [0− 9]
nat = digit+

signednat = (+ | −)nat | nat
frac = signednat(”.”nat)?

float = frac(E signednat)?

(10)

• Note: no (explicit) recursion in the definitions
• note also the treatment of digit in the automata.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-49

DFA for floats

+
−

digit

digit

digit

.E

digit

digit

E

+
−

digit

digit

digit

DFAs for comments
Pascal-style

{

other

}

C, C++, Java

/ ∗

other
∗

∗

other

/

Section
Implementation of DFAs

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-52

Example: identifiers
Regular expression

identifier = letter(letter | digit)∗ (6)

start in_idletter

letter

digit

• transition function/relation δ not completely defined (=
partial function)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-52

Example: identifiers
Regular expression

identifier = letter(letter | digit)∗ (6)

start in_id

error

letter

other

letter

digit
other

any

• transition function/relation δ not completely defined (=
partial function)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-53

Implementation of DFA (1)

start in_id finishletter

letter

digit

[other]

DFA implementation: explicit state
representation

1 s t a t e := 1 { s t a r t }
2 whi le s t a t e = 1 or 2
3 do
4 case s t a t e of
5 1 : case input c h a r a c t e r of
6 l e t t e r : advance the input ;
7 s t a t e := 2
8 e l s e s t a t e := { e r r o r o r o t h e r } ;
9 end case ;

10 2 : case input c h a r a c t e r of
11 l e t t e r , d i g i t : advance the input ;
12 s t a t e := 2 ; { a c t u a l l y u n e s s e s s a r y }
13 e l s e s t a t e := 3 ;
14 end case ;
15 end case ;
16 end whi le ;
17 i f s t a t e = 3 then accep t e l s e e r r o r ;

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-55

Table rep. of the DFA

aaaaaaa
state

input
char letter digit other accepting

1 2 no
2 2 2 [3] no
3 yes

added info for
• accepting or not
• “ non-advancing ” transitions

• here: 3 can be reached from 2 via such a transition

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-56

Table-based implementation

1 s t a t e := 1 { s t a r t }
2 ch := next i npu t c h a r a c t e r ;
3 wh i l e not Accept [s t a t e] and not e r r o r (s t a t e)
4 do
5
6 wh i l e s t a t e = 1 or 2
7 do
8 newsta te := T [s t a t e , ch] ;
9 { i f Advance [s t a t e , ch]

10 then ch := next i npu t c h a r a c t e r } ;
11 s t a t e := newsta te
12 end wh i l e ;
13 i f Accept [s t a t e] then accep t ;

Section
NFA

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-58

Non-deterministic FSA
Definition (NFA (with ε transitions))

A non-deterministic finite-state automaton (NFA for short)
A over an alphabet Σ is a tuple (Σ, Q, I, F, δ), where
• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ : Q× Σ→ 2Q transition function

In case, one uses the alphabet Σ + {ε}, one speaks about an
NFA with ε-transitions.

• in the following: NFA mostly means, allowing ε
transitions
• ε: treated different from the “normal” letters from Σ.
• δ can equivalently be interpreted as relation:
δ ⊆ Q× Σ×Q (transition relation labelled by elements
from Σ).

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-59

Language of an NFA
• remember L(A) (Definition 7 on page 44)
• applying definition directly to Σ + {ε}: accepting words
“containing” letters ε
• as said: special treatment for ε-transitions/ε-“letters”. ε

rather represents absence of input character/letter.

Definition (Acceptance with ε-transitions)

A word w over alphabet Σ is accepted by an NFA with
ε-transitions, if there exists a word w′ which is accepted by
the NFA with alphabet Σ + {ε} according to Definition 7
and where w is w′ with all occurrences of ε removed.

Alternative (but equivalent) intuition

A reads one character after the other (following its
transition relation). If in a state with an outgoing
ε-transition, A can move to a corresponding successor state
without reading an input symbol.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-60

NFA vs. DFA

• NFA: often easier (and smaller) to write down, esp.
starting from a regular expression
• non-determinism: not immediately transferable to an

algo

a

ε

a

ε

ε

b

a

a b

b

Section
From regular expressions to NFAs
(Thompson’s construction)

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-62

Why non-deterministic FSA?

Task: recognize :=, <=, and = as three different tokens:

return ASSIGN

return LE

return EQ

: =

< =

=

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-63

return ASSIGN

return LE

return EQ

:

=

< =

=

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-64

What about the following 3 tokens?

return LE

return NE

return LT

< =

< >

<

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-65

return LE

return NE

return LT

<

=

< >

<

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-66

return LE

return NE

return LT

<

=

>

[other]

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-67

Regular expressions → NFA

• needed: a systematic translation (= algo, best an
efficient one)
• conceptually easiest: translate to NFA (with
ε-transitions)
• postpone determinization for a second step
• (postpone minimization for later, as well)

Compositional construction [5]

Design goal: The NFA of a compound regular expression is
given by taking the NFA of the immediate subexpressions
and connecting them appropriately.

• construction slightly3 simpler, if one uses automata with
one start and one accepting state

⇒ ample use of ε-transitions

3It does not matter much, though.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-68

Illustration for ε-transitions

return ASSIGN

return LE

return EQ

: =

< =

=

ε

ε

ε

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-69

Thompson’s construction: basic expressions

basic regular expressions
basic (= non-composed) regular expressions: ε, ∅, a
(for all a ∈ Σ)

ε

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-70

Thompson’s construction: compound
expressions
In the picture, by convention, the state on the left is the
unique initial one, the state on the right is the unique initial
one (if they exist). By building the larger automaton, the
“status” of the initial states and final states may changed, of
course. For instance, in the case of |: a new initial state and
a new accepting state is introduced for the automaton, but
the initial and final states from the two component
automata loose there special status, of course.

. . .r . . .sε

. . .r

. . .s

ε

ε

ε

ε

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-71

Thompson’s construction: compound
expressions: iteration

. . .r

ε

ε

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-72

Example: ab | a
Intro
Here is a small example illustrating the construction. In the
exercises, there will be more.

a

a ε b

1

2 3 4 5

8

6 7

ab | a

ε

a ε b

ε

ε

a

ε

Section
Determinization

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-74

Determinization: the subset construction

Main idea
• Given a non-det. automaton A. To construct a DFA A:
instead of backtracking: explore all successors “at the
same time” ⇒
• each state q′ in A: represents a subset of states from A
• Given a word w: “feeding” that to A leads to the state

representing all states of A reachable via w

• powerset construction
• origin of the construction: Rabin and Scott [4]

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-75

Some notation/definitions

Definition (ε-closure, a-successors)

Given a state q, the ε-closure of q, written closeε(q), is the
set of states reachable via zero, one, or more ε-transitions.
We write qa for the set of states, reachable from q with one
a-transition. Both definitions are used analogously for sets of
states.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-76

Transformation process: sketch of the algo

Input: NFA A over a given Σ
Output: DFA A
1. the initial state: closeε(I), where I are the initial states

of A
2. for a state Q in A: the a-successor of Q is given by

closeε(Qa), i.e.,

Q
a−→ closeε(Qa) (11)

3. repeat step 2 for all states in A and all a ∈ Σ, until no
more states are being added

4. the accepting states in A: those containing at least one
accepting state of A

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-77

Example ab | a

1

2 3 4 5

8

6 7

ab | a

ε

a ε b

ε

ε

a

ε

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-77

Example ab | a

1

2 3 4 5

8

6 7

ab | a

ε

a ε b

ε

ε

a

ε

{1, 2, 6} {3, 4, 7, 8} {5, 8} ab | aa b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-78

Example: identifiers

Remember: regexpr for identifies from equation (6)

1 2 3 4

5 6

9

7 8

10letter ε ε

ε

ε

letter
ε

ε

ε
digit

ε

ε

Identifiers: DFA

{1} {2, 3, 4, 5, 7, 10}

{4, 5, 6, 7, 9, 10}

{4, 5, 7, 8, 9, 10}

letter

letter

digit

digitletter

letter

digit

Section
Minimization

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-81

Minimization

• automatic construction of DFA (via e.g. Thompson):
often many superfluous states
• goal: “combine” states of a DFA without changing the
accepted language

Properties of the minimization algo

Canonicity: all DFA for the same language are transformed
to the same DFA

Minimality: resulting DFA has minimal number of states

• “side effects”: answers two equivalence problems
• given 2 DFA: do they accept the same language?
• given 2 regular expressions, do they describe the same

language?
• modern version: Hopcroft [2].

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-82

Hopcroft’s partition refinement algo for
minimization
• starting point: complete DFA (i.e., error-state possibly
needed)
• first idea: equivalent states in the given DFA may be

identified
• equivalent: when used as starting point, accepting the
same language
• partition refinement:

• works “the other way around”
• instead of collapsing equivalent states:

• start by “collapsing as much as possible” and then,
• iteratively, detect non-equivalent states, and then split

a “collapsed” state
• stop when no violations of “equivalence” are detected

• partitioning of a set (of states):
• worklist: data structure of to keep non-treated classes,
termination if worklist is empty

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-83

Partition refinement: a bit more concrete
• Initial partitioning: 2 partitions: set containing all
accepting states F , set containing all non-accepting
states Q\F
• Loop do the following: pick a current equivalence class
Qi and a symbol a
• if for all q ∈ Qi, δ(q, a) is member of the same class Qj

⇒ consider Qi as done (for now)
• else:

• split Qi into Q1
i , . . . Qk

i s.t. the above situation is
repaired for each Ql

i (but don’t split more than
necessary).

• be aware: a split may have a “cascading effect”: other
classes being fine before the split of Qi need to be
reconsidered ⇒ worklist algo

• stop if the situation stabilizes, i.e., no more split
happens (= worklist empty, at latest if back to the
original DFA)

Partition refinement vs. merging equivalent states
We started earlier by claiming that a naive approach would
probably try to merge equivalent states starting from the
given DFA (with would be a “partition coarsening”), as that
seems more obvious. Now, why is the partition refinement
algo intuitvely a better idea (without going into algorithmic
complexity considerations)?
In a way, the two approaches (refinement vs. coarseing) look
pretty similar. One merges states resp. split states, until no
more merging resp. splitting is neccessary, and then stops.
It’s also not easy to say, which is the shorter route, i.e.,
which approach needs on average the least amount of
iterations (perhaps in the special case where the automaton
comes via Thompson’s construction and determinzation).
There is a significant difference, though, that that’s the
condition to decide when to stop (resp. if still merging resp.
splitting is necessary). In Hopcrof’s refinement approach,
the check is local. The condition concerns the next single
edges originating in a (meta)-state. If they violate the
determinism-requirement: then split, otherwise not.
The condition on the merging approach is not-local. They
require to check wether to states accept the same language.
That cannot be checked by the looking one step ahead,
checking the outgoing edges. That involves checking all
reachable states, and is a much more complicated condition.
Perhaps some memoization (remembering and caching
(partial) earlier checks) can help a bit, but Hopcroft’s
partitioning refinment seems not only more clever, it looks
also superior.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-84

Split in partition refinement: basic step

q1

q2

q3

q4

q5

q6

a
b

c
d

e

a

a

a

a
a

a

• before the split {q1, q2, . . . , q6}
• after the split on a: {q1, q2}, {q3, q4, q5}, {q6}

Completed automaton

{1} {2, 3, 4, 5, 7, 10}

{4, 5, 6, 7, 9, 10}

{4, 5, 7, 8, 9, 10}error

letter

letter

digit

digitletter

letter

digit

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-86

Minimized automaton (error state omitted)

start in_idletter

letter

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-87

Another example: partition refinement &
error state

(a | ε)b∗ (12)

1 2

3

a

b

b

b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-88

Partition refinement

error state added

1 2

3 error

a

b

b

b

a

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-88

Partition refinement
initial partitioning

1 2

3 error

a

b

b

b

a

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-88

Partition refinement
split after a

1 2

3 error

a

b

b

b

a

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-89

End result (error state omitted again)

{1} {2, 3}

a

b

b

Section
Scanner implementations and scan-
ner generation tools

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-91

Tools for generating scanners

• scanners: simple and well-understood part of compiler
• hand-coding possible
• mostly better off with: generated scanner
• standard tools lex / flex (also in combination with
parser generators, like yacc / bison
• variants exist for many implementing languages
• based on the results of this section

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-92

Main idea of (f)lex and similar

• output of lexer/scanner = input for parser
• programmer specifies regular expressions for each
token-class and corresponding actions (and whitespace,
comments etc.)
• the spec. language offers some conveniences (extended
regexpr with priorities, associativities etc) to ease the
task
• automatically translated to NFA (e.g. Thompson)
• then made into a deterministic DFA (“subset
construction”)
• minimized (with a little care to keep the token classes
separate)
• implement the DFA (usually with the help of a table
representation)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-93

Sample flex file (excerpt)

1
2 DIGIT [0−9]
3 ID [a−z] [a−z0 −9]∗
4
5 %%
6
7 {DIGIT}+ {
8 p r i n t f ("An i n t e g e r : %s (%d)\n " , yy t ex t ,
9 a t o i (y y t e x t)) ;

10 }
11
12 {DIGIT}+"."{DIGIT}∗ {
13 p r i n t f ("A f l o a t : %s (%g)\n " , yy t ex t ,
14 a t o f (y y t e x t)) ;
15 }
16
17 i f | then | beg in | end | procedure | f u n c t i o n {
18 p r i n t f ("A keyword : %s \n " , y y t e x t) ;
19 }

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

DFA

Implementation of
DFAs

NFA

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-94

References I

Bibliography

[1] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[2] Hopcroft, J. E. (1971). An n log n algorithm for minimizing the states in a finite automaton. In
Kohavi, Z., editor, The Theory of Machines and Computations, pages 189–196. Academic Press,
New York.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

[4] Rabin, M. and Scott, D. (1959). Finite automata and their decision problems. IBM Journal of
Research Developments, 3:114–125.

[5] Thompson, K. (1968). Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419.

	Scanning
	Targets & Outline
	Introduction
	Regular expressions
	DFA
	Implementation of DFAs
	NFA
	From regular expressions to NFAs (Thompson's construction)
	Determinization
	Minimization
	Scanner implementations and scanner generation tools

