Course Script

INF 5110: Compiler con-
struction

INF5110, spring 2021

Martin Steffen

http://www.ifi.uio.no/~msteffen

1

Contents

3 Grammars 1
3.1 Introduction L 1
3.2 Context-free grammars and BNF notation 5
3.3 Ambiguity 15
3.4 Syntax of a “Tiny” language oL 26
3.5 Chomsky hierarchy 29

Chapter

Grammars
What
Learning Targets of this Chapter Contents li,s itﬂ
apout!’
1. (context-free) grammars + BNF 31 Introduction 1
2. ambiguity and other properties 3.2 Context-free grammars and
3. terminology: tokens, lexemes BNF notation 5
4. different trees CPnnected to 3.3 Ambiguity 15
gra.mm.ars/ parsig al f 3.4 Syntax of a “Tiny” language . 26
5. derivations, sentential forms 3.5 Chomsky hierarchy 929

The chapter corresponds to [2,
Section 3.1-3.2] (or [3, Chapter 3]).

3.1 Introduction

The compiler phase after the lexer is the parser. In the lecture, treating that phase is
done in two chapters. The first one, i.e., the current one, covers the underlying concepts,
namely context-free grammars, and one that deals with the parsing process. Context-free
grammars resp. notations for context-free grammars play the same role for parsing that
regular expressions played for lexing. There are grammars other than context-free gram-
mars, later we will at least mention the so-called Chomsky hierarchy, the most well-known
classification of language description formalisms. Context-free languages correspond to
one level there, and actually regular language to another one, actually the simplest level;
regular language can be seen as a restricted form of context-free languages.

Context-free grammars are probably the most-well known example of grammars, so when
speaking simply about “a grammar”, one often just means context-free grammar, though
there are other types as well, as said.

Context-free grammars specify the syntax of a language, as opposed to regular expressions,
which specify the lexical aspect of the language. That’s basically by convention: the syntax
of the language refers to those aspects that can be captured by a context-free grammar.

When it comes to parsing, one typcially don’t make use of the full power of context-free
grammars, one restricts oneself to special, limited forms of them, for practical reasons.
We come to that in the parsing chapter. One restriction one wants to impose on parsing
will already be discussed in this chapter. That is that one does not want the grammar to
be ambigious. Ambiguous grammars are not useful in parsing, as we will discuss.

2 3 Grammars
3.1 Introduction

Bird’s eye view of a parser

sequence tree
of to-=> Parser => represen-
kens tation

e check that the token sequence correspond to a syntactically correct program
— if yes: yield tree as intermediate representation for subsequent phases
— if not: give understandable error message(s)

o we will encounter various kinds of trees
— derivation trees (derivation in a (context-free) grammar)
— parse tree, concrete syntax tree
— abstract syntaz trees

e mentioned tree forms hang together, dividing line a bit fuzzy

« result of a parser: typically AST

(Context-free) grammars

o specifies the syntactic structure of a language
e here: grammar means CFG
e (G derives word w

Parsing

Given a stream of “symbols” w and a grammar G, find a derivation from G that produces
w.

Parsing is concerned with context-free grammars. As mentioned, one will generally not
try to use the full-power of context-free grammars, but make some restrictions. To the
very least, one insists on the grammar to be non-ambiguous. We come to the important
notion of ambiguity of context-free grammars (and of context-free languages) later. More
globally, there are different classes of grammars, some more restritive than context-free
grammars, some more expressive. Actually, regular languages correspond to a restricted
form of context-free languages. They are too restricted, thought, to be used for parsing
(but good enough for lexing).

The slide talks about deriving “words”. In general, words are finite sequences of symbols
from a given alphabet (as was the case for regular languages). In the concrete picture
of a parser, the words are sequences of tokens, which are the elements that come out of
the scanner. A successful derivation leads to tree-like representations. There are various
slightly different forms of trees connected with grammars and parsing, which we will later
see in more detail; for a start now, we will just informally illustrate such tree-like structures,
without distinguishing between (abstract) syntax trees and parse trees.

3 Grammars
3.1 Introduction

Sample syntax tree

program
/\

decs stmts
- |

vardec = val stmt

|
assign-stmt

/\
var expr
| |
X +
T
var var
| |
X y

Syntax tree

The displayed syntax tree is meant “impressionistic” rather than formal. Neither is it
a sample syntax tree of a real programming language, nor do we want to illustrate for
instance special features of an abstract syntax tree vs. a concrete syntax tree (or a parse
tree). Those notions are closely related and corresponding trees might all look similar
to the tree shown. There might, however, be subtle conceptual and representational
differences in the various classes of trees. Those are not relevant yet, at the beginning of
this section.

Natural-language parse tree

S
/\
NP VP
/\ /\

DT N \Y% NP

The dog bites DT N
| |

the man

The concept of context-free grammars goes back to Chomsky (and Schiitzenberger). They
were (also) used in describing natural languages, not computer languages (Chomsky is,
among other things, a linguist). So the tree represents the syntactic structure of a (simple)
English sentence. What the tree is exactly supposed to mean is not too important (VP
and NP stand for verb-phrase and noun-phrase etc.).

4 3 Grammars
3.1 Introduction
“Interface” between scanner and parser

o remember: task of scanner = “chopping up” the input char stream (throw away white
space, etc.) and classify the pieces (1 piece = lexeme)
e classified lexeme = token
» sometimes we use (integer, 742”)
— integer: “class” or “type” of the token, also called token name
— 7427 : wvalue of the token attribute (or just value). Here: directly the lezeme (a
string or sequence of chars)
« a note on (sloppyness/ease of) terminology: often: the token name is simply just
called the token
o for (context-free) grammars: the token (symbol) corrresponds there to terminal
symbols (or terminals, for short)

Token names and terminals

Remark 1 (Token (names) and terminals). We said, that sometimes one uses the name
“token” just to mean token symbol, ignoring its value (like “42” from above). Especially,
in the conceptual discussion and treatment of contexrt-free grammars, which form the core
of the specifications of a parser, the token wvalue is basically irrelevant. Therefore, one
simply identifies “tokens = terminals of the grammar” and silently ignores the presence
of the values. In an implementation, and in lexer/parser generators, the value "42” of an
integer-representing token must obviously not be forgotten, though ... The grammar may
be the core of the specification of the syntactical analysis, but the result of the scanner,
which resulted in the lexeme 742" must nevertheless not be thrown away, it’s only not really
part of the parser’s tasks.

Notations

Remark 2. Writing a compiler, especially a compiler front-end comprising a scanner and
a parser, but to a lesser extent also for later phases, is about implementing representation
of syntactic structures. The slides here don’t implement a lexer or a parser or similar, but
describe in a hopefully unambiguous way the principles of how a compiler front end works
and is implemented. To describe that, one needs “language” as well, such as the English
language (mostly for intuitions) but also “mathematical” notations such as regular ex-
pressions, or in this section, context-free grammars. Those mathematical definitions have
themselves a particular syntax. One can see them as formal domain-specific languages
to describe (other) languages. One faces therefore the (unavoidable) fact that one deals
with two levels of languages: the language that is described (or at least whose syntax is
described) and the language used to descibe that language. We face the same when talking
about reqular languages, in particular reqular expressions. The situation is, of course, the
same when writing a book teaching a human language: there is a language being taught,
and a language used for teaching (both may be different). More closely, it’s analogous
when implementing a general purpose programming language: there is the language used
to implement the compiler on the one hand, and the language for which the compiler is

3 Grammars ’
3.2 Context-free grammars and BNF notation

written for. For instance, one may choose to implement a C-compiler in C. It may in-
crease the confusion, if one chooses to write a C compiler in C ... (that was a bit discussed
in the introductory chapter, under the header "bootstrapping'). Anyhow, the language for
describing (or implementing) the language of interest is called the meta-language, and the
other one described therefore just “the language”.

When writing texts or slides about such syntactic issues, typically one wants to make
clear to the reader what is meant. One standard way are typographic conventions, i.e.,
using specific typographic fonts. I am stressing “nowadays” because in classic texts in
compiler construction, sometimes the typographic choices were limited (maybe written as
“typoscript”, i.e., as “manuscript” on a type writer).

3.2 Context-free grammars and BNF notation

Grammars

in this chapter(s): focus on context-free grammars

e thus here: grammar = CFG

o as in the context of regular expressions/languages: language = (typically infinite) set
of words

e grammar = formalism to unambiguously specify a language

« intended language: all syntactically correct programs of a given progamming lan-

guage

Slogan

A CFG describes the syntax of a programming language. '

Note: a compiler might reject some syntactically correct programs, whose violations cannot
be captured by CFGs. That is done by subsequent phases. For instance, the type checker
will reject many syntactically correct programs that are ill-typed. The type checker is an
important part from the semantic phase (or static analysis phase). A typing discipline is
not a syntactic property of a language (in that it cannot captured most commonly by a
context-free grammar), it’s therefore a “semantic” property.

Remarks on grammars

Sometimes, the word “grammar” is synonymously for context-free grammars, as CFGs
are so central. However, the concept of grammars is more general; there exists context-
sensitive and Turing-expressive grammars, both more expressive than CFGs. Also a re-
stricted class of CFG correspond to regular expressions/languages. Seen as a grammar,
regular expressions correspond so-called left-linear grammars (or alternativelty, right-
linear grammars), which are a special form of context-free grammars.

! And some say, regular expressions describe its microsyntax.

3 Grammars
3.2 Context-free grammars and BNF notation

Context-free grammar

Definition 3.2.1 (CFG). A context-free grammar G is a 4-tuple G = (X7, XN, S, P):

Ll o

2 disjoint finite alphabets of terminals X7 and
non-terminals X

1 start-symbol S € ¥ (a non-terminal)
productions P = finite subset of ¥ x (Xnx + X7)*

terminal symbols: corresponds to tokens in parser = basic building blocks of syntax
non-terminals: (e.g. “expression”, “while-loop”, “method-definition” ...)

grammar: generating (via “derivations”) languages

parsing: the inverse problem

CFG = specification

Further notions

sentence and sentential form
productions (or rules)
derivation

language of a grammar L(G)
parse tree

Those notions will be explained with the help of examples.

BNF notation

popular & common format to write CFGs, i.e., describe context-free languages
named after pioneering (seriously) work on Algol 60

notation to write productions/rules + some extra meta-symbols for convenience and
grouping

Slogan: Backus-Naur form

What regular expressions are for regular languages is BNF for context-free languages.

“Expressions” in BNF

exp — exp op exp | (exp) | number (3.1)
op — + | — | *
“—” indicating productions and “ | ” indicating alternatives

convention: terminals written boldface, non-terminals italic

also simple math symbols like “+” and “(” are meant above as terminals

start symbol here: exp

remember: terminals like number correspond to tokens, resp. token classes. The
attributes/token values are not relevant here.

https://en.wikipedia.org/wiki/ALGOL_60

3 Grammars >
3.2 Context-free grammars and BNF notation

The grammar on the slide consists of 6 productions/rules, 3 for ezpr and 3 for op, the |
is just for convenience. Side remark: Often also ::= is used for —.

Terminals

Conventions are not always 100% followed, often bold fonts for symbols such as + or (are
unavailable or not easily visible. The alternative using, for instance, boldface “identifiers”
like PLUS and LPAREN looks ugly. Some books would write +” and ’(’.

In a concrete parser implementation, in an object-oriented setting, one might choose to
implement terminals as classes (resp. concrete terminals as instances of classes). In that
case, a class name + is typically not available and the class might be named P1lus. Later
we will have a look at how to systematically implement terminals and non-terminals, and
having a class P1lus for a non-terminal ‘4’ etc. is a systematic way of doing it (maybe
not the most efficient one available though).

Most texts don’t follow conventions so slavishly and hope for an intuitive understanding
by the educated reader, that + is a terminal in a grammar, as it’s not a non-terminal,
which are written here in italics.

Different notations

o BNF: notationally not 100% “standardized” across books/tools
“classic” way (Algol 60):

<exp> ::= <exp> <op> <exp>
| (<exp>)
| NUMBER

<op> = 4+ | — | =

o Extended BNF (EBNF) and yet another style

exp — exp (b + 7 | » _» ‘ 9 * b) e‘,L,p (3'2)
‘ 77(77 exp 77)77 ’ 77,n/umber77

e note: parentheses as terminals vs. as metasymbols

“Standard” BNF

Specific and unambiguous notation is important, in particular if you implement a concrete
language on a computer. On the other hand: understanding the underlying concepts by
humans is likewise important. In that way, bureaucratically fixed notations may distract
from the core, which is understanding the principles. XML, anyone? Most textbooks (and
we) rely on simple typographic conventions (boldface, italics). For “implementations” of
BNF specification (as in tools like yacc), the notations, based mostly on ASCII, cannot
rely on such typographic conventions.

3 Grammars
3.2 Context-free grammars and BNF notation

Syntax of BNF

BNF and its variations is a notation to describe “languages”, more precisely the “syntax”
of context-free languages. Of course, BNF notation, when exactly defined, is a language
in itself, namely a domain-specific language to describe context-free languages. It may
be instructive to write a grammar for BNF in BNF, i.e., using BNF as meta-language to
describe BNF notation (or regular expressions). Is it possible to use regular expressions
as meta-language to describe regular expression?

Different ways of writing the same grammar

o directly written as 6 pairs (6 rules, 6 productions) from ¥y X (X5 UX7)*, with “—”
as nice looking “separator”:

exp — expopexp (3.3)
exqp — (exp)
erp — number

op — +

op — —

op — *

o choice of non-terminals: irrelevant (except for human readability):

E — EOE | (E) | number (3.4)
0~ 41— 1=

o still: we count 6 productions

Grammars as language generators
Deriving a word:

Start from start symbol. Pick a “matching” rule to rewrite the current word to a new one;
repeat until terminal symbols, only.

e non-deterministic process

o rewrite relation for derivations:
— one step rewriting: wi = wo
— one step using rule n: wy =, wo
— many steps: =", etc.

Non-determinism means, that the process of derivation allows choices to be made, when
applying a production. One can distinguish two forms of non-determinism here: 1) a
sentential form contains (most often) more than one non-terminal. In that situation, one
has the choice of expanding one non-terminal or the other. 2) Besides that, there may be
more than one production or rule for a given non-terminal. Again, one has a choice.

3 Grammars
3.2 Context-free grammars and BNF notation

As far as 1) is concerned. whether one expands one symbol or the other leads to different
derivations, but won’t lead to different derivation trees or parse trees in the end. Below,
we impose a fixed discipline on where to expand. That leads to left-most or right-most
derivations.

Language of grammar G

L(G) ={s| start =" s and s € ¥}}

Example derivation for (number—number)+number

o
8

S R I R

(

(op eIp) op exp
(n op exp) op exp
(n— e:cp) op exp
(n—

(

(

o underline the “place” where a rule is used, i.e., an occurrence of the non-terminal
symbol is being rewritten/expanded
e here: leftmost derivation?

Right-most derivation

exp op exp
ezpopn
exp*n

(Ep op exp)*n
(exp op n)*n
(ezp—n)*n
(n—n)*n

S R

o other (“mixed”) derivations for the same word possible

2We’ll come back to that later, it will be important.

10 3 Grammars
3.2 Context-free grammars and BNF notation

Some easy requirements for reasonable grammars

o all symbols (terminals and non-terminals): should occur in a some word derivable
from the start symbol

o words containing only non-terminals should be derivable

o an example of a silly grammar G (start-symbol A)

A — Bx
B — Ay
C — =z

. L(G) =0

e those “sanitary conditions”: minimal “common sense” requirements

There can be further conditions one would like to impose on grammars besides the one
sketched. A CFG that derives ultimately only 1 word of terminals (or a finite set of those)
does not make much sense either. There are further conditions on grammar characterizing
their usefulness for parsing. So far, we mentioned just some obvious conditions of “useless”
grammars or “defects” in a grammer (like superfluous symbols). “Usefulness conditions”
may refer to the use of e-productions and other situations. Those conditions will be
discussed when the lecture covers parsing (not just grammars).

Remark 3 (“Easy” sanitary conditions for CFGs). We stated a few conditions to avoid
grammars which technically qualify as CFGs but don’t make much sense, for instance to
avoid that the grammar is obviously empty; there are easier ways to describe an empty set

There’s a catch, though: it might not immediately be obvious that, for a given G, the
question L(G) =" () is decidable!

Whether a reqular expression describes the empty language is trivially decidable. Whether
or not a finite state automaton descibes the empty language or not is, if not trivial, then
at least a very easily decidable question. For context-sensitive grammars (which are more
expressive than CFG but not yet Turing complete), the emptyness question turns out to be
undecidable. Also, other interesting questions concerning CFGs are, in fact, undecidable,
like: given two CFGs, do they describe the same language? Or: given a CFG, does
it actually describe a reqular language? Most disturbingly perhaps: given a grammar,
it’s undecidable whether the grammar is ambiguous or not. So there are interesting and
relevant properties concerning CFGs which are undecidable. Why that is, is not part of
the pensum of this lecture (but we will at least have to deal with the important concept
of grammatical ambiguity later). Coming back for the initial question: fortunately, the
emptyness problem for CFGs is decidable.

Questions concerning decidability may seem not too relevant at first sight. Fven if some
grammars can be constructed to demonstrate difficult questions, for instance related to
decidability or worst-case complexity, the designer of a language will not intentionally try
to achieve an obscure set of rules whose status is unclear, but hopefully strive to capture in
a clear manner the syntactic principles of an equally hopefully clearly structured language.
Nonetheless: grammars for real languages may become large and complex, and, even if

3 Grammars
3.2 Context-free grammars and BNF notation

conceptually clear, may contain unexpected bugs which makes them behave unexpectedly
(for instance caused by a simple typo in one of the many rules).

In general, the implementor of a parser will often rely on automatic tools (“parser gener-
ators”) which take as an input a CFG and turns it in into an implementation of a recog-
nizer, which does the syntactic analysis. Such tools obviously can reliably and accurately
help the implementor of the parser automatically only for problems which are decidable.
For undecidable problems, one could still achieve things automatically, provided one would
compromise by not insisting that the parser always terminates (but that’s generally is seen
as unacceptable), or at the price of approximative answers. It should also be mentioned
that parser generators typcially won’t tackle CFGs in their full generality but are tailor-
made for well-defined and well-understood subclasses thereof, where efficient recognizers
are automaticlly generatable. In the part about parsing, we will cover some such classes.

Parse tree

 derivation: if viewed as sequence of steps = linear “structure”
o order of individual steps: irrelevant

e = order not needed for subsequent phases

e parse tree: structure for the essence of derivation

o also called concrete syntax tree.

exp
-
2 exrp 3 op 4 exp
| I |
n + n

o numbers in the tree
— not part of the parse tree, indicate order of derivation, only
— here: leftmost derivation

There will be abstract syntax trees, as well, in contrast to concrete syntax trees or parse
trees covered here.

Another parse tree (numbers for right-most derivation)

exp
B e
4 exp 3op 2 exp
—_ I |
(® eap) * n
/'\
8 7 6

12 3 Grammars
3.2 Context-free grammars and BNF notation

Abstract syntax tree

e parse tree: contains still unnecessary details

o specifically: parentheses or similar, used for grouping

e tree-structure: can express the intended grouping already

o remember: tokens contain also attribute values (e.g.: full token for token class n may

contain lexeme like 742”7 ...)
Lexp
T
2 exp 3op Lexp +
n + n 3 4
AST vs. CST

e parse tree
— important conceptual structure, to talk about grammars and derivations
— most likely not explicitly implemented in a parser
e AST is a concrete data structure
— important IR of the syntax (for the language being implemented)
— written in the meta-language
— therefore: nodes like + and 3 are no longer tokens or lexemes
— concrete data stuctures in the meta-language (C-structs, instances of Java classes,
or what suits best)
— the figure is meant schematic, only
— produced by the parser, used by later phases
— note also: we use 3 in the AST, where lexeme was "3"
= at some point, the lexeme string (for numbers) is translated to a number in the
meta-language (typically already by the lexer)

Plausible schematic AST (for the other parse tree)

*

T

- 42

/N

34 3

e this AST: rather “simplified” version of the CST
o an AST closer to the CST (just dropping the parentheses): in principle nothing
“wrong” with it either

3 Grammars 13
3.2 Context-free grammars and BNF notation

We should repeat: the shown ASTs are “schemantic” and for illustration. It’s best to keep
in mind, that in a concrete compiler, the AST is a data structure. A specific source file is
then represented as a specific tree, i.e., as instance of the AST data structure.

Conditionals

Conditionals G4

stmt — if-stmt | other (3.5)
if-stmt — if (exp) stmt
| if (exp) stmt else stmt
ezp — 0 | 1

Conditionals in one syntactic form or other occur in basically all programming languages.
As of now, we use the conditionals for not much more than pointing out something that
should be rather obvious: there is (always) more than one way to describe an intended
language by a context-free grammar. The same was the case for regular expressions, as
well (and generally for all notational systems): there is always more than one way to
describe things.

Of course, with more than one formulation, some may “better” than others. That may
refer to “clarity” or readability for humans. But there are also aspects relevant for parsing.
One formulation of a grammar may be in a form that is unhelpful for parsers. It may
also depend of the chosen style of parsers: some formulations pose problems for top-down
parsers resp. for bottom-up parsers. Issues like that will be discussed in the chapter of
parsing, here we are still covering grammars. In particular on connection with conditionals
(which is a classic example): the chosen syntax here will lead to ambiguity, which we will
discuss later. In this particular examples, both formulations of the grammar are ambigu-
ous (it will be a classical example of ambiguitity). Actually, it’s quite straightforward to
convince oneself, that one cannot reformulate the grammar even further, to get an equiv-
alent but unambigous grammar. The ambiguity goes deeper (in this case): the language
itself is ambiguous. We pick up on those issues later.

Parse tree

if (0) other else other

14 3 Grammars
3.2 Context-free grammars and BNF notation

stmt
if-stmt
if (exp) stmt else stmt
0 other other
Another grammar for conditionals
Conditionals G5
stmt — if-stmt | other (3.6)
if-stmt — if (exp) stmt else—part
else—part — elsestmt | e
excp — 0| 1

Abbreviation

€ = empty word

We have encountered the symbol € before, in the context of regular languages. In regular
expressions, the symbol € represents "the same"” as here: the empty word, the absence of
a symbol, the empty sequence, etc.

A further parse tree + an AST

stmt
if-stmt
P S
if (erp) stmt else—part
IVAN
0 other else stmt

other

3 Grammars 15
3.3 Ambiguity

COND
T
0 other other

A potentially missing else part may be represented by null-“pointers” in languages like
Java.

In functional languages, one could use “option” types to represent in a safer way the fact
that the else part is there or may be missing. With null-pointers, there is always the
danger that the programmer forgets that the value may not be there and then forgets to
check that case properly, and cause some null pointer exception.

3.3 Ambiguity

Before we mentioned some “easy” conditions to avoid “silly” grammars, without going
into detail. Ambiguity is more important and complex. Roughly speaking, a grammar is
ambiguous, if there exist sentences for which there are two different parse trees. That’s
in general highly undesirable, as it means there are sentences with different syntactic in-
terpretations (which therefore may ultimately interpreted differently). That is mostly a
no-no, but even if one would accept such a language definition, parsing would be problem-
atic, as it would involve backtracking trying out different possible interpretations during
parsing (which would also be a no-no for reasons of efficiency) In fact, later, when dealing
with actual concrete parsing procedures, they cover certain specific forms of CFG (with
names like LL(1), LR(1), etc.), which are in particular non-ambiguous. To say it differ-
ently: the fact that a grammar is parseable by some, say, LL(1) top-down parser (which
does not do backtracking) implies directly that the grammar is unambiguous. Similar for
the other classes we’ll cover.

Note also: given an ambiguous grammar, it is often possible to find a different “equivalent”
grammar that ¢s unambiguous. Even if such reformulations are often possible, it’s not
guaranteed: there are context-free languages which do have an ambiguous grammar, but
no unambigous one. In that case, one speaks of an ambiguous context-free language. We
concentrate on ambiguity of grammars.

Now that we have said that ambiguity in grammars must be avoided, we should however
also say, that, in certain situations, one can in some way live with it. One way of living
with it is: imposing extra conditions on the way the grammar is used, that removes
it (in a way, priorizing some rules over others). In practice, that often takes the form
of specifying assiciativity and binding powers of operators, like making clear that 1 +
2 + 3 is “supposed” to be interpreted as (1 + 2) + 3 (addition is left-associative) and
142 x 3 is the same as 1 + (2 x 3) (multiplication binds stronger than addition). The
grammar as such is ambigiguous, but that’s fine, since one can make it non-ambiguous by
imposing such additional constraints. And not only can one do that technically, that form
of disambiguation is also transparent for the user.

16 3 Grammars
3.3 Ambiguity

Tempus fugit ...

picture source: wikipedia

One famous sentence often used to illustrate ambiguity in natural languages is “Time
flies like a banana”. That sentence is often attributed to Groucho Marx, but it’s a bit
aprocryphal.

Ambiguous grammar

Definition 3.3.1 (Ambiguous grammar). A grammar is ambiguous if there exists a word
with two different parse trees.

Remember grammar from equation (3.1):

exp — exp op exp | (exp) | number

op — + | — | *
Consider:
n—n+n
2 CTS’s
exp

erp op erp

T | |

erp op erp * n

3 Grammars
3.3 Ambiguity

exp
- T
exp op exp
n — exp op exp
| | |
n * n
2 resulting ASTs
* _
/‘\ /\
— 42 34 *
T /\
34 3 3 42

different parse trees = different ASTs = different meaning

Side remark: different meaning

The issue of “different meaning” may in practice be subtle: is (z + y) — z the same as
x + (y — 2z)? In principle yes, but what about MAXINT ?

The slides stipulates that difffernet parse trees lead to different ASTs and this in turn
into different meanings. That is principle correct, but there may be special circumstances
when that’s not the case. Different CSTs may actually result in the same AST. Or also:
it may lead to different AST which turn out to have the same meaning. The slide gave
an example of where it’s debatable whether two different ASTs have the same meaning or
not.

Precendence & associativity

o one way to make a grammar unambiguous (or less ambiguous)
« for instance:

binary op’s precedence associativity

+, — low left
X, / higher left
T highest right

e a7 b written in standard math as a:
54+3/5x2+41213
5+3/5 x 2+ 42°
(5+((3/5 x 2)) + (4®)) .

o mostly fine for binary ops, but usually also for unary ones (postfix or prefix)

3 Grammars
Unambiguity without imposing explicit associativity and precedence

e removing ambiguity by reformulating the grammar
e precedence for op’s: precedence cascade
— some bind stronger than others (* more than +)
— introduce separate non-terminal for each precedence level (here: terms and fac-
tors)

The method sketched here (“precedence cascade”) is a receipe to massage a grammar in
such a way that the result captures intended precedences (and at the same time their
associativities). It works in that way for syntax using binary operators. That receipe is
commonly illustrated using numerical expressions. We will encounter analogous tasks also
in the exercises.

Expressions, revisited

e associativity
— left-assoc: write the corresponding rules in left-recursive manner, e.g.:

exp — exp addop term | term

— right-assoc: analogous, but right-recursive
— NON-assoc:
exp — term addop term | term

factors and terms

etp — exp addop term | term (3.7)
addop — + | —
term — term mulop factor | factor
mulop — *
factor — (exp) | number
34 — 3 %42
exp
exp addop term
term — term mulop factor
| | | |
factor factor * n

n n

3 Grammars 19
3.3 Ambiguity

34 —3—42
erp
T
exp addop term
erp addop term — factor
| | | |
term — factor n
| |
factor n
|
n
Ambiguity

As mentioned, the question whether a given CFG is ambiguous or not is undecidable.
Note also: if one uses a parser generator, such as yacc or bison (which cover a practically
usefull subset of CFGs), the resulting recognizer is always deterministic. In case the
construction encounters ambiguous situations, they are “resolved” by making a specific
choice. Nonetheless, such ambiguities indicate often that the formulation of the grammar
(or even the language it defines) has problematic aspects. Most programmers as “users” of
a programming language may not read the full BNF definition, most will try to grasp the
language looking at sample code pieces mentioned in the manual, etc. And even if they
bother studying the exact specification of the system, i.e., the full grammar, ambiguities
are not obvious (after all, it’s undecidable, at least the problem in general). Hidden
ambiguities, “resolved” by the generated parser, may lead to misconceptions as to what
a program actually means. It’s similar to the situation, when one tries to study a book
with arithmetic being unaware that multiplication binds stronger than addition. Without
being aware of that, some sections won’t make much sense. A parser implementing such
grammars may make consistent choices, but the programmer using the compiler may not
be aware of them. At least the compiler writer, responsible for designing the language,
will be informed about “conflicts” in the grammar and a careful designer will try to
get rid of them. This may be done by adding associativities and precedences (when
appropriate) or reformulating the grammar, or even reconsider the syntax of the language.
While ambiguities and conflicts are generally a bad sign, arbitrarily adding a complicated
“precedence order” and “associativities” on all kinds of symbols or complicate the grammar
adding ever more separate classes of nonterminals just to make the conflicts go away is
not a real solution either. Chances are, that those parser-internal “tricks” will be lost
on the programmer as user of the language, as well. Sometimes, making the language
simpler (as opposed to complicate the grammar for the same language) might be the
better choice. That can typically be done by making the language more verbose and
reducing “overloading” of syntax. Of course, going overboard by making groupings etc.\
of all constructs crystal clear to the parser, may also lead to non-elegant designs. Lisp is
a standard example, notoriously known for its extensive use of parentheses. Basically, the
programmer directly writes down syntax trees, which certainly removes ambiguities, but

3 Grammars
3.3 Ambiguity

still, mountains of parentheses are also not the easiest syntax for human consumption (for
most humans, at least). So it’s a balance (and at least partly a matter of taste, as for
most design choices and questions of language pragmatics).

But in general: if it’s enormously complex to come up with a reasonably unambigous
grammar for an intended language, chances are, that reading programs in that language
and intutively grasping what is intended may be hard for humans, too.

Note also: since already the question, whether a given CFG is ambiguous or not is un-
decidable, it should be clear, that the following question is undecidable, as well: given a
grammar, can | reformulate it, still accepting the same language, that it becomes unam-
biguous?

Real life example

left associative

! Operator Precedence

Java performs operations assuming the following ing (or precedence)
rules if parentheses are not used to determine the of evaluation (op-
erators on the same line are evaluated in left-to-right order subject to the
conditional evaluation rule for && and ||). The operations are listed be-
low from highest to lowest precedence (we use {exp) to denote an atomic
or parenthesized expression):

postixops [. ({exp)) (exp) ++ (exp) ——

 prefix ops ++(exp) ——(exp) —(exp) “(exp) !(exp)
creation/cast new ((type))(exp) -
muit./div. * [%

add./subt. il =

shift << 2> >>> :

comparison < <= > >= instanceof

equality == I=

bitwise-and &

bitwise-xor -

_ bitwise-or |

and &&

or I d

coqditionnl (bool_exp)? (trueval): !faise_val)
assignment =

opassignment 4= —= x= /= Y%=

bitwise assign. >>= <<= >>>=

booleanassign. &= "= |=

The scan is taken from an edition of the book “Java in a nutshell”. The next example

covering C—++ is clipped from the net

3 Grammars

3.3 Ambiguity

Another example

cppreference.com Create account [Search Q

Page Discussion View Edit History

Ct+ Co+ language Expressions

C+ + Operator Precedence

The following table lists the precedence and associativity of C++ operators. Operators are listed top to bottom, in
descending precedence.

Operator Description
1 Scope resolution Left-to-right
at+ a-- suffixipostfix increment and decrement
typel) typel} | Functional cast
2 a() Function call
all Subscript
o B Member access
ta --a prefix increment and decrement Right-to-left
+a -a Unary plus and minus
[Logical NOT and bitwise NOT
(type) C-style cast
3 *a indirection (dereference)
sa Address-of
sizeof Size-oftnetz1]
new newl] Dynamic memory allocation
delete delete[]|Dynamic memory deallocation
a o Pointer-to-member Left-to-right
5 a*h a/b asb division, and remainder
6 atb ab Addition and subtraction
7 <« > Bitwise left shift and right shift
R For relational operators < and < respectively
For relational operators > and = respectively
° For relational operators = and = respectively
10 Bitwise AND
. Bitwise XOR (exclusive or)
12 | Bitwise OR (inclusive or)
13 & Logical AND
14 Il Logical OR
ath:c Ternary conditionallnete 2! Right-to-left
throw throw operator
Direct assignmert (provided by defaut for C-++ classes)
15 Compound assignment by sum and difference
Compound assignment by product, quotient, and remainder
Compound assignment by bitwise left shift and right shift
Compound assignment by bitwise AND, XOR, and OR
16 2 Comma Left-to-right

1. 1 The operand of sizeof can't be a C-style type cast: the expression sizeof (int) * p s unambiguously
interpreted as (sizeof (int)) * p, but not sizeof ((int)*p
2. 1 The expression in the middle of the conditional operator (between ? and :) is parsed as if parenthesized: its
precedence relative to ?: is ignored.
When parsing an expression, an operator which is listed on some row of the table above with a precedence will be
bound tighter (as if by parentheses) to its arguments than any operator that is listed on a row further below it with a
lower precedence. For example, the expressions std::cout << a & b and *p++ are parsed as

(std::cout << a) & b and *(p++) ,andnotas std::cout << (a & b) or (*p)++
Operators that have the same precedence are bound to their arguments in the direction of their associativity. For
example, the expression a = b = c isparsedas a = (b = c) ,andnotas (a = b) = c because of right-to-left

associativity of assignment, but a + b - c is parsed (a + b) - ¢ andnot a + (b - c) because of left-to-right
associativity of addition and subtraction

Associativity specification is redundant for unary operators and is nly shown for completeness: unary prefix operators
ahways associate right-to-left ((delete ++*p is delete (++(*p))) and unary postfix operators always associate
left-to-right (a[1][2]++ is ((a[1]) [2])++). Note that the associativity is meaningful for member access operators,
even though they are grouped with unary postfix operators: a.b++ is parsed (a.bl++ and not a. (b++)

Operator precedence is unaffected by operator overloading. For example, 'std: icout << a ? b : c; parses as

Non-essential ambiguity

left-assoc

stmt-seq — stmit-seq;stmt | stmt
stmt — S

stmt-seq

- I

stmit-seq stmt

— |

stmt-seq 5 stmt S

I |
stmt S

|
S

e

21

3 Grammars
Non-essential ambiguity (2)

right-assoc representation instead

stmt-seq — stmt; stmt-seq | stmt

stmt — S
stmt-seq
- I
stmt H stmt-seq
| /l\
S stmt 5 stmt-seq
| |
S stmt
|
S
Possible AST representations
/SeqN Sea
S S S S—S—=>S

Dangling else

Nested if's

if (0)if (1) other else other

Remember grammar from equation (3.5):

stmt — if-stmt | other
if-stmt — if (exp) stmt
| if (exp) stmt else stmt
ecp — 0] 1

3 Grammars
3.3 Ambiguity

Should it be like this ...

stmt
|
if-stmt
|
if (exp) stmt else stmt
| | |
0 if-stmt other

/‘\
if (ew) stmt
| |

1 other
or like this
stmt
|
if-stmt
/‘\
if (exp) stmt
| I
0 if-stmt

e Y

if (exp) stmtelse stmt

1 other other

e common convention: connect else to closest “free” (= dangling) occurrence

Unambiguous grammar
Grammar

stmt — matched__stmt | unmatch__stmt
matched__stmt — if (exp) matched__stmt else matched__stmt
| other
— if (exp) stmt
| if (exp) matched __stmt else unmatch__stmt
exp — 0] 1

unmatch__stmt

e never have an unmatched statement inside a matched one

e complex grammar, seldomly used

« instead: ambiguous one, with extra “rule”: connect each else to closest free if
o alternative: different syntax, e.g.,

3 Grammars
3.3 Ambiguity

— mandatory else,
— or require endif

CST

stmt

unmatch__stmt

P

if (exp) stmt
|
0 matched stmt
) =
if (exp) elsematched__stmt
| |
1 other

Adding sugar: extended BNF

» make CFG-notation more “convenient” (but without more theoretical expressiveness)
e syntactic sugar

EBNF

Main additional notational freedom: use regular expressions on the rhs of productions.
They can contain terminals and non-terminals.

o EBNF: officially standardized, but often: all “sugared” BNFs are called EBNF
e in the standard:
— o written as {a}
— a7 written as [a]
« supported (in the standardized form or other) by some parser tools, but not in all
« remember equation (3.2)

The notion of syntactic sugar was mentioned earlier, when discussing sugared versions of
regular expression. They were consequently called extended regular expressions. Syntactic
sugar is a techical term. The process of removing syntactic sugar (typically by the parser
when generating the abstract syntax tree), is called desugaring.

3 Grammars
EBNF examples

A — Ba} for A— Ao | B
A — {a}p for A—aA | S

stmt-seq — stmt {; stmt}
stmt-seq — {stmt;} stmt
if-stmt — if (exp) stmtlelse stmi]

greek letters: for non-terminals or terminals.

Some yacc style grammar

Let’s also have a short look at how grammars are writting in parser generators. Here’s an
example code snippet. It sketches the syntax in yacc-style for an example involving simple
arithmetical expressions. That example, in one form or the other, is almost unavoidable,
when looking at such tools (and lectures like this one): the always illustrate they syntax
and usage with a small expression example as warm-up. It’s like the “hello-world” for yacc
and friends.

Without going into details, we see additional information beyond the pure grammar. The
grammar is on the “lower left corner” of the file. There is additional information before that
part. The grammar as such is ambiguous; we have seen similar grammars in the lectures.
It’s made unabigiguous by specifying appropriate associativities and precedences. So one
does not need to massage such grammars using the technique of precendence cascades, we
have discussed earlier.

One thing that we don’t have discussed yet is the “effect” of the grammar, or the action
part. That’s written, for each production or rule, on the right-hand side, in parentheses.
That specifies what the parser should return, when processes a given production of the
grammar during parsing.

In a standard setting, the action should give back an abstract syntazx tree, which then is
handed down to subsequent phases of a compiler, for instance, taking the AST and doing
a type check on it before continuing even further. The expression example illustrates
abstract syntax trees. Instead it uses the action part of the specification to do something
simpler: it calculates the numerical value of the corresponding expression. In a way, the
parser “executes” the code already during parsing. That’s possible, because the grammar
is so very simple. In more complex setting, doing computations is beyond the power of
the parser resp. cannot be captured by (actions on a) context-free grammar. That’s
why further phases in a compiler are needed, until the resulting code is handed over to a
execution platform. Compilers don’t execute code themselves (at least not in general.)

The result of a action as far as productions for the expression non-terminal is concerned
is thus a number. In one of the first lines, the corresponding type (in the implementing
language) is defined, namely as double.

2% 3 Grammars
3.4 Syntax of a “Tiny" language

/* Infiz motation calculator —calc x/
7of

#define YYSTYPE double

#include <math.h>

%}

/#* BISON Declarations x/

Y%token NUM

Y%left '—' '4!

%left 's=' '/

%left NEG /* megation —unary minus */
Y%right '~ /* ezponentiation */

/* Grammar follows x/

%%

input : /* empty string =*/
| input line

5

line: '"\n'

exp '\mn' { printf ("\t%.10g\n", $1); }

exp: NUM { 3% = $1; }
| exp '+' exp { $$ = $1 + $3; 1
| exp '—' exp { 8% = $1 — $3; 1
| exp 'x' exp { $% = $1 * $3; !
| exp '/' exp { $% = $1 / $3; !
| '—' exp Y%prec NEG { $$% = —$2; }
| exp 'T' exp { $% = pow ($1, $3); }
| (" exp) { 8 = s$2; }

3.4 Syntax of a “Tiny” language

The section is meant impressionistic mostly. We won’t look in detail at the Tiny language
anyway, but the oblig will be concerned with another quite small language (which we
call “compila”). In this section, there is some hints of how to implement an AST data
structure for TINYin C. Of course, languages like TINYand Compila share quite some
commonalities (expressions, assignments, conditionals). That means, the sketchy hints of
how AST could be designed for TINYcarry over to Compila (mutatis mutandis). However,
the data structures used here are C, and most people won’t use C, but Java (or some other
language).

Later, we will give a “lecture” talking about the oblig; there we will say a bit more about
the design of AST for the oblig in Java. Therefore, this section is not too central, and in
the lecture, I will not waste much time on the C-AST implementation here.

3 Grammars
3.4 Syntax of a “Tiny" language

BNF-grammar for TINY

program
stmt-seq
stmt

if-stmt

repeat-stmt
assign-stmt
read-stmt
write-stmi
expr
COMpParison-op
simple-expr
addop

term

mulop
factor

S N R A AA

stmt-seq

stmi-seq; stmt | stmt

if-stmt | repeat-stmt | assign-stmt
read-stmt | write-stmt

if expr then stmt end

if expr then stmt else stmt end
repeat stmt-sequntil expr
identifier := expr

read identifier

write expr

simple-expr comparison-op simple-expr | simple-expr
< | =

simple-expr addop term | term

+ 1 -
term mulop factor | factor
* |/

(expr) | number | identifier

BNF grammar for Compila20 (parts)

Here is another small language, namely Compila20, the language of the oblig, in the version of last
year. It’s not all of the grammar, just maybe 30%. The version from spring 2021 will be quite
similar (we always make only mild syntactic massagings for each new round).

PROGRAM
DECL
VAR_DECL

PROC_DECL

REC_DECL

PARAMFIELD_DECL

STMT_LIST

Syntax tree nodes

->

"program" NAME "begin" [DECL {";" DECL}] "end"
VAR_DECL | PROC_DECL | REC_DECL
“yar® NAME ":" TYPE [":=" EXP] | ‘"var" NAME ":=" EXP

"procedure" NAME
"(" [PARAMFIELD_DECL { "," PARAMFIELD_DECL } 1 ")"
[":" TYPE]
"begin" [[DECL{";" DECL}] "in"] STMT_LIST "end"
"struct" NAME "{" [PARAMFIELD_DECL

{";" PARAMFIELD_DECL }] "}"

-> NAME ":" TYFE

->

[STMT {";" STMT}]

typedef enum {StmtK,ExpK} NodeKind;
typedef enum {IfK,RepeatK,AssignK,ReadK,WriteK} StmtKind;
typedef enum {OpK, ConstK,IdK} ExpKind;

/+ ExpType is used for type checking x/

28 3 Grammars
3.4 Syntax of a “Tiny" language

typedef enum {Void, Integer,Boolean} ExpType;
#define MAXCHILDREN 3

typedef struct treeNode
{ struct treeNode % child[MAXCHILDREN];
struct treeNode * sibling;
int lineno;
NodeKind nodekind;
union { StmtKind stmt; ExpKind exp;} kind;
union { TokenType op;
int wval;
char % name; } attr;
ExpType type; /* for type checking of exps x/

Comments on C-representation

o typical use of enum type for that (in C)

e enum’s in C can be very efficient

e treeNode struct (records) is a bit “unstructured”

o mnewer languages/higher-level than C: better structuring advisable, especially for languages
larger than Tiny.

 in Java-kind of languages: inheritance/subtyping and abstract classes/interfaces often used
for better structuring

Sample Tiny program

read x; { input as integer }
if 0 < x then { don't compute if x <= 0 }

fact := 1;
repeat
fact := fact » x;
x = x -1
until x = 0;
write fact { output factorial of x }

end

3 Grammars

3.5 Chomsky hierarchy

Abstract syntax tree for a tiny program

®x = x - 1
read if until x = 0;
(%) write fact { output factorial of x }
end
$?;:ig? repeat write
const const assign assign &
(0) (1) (fact) (x)

Some questions about the Tiny grammar

e is the grammar unambiguous?
e How can we change it so that the Tiny allows empty statements?
¢ What if we want semicolons in between statements and not after?

e What is the precedence and associativity of the different operators?

3.5 Chomsky hierarchy

The Chomsky hierarchy

o linguist Noam Chomsky [1]
o important classification of (formal) languages (sometimes Chomsky-Schiitzenberger)
e 4 levels: type 0 languages — type 3 languages
o levels related to machine models that generate/recognize them
e so far: regular languages and CF languages

Overview

rule format languages machines closed
A—aB,A—a regular NFA, DFA all
A — a1Bas CF pushdown U, *, o
automata
arAag = a1 fas context- (linearly re- | all
sensitive stricted au-
tomata)
a—= B, aFe recursively Turing ma- | all, except
enumerable chines complement

30 3 Grammars
3.5 Chomsky hierarchy

Conventions
e terminals a,b,... € 3,
e non-terminals A, B,... € Xy

o general words o, 3... € (X UXy)*

Remark: Chomsky hierarchy

The rule format for type 3 languages (= regular languages) is also called right-linear. Alternatively,
one can use left-linear rules. If one mixes right- and left-linear rules, one leaves the class of regular
languages. The rule-format above allows only one terminal symbol. In principle, if one had
sequences of terminal symbols in a right-linear (or else left-linear) rule, that would be ok too.

Phases of a compiler & hierarchy
“Simplified” design?

1 big grammar for the whole compiler? Or at least a CSG for the front-end, or a CFG combining
parsing and scanning?

theoretically possible, but bad idea:

o efficiency
e bad design
¢ especially combining scanner + parser in one BNF:
— grammar would be needlessly large
— separation of concerns: much clearer/ more efficient design
o for scanner/parsers: regular expressions + (E)BNF: simply the formalisms of choice!
— front-end needs to do more than checking syntax, CFGs not expressive enough
— for level-2 and higher: situation gets less clear-cut, plain CSG not too useful for compilers

Bibliography 31
Bibliography

Bibliography

[1] Chomsky, N. (1956). Three models for the description of language. IRE Transactions on
Information Theory, 2(113-124).

[2] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

Index

Index

L(G) (language of a grammar), 6

abstract syntax tree, 2, 12

Algol 60, 6

alphabet, 6

ambiguity, 15, 16
non-essential, 21

ambiguous grammar, 16

associativity, 17

AST, 2

Backus-Naur form, 6
BNF, 6
extended, 24

CFG, 6
Chomsky hierarchy, 1, 29
concrete syntax tree, 2
conditional, 13
conditionals, 14
contex-free grammar
emptyness problem, 10
context-free grammar, 1, 6

dangling else, 22
derivation, 11

left-most, 8

leftmost, 9

right-most, 9, 11
derivation (given a grammar), 8
derivation tree, 2

EBNF, 7, 24, 25

grammar, 1, 5
ambiguous, 16, 19
context-free, 1, 6
left-linear, 5, 30
right-linear, 5

language

of a grammar, 9
left-linear grammar, 5, 30
leftmost derivation, 9
lexeme, 4

meta-language, 8, 12
microsyntax
vs. syntax, 5

natural language, 3
Noam Chomsky, 3

non-terminals, 6

parse tree, 2, 6, 11, 12
parsing, 1, 2, 6
precedence

Java, 20
precedence cascade, 18
precendence, 17
production (of a grammar), 6

regular expression, 8
right-linear grammar, 5
right-most derivation, 9
rule (of a grammar), 6

scannner, 4

sentence, 6

sentential form, 6

sugar, 24

syntactic sugar, 24

syntax, 1, 5

syntax tree
abstract, 2
abstract vs. concrete, 3
concrete, 2

terminal symbol, 4
terminals, 6

token, 4

type checking, 5
typographic conventions, 7

	Contents
	Grammars
	Introduction
	Context-free grammars and BNF notation
	Ambiguity
	Syntax of a ``Tiny'' language
	Chomsky hierarchy

