
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2021

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

4 Parsing 1
4.1 Introduction to parsing . 1
4.2 Top-down parsing . 4
4.3 First and follow sets . 11
4.4 Massaging grammars . 24
4.5 LL-parsing (mostly LL(1)) . 32
4.6 Error handling . 52
4.7 Bottom-up parsing . 55

4 Parsing 1

4
Parsing
Chapter

What
is it

about?
Learning Targets of this Chapter
1. top-down and bottom-up parsing
2. look-ahead
3. first and follow-sets
4. different classes of parsers (LL,

LALR)

Contents

4.1 Introduction to parsing . . . 1
4.2 Top-down parsing 4
4.3 First and follow sets 11
4.4 Massaging grammars 24
4.5 LL-parsing (mostly LL(1)) . . 32
4.6 Error handling 52
4.7 Bottom-up parsing 55

4.1 Introduction to parsing

What’s a parser generally doing

task of parser = syntax analysis

• input: stream of tokens from lexer
• output:

– abstract syntax tree
– or meaningful diagnosis of source of syntax error

• the full “power” (i.e., expressiveness) of CFGs not used
• thus:

– consider restrictions of CFGs, i.e., a specific subclass, and/or
– represented in specific ways (no left-recursion, left-factored . . .)

Syntax errors (and other errors)

Since almost by definition, the syntax of a language are those aspects covered by a context-
free grammar, a syntax error thereby is a violation of the grammar, something the parser
has to detect. Given a CFG, typically given in BNF resp. implemented by a tool sup-
porting a BNF variant, the parser (in combination with the lexer) must generate an AST

2 4 Parsing
4.1 Introduction to parsing

exactly for those programs that adhere to the grammar and must reject all others. One
says, the parser recognizes the given grammar. An important practical part when rejecting
a program is to generate a meaningful error message, giving hints about potential locations
of the error and potential reasons. In the most minimal way, the parser should inform
the programmer where the parser tripped, i.e., telling how far, from left to right, it was
able to proceed and informing where it stumbled: “parser error in line xxx/at character
position yyy”). One typically has higher expectations for a real parser than just the line
number, but that’s the basics.

It may be noted that also the subsequent phase, the semantic analysis, which takes the
abstract syntax tree as input, may report errors, which are then no longer syntax errors
but more complex kind of errors. One typical kind of error in the semantic phase is a type
error. Also there, the minimal requirement is to indicate the probable location(s) where
the error occurs. To do so, in basically all compilers, the nodes in an abstract syntax
tree will contain information concerning the position in the original file the resp.\ node
corresponds to (like line-numbers, character positions). If the parser would not add that
information into the AST, the semantic analysis would have no way to relate potential
errors it finds to the original, concrete code in the input. Remember: the compiler goes
in phases, and once the parsing phase is over, there’s no going back to scan the file again.

Lexer, parser, and the rest

lexer parser
rest of
the front
end

symbol table

source
program

tokentoken

get next

token

AST interm.
rep.

Top-down vs. bottom-up

• all parsers (together with lexers): left-to-right
• remember: parsers operate with trees

– parse tree (concrete syntax tree): representing grammatical derivation
– abstract syntax tree: data structure

• 2 fundamental classes
• while parser eats through the token stream, it grows, i.e., builds up (at least concep-

tually) the parse tree:

4 Parsing
4.1 Introduction to parsing 3

Bottom-up

Parse tree is being grown from the leaves to the root.

Top-down

Parse tree is being grown from the root to the leaves.

AST

Parsing restricted classes of CFGs

• parser: better be “efficient”
• full complexity of CFLs: not really needed in practice
• classification of CF languages vs. CF grammars, e.g.:

– left-recursion-freedom: condition on a grammar
– ambiguous language vs. ambiguous grammar

• classification of grammars ⇒ classification of languages
– a CF language is (inherently) ambiguous, if there’s no unambiguous grammar

for it
– a CF language is top-down parseable, if there exists a grammar that allows

top-down parsing . . .

• in practice: classification of parser generating tools:
– based on accepted notation for grammars: (BNF or some form of EBNF etc.)

Concerning the need (or the lack of need) for very expressive grammars, one should con-
sider the following: if a parser has trouble to figure out if a program has a syntax error or
not (perhaps using back-tracking), probably humans will have similar problems. So bet-
ter keep it simple. And time in a compiler may be better spent elsewhere (optimization,
semantical analysis).

Classes of CFG grammars/languages

• maaaany have been proposed & studied, including their relationships
• lecture concentrates on

– top-down parsing, in particular
∗ LL(1)
∗ recursive descent

– bottom-up parsing
∗ LR(1)
∗ SLR
∗ LALR(1) (the class covered by yacc-style tools)

• grammars typically written in pure BNF

4 4 Parsing
4.2 Top-down parsing

Relationship of some grammar (not language) classes

unambiguous ambiguous

LR(k)
LR(1)

LALR(1)
SLR
LR(0)

LL(0)

LL(1)
LL(k)

taken from [?]

4.2 Top-down parsing

General task (once more)

• Given: a CFG (but appropriately restricted)
• Goal: “systematic method” s.t.

1. for every given word w: check syntactic correctness
2. [build AST/representation of the parse tree as side effect]
3. [do reasonable error handling]

Schematic view on “parser machine”

. . . if 1 + 2 ∗ (3 + 4) . . .

q0q1

q2

q3 . . .
qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

Note: sequence of tokens (not characters)

4 Parsing
4.2 Top-down parsing 5

Derivation of an expression

Derivation

The slides contain some big series of overlays, showing the derivation. This derivation
process is not reproduced here (resp. only a few slides later as some big array of steps).

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(4.1)

Remarks concerning the derivation

Note:

• input = stream of tokens
• there: 1 . . . stands for token class number (for readability/concreteness), in the

grammar: just number
• in full detail: pair of token class and token value 〈number, 1〉

Notation:

• underline: the place (occurrence of non-terminal where production is used)
• (((((

(
crossed out:
– terminal = token is considered treated
– parser “moves on”
– later implemented as match or eat procedure

6 4 Parsing
4.2 Top-down parsing

Not as a “film” but at a glance: reduction sequence

exp ⇒
term exp′ ⇒
factor term′ exp′ ⇒
((((number term′ exp′ ⇒
numberterm′ exp′ ⇒
number�ε exp′ ⇒
numberexp′ ⇒
numberaddop term exp′ ⇒
number�+ term exp′ ⇒
number +term exp′ ⇒
number +factor term′ exp′ ⇒
number +((((number term′ exp′ ⇒
number +numberterm′ exp′ ⇒
number +numbermulop factor term′ exp′ ⇒
number +number�∗ factor term′ exp′ ⇒
number +number ∗ (exp) term′ exp′ ⇒
number +number ∗ �(exp) term′ exp′ ⇒
number +number ∗ (exp) term′ exp′ ⇒
number +number ∗ (term exp′) term′ exp′ ⇒
number +number ∗ (factor term′ exp′) term′ exp′ ⇒
number +number ∗ (((((number term′ exp′) term′ exp′ ⇒
number +number ∗ (numberterm′ exp′) term′ exp′ ⇒
number +number ∗ (number�ε exp′) term′ exp′ ⇒
number +number ∗ (numberexp′) term′ exp′ ⇒
number +number ∗ (numberaddop term exp′) term′ exp′ ⇒
number +number ∗ (number�+ term exp′) term′ exp′ ⇒
number +number ∗ (number + term exp′) term′ exp′ ⇒
number +number ∗ (number + factor term′ exp′) term′ exp′ ⇒
number +number ∗ (number +((((number term′ exp′) term′ exp′ ⇒
number +number ∗ (number + numberterm′ exp′) term′ exp′ ⇒
number +number ∗ (number + number�ε exp′) term′ exp′ ⇒
number +number ∗ (number + numberexp′) term′ exp′ ⇒
number +number ∗ (number + number�ε) term′ exp′ ⇒
number +number ∗ (number + number�) term′ exp′ ⇒
number +number ∗ (number + number) term′ exp′ ⇒
number +number ∗ (number + number) �ε exp′ ⇒
number +number ∗ (number + number) exp′ ⇒
number +number ∗ (number + number) �ε ⇒
number +number ∗ (number + number)

Besides this derivation sequence, the slide version contains also an “overlay” version, expanding the sequence step
by step. The derivation is a left-most derivation.

4 Parsing
4.2 Top-down parsing 7

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

The tree does no longer contain information, which parts have been expanded first. In
particular, the information that we have concretely done a left-most derivation when
building up the tree in a top-down fashion is not part of the tree (as it is not important).
The tree is an example of a parse tree as it contains information about the derivation
process using rules of the grammar.

Non-determinism?

• not a “free” expansion/reduction/generation of some word, but
– reduction of start symbol towards the target word of terminals

exp ⇒∗ 1 + 2 ∗ (3 + 4)

– i.e.: input stream of tokens “guides” the derivation process (at least it fixes the
target)

• but: how much “guidance” does the target word (in general) gives?

Oracular derivation

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → (exp) | number

8 4 Parsing
4.2 Top-down parsing

exp ⇒1 ↓ 1 + 2 ∗ 3
exp + term ⇒3 ↓ 1 + 2 ∗ 3
term + term ⇒5 ↓ 1 + 2 ∗ 3
factor + term ⇒7 ↓ 1 + 2 ∗ 3
number + term ↓ 1 + 2 ∗ 3
number + term 1 ↓ +2 ∗ 3
number + term ⇒4 1+ ↓ 2 ∗ 3
number + term ∗ factor ⇒5 1+ ↓ 2 ∗ 3
number + factor ∗ factor ⇒7 1+ ↓ 2 ∗ 3
number + number ∗ factor 1+ ↓ 2 ∗ 3
number + number ∗ factor 1 + 2 ↓ ∗3
number + number ∗ factor ⇒7 1 + 2∗ ↓ 3
number + number ∗number 1 + 2∗ ↓ 3
number + number ∗number 1 + 2 ∗ 3 ↓

The derivation shows a left-most derivation. Again, the “redex” is underlined. In addition,
we show on the right-hand column the input and the progress which is being done on that
input. The subscripts on the derivation arrows indicate which rule is chosen in that
particular derivation step.

The point of the example is the following: Consider lines 7 and 8, and the steps the parser
does. In line 7, it is about to expand term which is the left-most terminal. Looking into
the “future” the unparsed part is 2 * 3. In that situation, the parser chooses production
4 (indicated by⇒4). In the next line, the left-most non-terminal is term again and also the
non-processed input has not changed. However, in that situation, the “oracular” parser
chooses ⇒5.

What does that mean? It means, that the look-ahead did not help the parser! It used all
look-ahead there is, namely until the very end of the word. And it still cannot make the
right decision with all the knowledge available at that given point. Note also: choosing
wrongly (like ⇒5 instead of ⇒4 or the other way around) would lead to a failed parse
(which would require backtracking). That means, it’s unparseable without backtracking
(and not amount of look-ahead will help), at least we need backtracking, if we do left-
derivations and top-down.

Right-derivations are not really an option, as typically we want to eat the input left-to-
right. Secondly, right-most derivations will suffer from the same problem (perhaps not for
the very grammar but in general, so nothing would even be gained.)

On the other hand: bottom-up parsing later works on different principles, so the particular
problem illustrate by this example will not bother that style of parsing (but there are other
challenges then).

So, what is the problem then here? The reason why the parser could not make a uniform
decision (for example comparing line 7 and 8) comes from the fact that these two particular
lines are connected by ⇒4, which corresponds to the production

term → term ∗ factor

there the derivation step replaces the left-most term by term again without moving ahead
with the input. This form of rule is said to be left-recursive (with recursion on term).
This is something that recursive descent parsers cannot deal with (or at least not without
doing backtracking, which is not an option).

4 Parsing
4.2 Top-down parsing 9

Note also: the grammar is not ambigious (without proof). If a grammar is ambiguous,
also then parsing won’t work properly (in this case neither will bottom-up parsing), but
ambiguity is not the problem right here.

We will learn how to transform grammars automatically to remove left-recursion. It’s
an easy construction. Note, however, that the construction not necessarily results in a
grammar that afterwards is top-down parsable. It simple removes a “feature” of the
grammar which definitely cannot be treated by top-down parsing.

As side remark, for being super-precise: If a grammar contains left-recursion on a non-
terminal which is “irrelevant” (i.e., no word will ever lead to a parse invovling that par-
ticular non-terminal), in that case, obviously, the left-recursion does not hurt. Of course,
the grammar in that case would be “silly”. We in general do not consider grammars which
contain such irrelevant symbols (or have other such obviously meaningless defects). But
unless we exclude such silly grammars, it’s not 100% true that grammars with left-recursion
cannot be treated via top-down parsing. But apart from that, it’s the case:

left-recursion destroys top-down parseability

(when based on left-most derivations/left-to-right parsing as it is always done for top-
down).

Two principle sources of non-determinism

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

Conventions

• α1, α2, β: word of terminals and nonterminals
• w: word of terminals, only
• A: one non-terminal

2 choices to make

1. where, i.e., on which occurrence of a non-terminal in α1Aα2 to apply a pro-
duction

2. which production to apply (for the chosen non-terminal).

Note that α1 and α2 may contain non-terminals, including further occurrences of A. How-
ever, the words w1 and w2 contain terminals, only. By convention, A, B, etc. are non-
terminal symbols, w . . . are words of terminals, and greek-lettered symbols α, β . . .
represent words of terminals and non-terminals.

10 4 Parsing
4.2 Top-down parsing

Left-most derivation

• that’s the easy part of non-determinism
• taking care of “where-to-reduce” non-determinism: left-most derivation
• notation ⇒l

• some of the example derivations earlier used that

Non-determinism vs. ambiguity

• Note: the “where-to-reduce”-non-determinism 6= ambiguitiy of a grammar
• in a way (“theoretically”): where to reduce next is irrelevant:

– the order in the sequence of derivations does not matter
– what does matter: the derivation tree (aka the parse tree)

Lemma 4.2.1 (Left or right, who cares). S ⇒∗l w iff S ⇒∗r w iff S ⇒∗ w.

• however (“practically”): a (deterministic) parser implementation: must make a
choice

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

S ⇒∗l w1 A α2 ⇒ w1 β α2 ⇒∗l w

Remember the notational conventions used here: w stand for words containing terminals
only, whereas α represents arbitrary words.

What about the “which-right-hand side” non-determinism?

A→ β | γ

Is that the correct choice?

S ⇒∗l w1 A α2 ⇒ w1 β α2 ⇒∗l w

• reduction with “guidance”: don’t loose sight of the target w
– “past” is fixed: w = w1w2
– “future” is not:

Aα2 ⇒l βα2 ⇒∗l w2 or else Aα2 ⇒l γα2 ⇒∗l w2 ?

Needed (minimal requirement):

In such a situation, “future target” w2 must determine which of the rules to take!

4 Parsing
4.3 First and follow sets 11

Deterministic, yes, but still impractical

Aα2 ⇒l βα2 ⇒∗l w2 or else Aα2 ⇒l γα2 ⇒∗l w2 ?

• the “target” w2 is of unbounded length!
⇒ impractical, therefore:

Look-ahead of length k

resolve the “which-right-hand-side” non-determinism inspecting only fixed-length prefix of
w2 (for all situations as above)

LL(k) grammars

CF-grammars which can be parsed doing that.

Of course, one can always write a parser that “just makes some decision” based on looking
ahead k symbols. The question is: will that allow to capture all words from the grammar
and only those.

4.3 First and follow sets

The considerations leading to a useful criterion for top-down parsing with backtracking
will involve the definition of the so-called “first-sets”. In connection with that definition,
there will be also the (related) definition of follow-sets.

We had a general look of what a look-ahead is, and how it helps in top-down parsing. We
also saw that left-recursion is bad for top-down parsing (in particular, there can’t be any
look-ahead to help the parser). The definition discussed so far, being based on arbitrary
derivations, were impractical. What is needed is a criterion, not on derivations, but on
grammars that can be used to figure out, whether the grammar is parseable in a top-down
manner with a look-ahead of, say k. Actually we will concentrate on a look-ahead of k = 1,
which is practically a decent thing to do.

The definitions, as mentioned, will help to figure out if a grammar is top-down parseable.
Such a grammar will then be called an LL(1) grammar. One could straightforwardly
generalize the definition to LL(k) (which would include generalizations of the first and
follow sets), but that’s not part of the pensum. Note also: the first and follow set definition
will also be used when discussing bottom-up parsing later.

Besides that, in this section we will also discuss what to do if the grammar is not LL(1).
That will lead to a transformation removing left-recursion. That is not the only defect
that one wants to transform away. A second problem that is a show-stopper for LL(1)-
parsing is known as “common left factors”. If a grammar suffers from that, there is another
transformation called left factorization which can remedy that.

12 4 Parsing
4.3 First and follow sets

First and Follow sets

• general concept for grammars
• certain types of analyses (e.g. parsing):

– info needed about possible “forms” of derivable words,

First-set of A

which terminal symbols can appear at the start of strings derived from a given nonterminal
A

Follow-set of A

Which terminals can follow A in some sentential form.

Remarks

• sentential form: word derived from grammar’s starting symbol
• later: different algos for first and follow sets, for all non-terminals of a given grammar
• mostly straightforward
• one complication: nullable symbols (non-terminals)
• Note: those sets depend on grammar, not the language

First sets

Definition 4.3.1 (First set). Given a grammar G and a non-terminal A. The first-set of
A, written FirstG(A) is defined as

FirstG(A) = {a | A⇒∗G aα, a ∈ ΣT }+ {ε | A⇒∗G ε} . (4.2)

Definition 4.3.2 (Nullable). Given a grammar G. A non-terminal A ∈ ΣN is nullable, if
A⇒∗ ε.

Nullable

The definition here of being nullable refers to a non-terminal symbol. When concentrating
on context-free grammars, as we do for parsing, that’s basically the only interesting case.
In principle, one can define the notion of being nullable analogously for arbitrary words
from the whole alphabet Σ = ΣT + ΣN . The form of productions in CFGs makes it
obvious, that the only words which actually may be nullable are words containing only
non-terminals. Once a terminal is derived, it can never be “erased”. It’s equally easy to
see, that a word α ∈ Σ∗N is nullable iff all its non-terminal symbols are nullable. The same
remarks apply to context-sensitive (but not general) grammars.

4 Parsing
4.3 First and follow sets 13

For level-0 grammars in the Chomsky-hierarchy, also words containing terminal symbols
may be nullable, and nullability of a word, like most other properties in that stetting,
becomes undecidable.

First and follow sets

One point worth noting is that the first and the follow sets, while seemingly quite similar,
differ in one important aspect (the follow set definition will come later). The first set
is about words derivable from a given non-terminal A. The follow set is about words
derivable from the starting symbol! As a consequence, non-terminals A which are not
reachable from the grammar’s starting symbol have, by definition, an empty follow set. In
contrast, non-terminals unreachable from a/the start symbol may well have a non-empty
first-set. In practice a grammar containing unreachable non-terminals is ill-designed, so
that distinguishing feature in the definition of the first and the follow set for a non-terminal
may not matter so much. Nonetheless, when implementing the algo’s for those sets, those
subtle points do matter! In general, to avoid all those fine points, one works with grammars
satisfying a number of common-sense restructions. One are so called reduced grammars,
where, informally, all symbols “play a role” (all are reachable, all can derive into a word
of terminals).

Examples

• Cf. the Tiny grammar
• in Tiny, as in most languages

First(if -stmt) = {”if”}

• in many languages:

First(assign-stmt) = {identifier, ”(”}

• typical Follow (see later) for statements:

Follow(stmt) = {”; ”, ”end”, ”else”, ”until”}

Remarks

• note: special treatment of the empty word ε
• in the following: if grammar G clear from the context

– ⇒∗ for ⇒∗G
– First for FirstG
– . . .

• definition so far: “top-level” for start-symbol, only
• next: a more general definition

– definition of First set of arbitrary symbols (and even words)

14 4 Parsing
4.3 First and follow sets

– and also: definition of First for a symbol in terms of First for “other symbols”
(connected by productions)

⇒ recursive definition

A more algorithmic/recursive definition

• grammar symbol X: terminal or non-terminal or ε

Definition 4.3.3 (First set of a symbol). Given a grammar G and grammar symbol X.
The first-set of X, written First(X), is defined as follows:

1. If X ∈ ΣT + {ε}, then First(X) contains X.
2. If X ∈ ΣN : For each production

X → X1X2 . . . Xn

a) First(X) contains First(X1) \ {ε}
b) If, for some i < n, all First(X1), . . . ,First(Xi) contain ε, then First(X) contains

First(Xi+1) \ {ε}.
c) If all First(X1), . . . ,First(Xn) contain ε, then First(X) contains {ε}.

Recursive definition of First?

The following discussion may be ignored, if wished. Even if details and theory behind it is
beyond the scope of this lecture, it is worth considering the above definition more closely.
One may even consider if it is a definition at all (resp. in which way it is a definition).

One naive first impression may be: it’s a kind of a “functional definition”, i.e., the above
Definition 4.3.3 gives a recursive definition of the function First. As discussed later,
everything gets rather simpler if we would not have to deal with nullable words and ε-
productions. For the point being explained here, let’s assume that there are no such
productions and get rid of the special cases, cluttering up Definition 4.3.3. Removing the
clutter gives the following simplified definition:

Definition 4.3.4 (First set of a symbol (no ε-productions)). Given a grammar G and
grammar symbol X. The First-set of X 6= ε, written First(X) is defined as follows:

1. If X ∈ ΣT , then First(X) ⊇ {X}.
2. If X ∈ ΣN : For each production

X → X1X2 . . . Xn ,

First(X) ⊇ First(X1).

4 Parsing
4.3 First and follow sets 15

Compared to the previous condition, I did the following minor adaptation (apart from
cleaning up the ε’s): I replaced the English word “contains” with the superset relation
symbol ⊇.

Now, with Definition 4.3.4 as a simplified version of the original definition being made
slightly more explicit: in which way is that a definition at all?

For being a definition for First(X), it seems awfully lax. Already in (1), it “defines”
that First(X) should “at least contain X”. A similar remark applies to case (2) for
non-terminals. Those two requirements are as such well-defined, but they don’t define
First(X) in a unique manner! Definition 4.3.4 defines what the set First(X) should at
least contain!

So, in a nutshell, one should not consider Definition 4.3.4 a “recursive definition of
First(X)” but rather

“a definition of recursive conditions on First(X), which, when satisfied, ensures
that First(X) contains at least all non-terminals we are after”.

What we are really after is the smallest First(X) which satisfies those conditions of the
definitions.

Now one may think: the problem is thats definition is just “sloppy”. Why does it use the
word “contain” resp. the ⊇-relation, instead of requiring equality, i.e., =? While plausible
at first sight, unfortunately, whether we use ⊇ or set equality = in Definition 4.3.4 does
not change anything.

Anyhow, the core of the matter is not = vs. ⊇. The core of the matter is that “Definition”
4.3.4 is circular!

Considering that definition of First(X) as a plain functional and recursive definition of
a procedure missed the fact that grammar can, of course, contain “loops”. Actually, it’s
almost a characterizing feature of reasonable context-free grammars (or even regular gram-
mars) that they contain “loops” – that’s the way they can describe infinite languages.

In that case, obviously, considering Definition 4.3.3 with = instead of ⊇ as the recursive
definition of a function leads immediately to an “infinite regress”, the recursive function
won’t terminate. So again, that’s not helpful.

Technically, such a definition can be called a recursive constraint (or a constraint system,
if one considers the whole definition to consist of more than one constraint, namely for
different terminals and for different productions).

For words

Definition 4.3.5 (First set of a word). Given a grammar G and word α. The first-set of

α = X1 . . . Xn ,

written First(α) is defined inductively as follows:

1. First(α) contains First(X1) \ {ε}

16 4 Parsing
4.3 First and follow sets

2. for each i = 2, . . . n, if First(Xk) contains ε for all k = 1, . . . , i − 1, then First(α)
contains First(Xi) \ {ε}

3. If all First(X1), . . . ,First(Xn) contain ε, then First(X) contains {ε}.

Concerning the definition of First

The definition here is of course very close to the definition of the inductive case of the
previous definition, i.e., the first set of a non-terminal. Whereas the previous definition
was a recursive, this one is not.

Note that the word αmay be empty, i.e., n = 0, In that case, the definition gives First(ε) =
{ε} (due to the 3rd condition in the above definition). In the definitions, the empty word ε
plays a specific, mostly technical role. The original, non-algorithmic version of Definition
4.3.1, makes it already clear, that the first set not precisely corresponds to the set of
terminal symbols that can appear at the beginning of a derivable word. The correct
intuition is that it corresponds to that set of terminal symbols together with ε as a special
case, namely when the initial symbol is nullable.

That may raise two questions. 1) Why does the definition makes that as special case,
as opposed to just using the more “straightforward” definition without taking care of the
nullable situation? 2) What role does ε play here?

The second question has no “real” answer, it’s a choice which is being made which could
be made differently. What the definition from equation (4.3.1) in fact says is: “give the set
of terminal symbols in the derivable word and indicate whether or not the start symbol
is nullable.” The information might as well be interpreted as a pair consisting of a set
of terminals and a boolean (indicating nullability). The fact that the definition of First
as presented here uses ε to indicate that additional information is a particular choice of
representation (probably due to historical reasons: “they always did it like that . . . ”). For
instance, the influential “Dragon book” [? , Section 4.4.2] uses the ε-based definition. The
texbooks [?] (and its variants) don’t use ε as indication for nullability.

In order that this definition works, it is important, obviously, that ε is not a terminal
symbol, i.e., ε /∈ ΣT (which is generally assumed).

Having clarified 2), namely that using ε is a matter of conventional choice, remains question
1), why bother to include nullability-information in the definition of the first-set at all,
why bother with the “extra information” of nullability? For that, there is a real technical
reason: For the recursive definitions to work, we need the information whether or not a
symbol or word is nullable, therefore it’s given back as information.

As a further point concerning the first sets: The slides give 2 definitions, Definition 4.3.1
and Definition 4.3.3. Of course they are intended to mean the same. The second version
is a more recursive or algorithmic version, i.e., closer to a recursive algorithm. If one
takes the first one as the “real” definition of that set, in principle we would be obliged
to prove that both versions actually describe the same same (resp. that the recurive
definition implements the original definition). The same remark applies also to the non-
recursive/iterative code that is shown next.

4 Parsing
4.3 First and follow sets 17

Pseudo code

for all X ∈ A ∪ {ε} do
F i r s t [X] := X

end ;

for all non-terminals A do
F i r s t [A] := {}

end
while there are changes to any F i r s t [A] do

for each production A→ X1 . . . Xn do
k := 1 ;
cont inue := true
while cont inue = true and k ≤ n do

F i r s t [A] := F i r s t [A] ∪ F i r s t [Xk] \ {ε}
i f ε /∈ F i r s t [Xk] then cont inue := fa l se
k := k + 1

end ;
i f cont inue = true
then F i r s t [A] := F i r s t [A] ∪ {ε}

end ;
end

If only we could do away with special cases for the empty words . . .

for a grammar without ε-productions.1

for all non-terminals A do
F i r s t [A] := {} // counts as change

end
while there are changes to any F i r s t [A] do

for each production A→ X1 . . . Xn do
F i r s t [A] := F i r s t [A] ∪ F i r s t [X1]

end ;
end

This simplification is added for illustration. What makes the algorithm slightly more than
just immediate is the fact that symbols can be nullable (non-terminals can be nullable). If
we don’t have ε-transitions, then no symbol is nullable. Under this simplifying assumption,
the algorithm looks quite simpler. We don’t need to check for nullability (i.e., we don’t
need to check if ε is part of the first sets), and moreover, we can do without the inner
while-loop, walking down the right-hand side of the production as long as the symbols
turn out to be nullable (since we know they are not).

Example expression grammar (from before)

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(4.3)

1A production of the form A → ε.

18 4 Parsing
4.3 First and follow sets

Example expression grammar (expanded)

exp → exp addop term
exp → term

addop → +
addop → −
term → term mulop factor
term → factor

mulop → ∗
factor → (exp)
factor → n

(4.4)

“Run” of the algo

nr pass 1 pass 2 pass 3

1 exp → exp addop term

2 exp → term

3 addop → +

4 addop → −

5 term → term mulop factor

6 term → factor

7 mulop → ∗

8 factor → (exp)

9 factor → n

How the algo works

The first thing to observe: the grammar does not contain ε-productions. That, very
fortunately, simplifies matters considerably! It should also be noted that the table from
above is a schematic illustration of a particular execution strategy of the pseudo-code.
The pseudo-code itself leaves out details of the evaluation, notably the order in which
non-deterministic choices are done by the code. The main body of the pseudo-code is
given by two nested loops. Even if details (of data structures) are not given, one possible
way of interpreting the code is as follows: the outer while-loop figures out which of the
entries in the First-array have “recently” been changed, remembers that in a “collection”
of non-terminals A’s, and that collection is then worked off (i.e. iterated over) on the inner
loop. Doing it like that leads to the “passes” shown in the table. In other words, the two
dimensions of the table represent the fact that there are 2 nested loops.

4 Parsing
4.3 First and follow sets 19

Having said that: it’s not the only way to “traverse the productions of the grammar”. One
could arrange a version with only one loop and a collection data structure, which contains
all productions A → X1 . . . Xn such that First[A] has “recently been changed”. That
data structure therefore contains all the productions that “still need to be treated”. Such
a collection data structure containing “all the work still to be done” is known as work-
list, even if it needs not technically be a list. It can be a queue, i.e., following a FIFO
strategy, it can be a stack (realizing LIFO), or some other strategy or heuristic. Possible is
also a randomized, i.e., non-deterministic strategy (which is sometimes known as chaotic
iteration).

“Run” of the algo

Collapsing the rows & final result

• results per pass:

20 4 Parsing
4.3 First and follow sets

1 2 3
exp {(,n}
addop {+,−}
term {(,n}
mulop {∗}
factor {(,n}

• final results (at the end of pass 3):

First[_]
exp {(,n}
addop {+,−}
term {(,n}
mulop {∗}
factor {(,n}

The tables show 3 passes, and the result correspond to the state at the end of the 3rd
pass. Technically, the algorithim cannot “know” that at the end of the 3rd pass, the result
has been achieved. It has to run a 4th time, at which point it it’s clear that there is no
change from the 3rd round to the 4th round, which also means, that any further rounds
would not give more information. The information has stabilized (at round 3) and that
becomes clear at round 4 (at which point, the algo terminates).

Work-list formulation

for all non-terminals A do
F i r s t [A] := {}
WL := P // a l l product ions

end
while WL 6= ∅ do

remove one (A→ X1 . . . Xn) from WL
i f F i r s t [A] 6= F i r s t [A] ∪ F i r s t [X1]
then F i r s t [A] := F i r s t [A] ∪ F i r s t [X1]

add a l l product ions (A→ X′
1 . . . X

′
m) to WL

else skip
end

• no ε-productions
• worklist here: “collection” of productions
• alternatively, with slight reformulation: “collection” of non-terminals instead also

possible

4 Parsing
4.3 First and follow sets 21

Follow sets

Definition 4.3.6 (Follow set). Given a grammar G with start symbol S, and a non-
terminal A.

The follow-set of A, written FollowG(A), is

FollowG(A) = {a | S $⇒∗G α1Aaα2, a ∈ ΣT + {$ }} . (4.5)

• $ as special end-marker

• typically: start symbol not on the right-hand side of a production

Special symbol $

The symbol $ can be interpreted as “end-of-file” (EOF) token. It’s standard to assume
that the start symbol S does not occur on the right-hand side of any production. In that
case, the follow set of S contains $ as only element. Note that the follow set of other
non-terminals may well contain $.

As said, it’s common to assume that S does not appear on the right-hand side of any
production. For a start, S won’t occur “naturally” there anyhow in practical programming
language grammars. Furthermore, with S occuring only on the left-hand side, the grammar
has a slightly nicer shape insofar as it makes its algorithmic treatment slightly nicer.
It’s basically the same reason why one sometimes assumes that, for instance, control-
flow graphs have one “isolated” entry node (and/or an isolated exit node), where being
isolated means, that no edge in the graph goes (back) into into the entry node; for exits
nodes, the condition means, no edge goes out. In other words, while the graph can of
course contain loops or cycles, the entry node is not part of any such loop. That is done
likewise to (slightly) simplify the treatment of such graphs. Slightly more generally and
also connected to control-flow graphs: similar conditions about the shape of loops (not just
for the entry and exit nodes) have been worked out, which play a role in loop optimization
and intermediate representations of a compiler, such as static single assignment forms.

Coming back to the condition here concerning $: even if a grammar would not immediatly
adhere to that condition, it’s trivial to transform it into that form by adding another
symbol and make that the new start symbol, replacing the old. We will do that sometimes
in exercises and examples later

Follow sets, recursively

Definition 4.3.7 (Follow set of a non-terminal). Given a grammar G and nonterminal
A. The Follow-set of A, written Follow(A) is defined as follows:

1. If A is the start symbol, then Follow(A) contains $.
2. If there is a production B → αAβ, then Follow(A) contains First(β) \ {ε}.
3. If there is a production B → αAβ such that ε ∈ First(β), then Follow(A) contains

Follow(B).

• $: “end marker” special symbol, only to be contained in the follow set

22 4 Parsing
4.3 First and follow sets

More imperative representation in pseudo code

Follow [S] := {$}
for all non-terminals A 6= S do
Follow [A] := {}

end
while there are changes to any Follow−s e t do

for each production A→ X1 . . . Xn do
for each Xi which i s a non−t e rmina l do
Follow [Xi] := Follow [Xi]∪(F i r s t (Xi+1 . . . Xn) \ {ε})
i f ε ∈ F i r s t (Xi+1Xi+2 . . . Xn)
then Follow [Xi] := Follow [Xi] ∪ Follow [A]

end
end

end

Note! First() = {ε}

“Run” of the algo

nr pass 1 pass 2

1 exp → exp addop term

2 exp → term

5 term → term mulop factor

6 term → factor

8 factor → (exp)

Explanations

The table omits productions which have terminals only on their right-hand side. The algo
does not do anything in those cases anyway. The grammar does not contain nullable sym-
bols, which means, the algo is a bit more simple. We remember, that the first-procedure
used ε for nullable symbol. However, the first procedure here is used non on non-terminals,
but on words. And that word Xi+1 . . . Xn may itself be ε, and that is where the last clause
of the algo kicks in.

4 Parsing
4.3 First and follow sets 23

Recursion vs. iteration

“Run” of the algo

Illustration of first/follow sets

• red arrows: illustration of information flow in the algos
• run of Follow:

– relies on First
– in particular a ∈ First(E) (right tree)

• $ ∈ Follow(B)

24 4 Parsing
4.4 Massaging grammars

The two trees are just meant a illustrations (but still correct). The grammar itself is not
given, but the tree shows relevant productions.

In case of the tree on the left (for the first sets): A is the root and must therefore be the
start symbol. Since the root A has three children C, D, and E, there must be a production
A→ C D E. etc.

The first-set definition would “immediately” detect that F has a in its first-set, i.e., all
words derivable starting from F start with an a (and actually with no other terminal, as
F is mentioned only once in that sketch of a tree). At any rate, only after determining
that a is in the first-set of F , then it can enter the first-set of C, etc. and in this way
percolating upwards the tree.

Note that the tree is insofar specific, in that all the internal nodes are different non-
terminals. In more realistic settings, different nodes would represent the same non-
terminal. And also in this case, one can think of the information percolating up.

More complex situation (nullability)

In the tree on the left, B,M,N,C, and F are nullable. That is marked in that the resulting
first sets contain ε. There will also be exercises about that.

4.4 Massaging grammars

We have learned the first- and follow-set as “tools” to diagnose the shape of a grammar.
In particular the follow-set is connected with the notion of look-ahead, on which we have
touched upon earlier when sketching how generally a parser works. To make decisions
concerning which “derivation step” is relevant to build up the parse tree, while eating
through the token stream. The general picture applies to both bottom-up and top-down
parsing, which implies, the first- and follow-sets play a role as “diagnosis instrument” for
both kinds of parsings.

4 Parsing
4.4 Massaging grammars 25

By diagnosis, I mean in particular: the concepts can be used to check whether or not it’s
possible to make parse a given grammar with a look-ahead of one symbol. The whole
picture could more or less straightforwardly be generalized for a longer look-ahead: top-
down parsing or bottom-up parsing with a look-ahead of k would require approporiate
generalizations of the first-sets and follow-sets to speak not about k = 1 symbol but
longer words. In practice, one mostly is content with k = 1, which is also why we don’t
bother about generalizing the setting. And actually, of one understands the concept of
one look-ahead, nothing conceptually changes when going to k > 1.

As said, the first- and follow set are relevant for both top-down and bottom-up parsers.
Here, however, we are in the part covering top-down parsing, which has slight different
challenges than bottom-up. Before we come actually to top-down parsing, we discuss, what
are problematic pattern in grammars, i.e., patterns that top-down parser have troubles
with, and we use the notions follow sets to shed light on that. The two troublesome
pattern we will discuss that way are left-recursive grammars and grammars with common
left factors. We will also dicsuss, how to massage troublesome grammars in a way to get
rid of those patterns.

Some forms of grammars are less desirable than others

• left-recursive production:

A→ Aα

more precisely: example of immediate left-recursion

• 2 productions with common “left factor”:

A→ αβ1 | αβ2 where α 6= ε

Left-recursive and unfactored grammars

At the current point in the presentation, the importance of those conditions might not
yet be clear (but remember the discussion around “oracular” derivations). In general, it’s
that certain kind of parsing techniques require absence of left-recursion and of common
left-factors. Note also that a left-linear production is a special case of a production with
immediate left recursion. In particular, recursive descent parsers would not work with
left-recursion. For that kind of parsers, left-recursion needs to be avoided.

Why common left-factors are undesirable should at least intuitively be clear: we see this
also on the next slide (the two forms of conditionals). It’s intuitively clear, that a parser,
when encountering an if (and the following boolean condition and perhaps the then
clause) cannot decide immediately which rule applies. It should also be intiutively clear
that that’s what a parser does: inputting a stream of tokens and trying to figure out which
sequence of rules are responsible for that stream (or else reject the input). The amount
of additional information, at each point of the parsing process, to determine which rule
is responsible next is called the look-ahead. Of course, if the grammar is ambiguous, no

26 4 Parsing
4.4 Massaging grammars

unique decision may be possible (no matter the look-ahead). Ambiguous grammars are
generally unwelcome as specification for parsers.

On a very high level, the situation can be compared with the situation for regular lan-
guages/automata. Non-deterministic automata may be ok for specifying a language (they
can more easily be connected to regular expressions), but they are not so useful for specify-
ing a scanner program. There, deterministic automata are necessary. Here, grammars with
left-recursion, grammars with common factors, or even ambiguous grammars may be ok for
specifying a context-free language. For instance, ambiguity may be caused by unspecified
precedences or non-associativity. Nonetheless, how to obtain a grammar representation
more suitable to be more or less directly translated to a parser is an issue less clear cut
compared to regular languages. Already the question whether or not a given grammar is
ambiguous or not is undecidable. If ambiguous, there’d be no point in turning it into a
practical parser. Also the question, what’s an acceptable form of grammar depends on
what class of parsers one is after (like a top-down parser or a bottom-up parser).

Some simple examples for both

• left-recursion

exp → exp + term

• classical example for common left factor: rules for conditionals

if -stmt → if (exp) stmt end
| if (exp) stmt else stmt end

We had a version of conditionals earlier, there

Transforming the expression grammar

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

• obviously left-recursive
• remember: this variant used for proper associativity!

4 Parsing
4.4 Massaging grammars 27

After removing left recursion

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′
term′ → mulop factor term′ | ε

mulop → ∗
factor → (exp) | n

• still unambiguous
• unfortunate: associativity now different!
• note also: ε-productions & nullability

Left-recursion removal

Left-recursion removal

A transformation process to turn a CFG into one without left recursion

Explanation

• price: ε-productions
• 3 cases to consider

– immediate (or direct) recursion
∗ simple
∗ general

– indirect (or mutual) recursion

Left-recursion removal: simplest case

Before

A → Aα | β

After

A → βA′

A′ → αA′ | ε

28 4 Parsing
4.4 Massaging grammars

Schematic representation

A → Aα | β

A

A

A

A

β

α

α

α

A → βA′

A′ → αA′ | ε

A

β A′

α A′

α A′

α A′

ε

Remarks

• both grammars generate the same (context-free) language (= set of words over ter-
minals)

• in EBNF:

A→ β{α}

• two negative aspects of the transformation
1. generated language unchanged, but: change in resulting structure (parse-tree),

i.a.w. change in associativity, which may result in change of meaning
2. introduction of ε-productions

• more concrete example for such a production: grammar for expressions

Left-recursion removal: immediate recursion (multiple)

Before

A → Aα1 | . . . | Aαn
| β1 | . . . | βm

space

After

A → β1A′ | . . . | βmA′
A′ → α1A′ | . . . | αnA′

| ε

4 Parsing
4.4 Massaging grammars 29

EBNF

Note: can be written in EBNF as:

A→ (β1 | . . . | βm)(α1 | . . . | αn)∗

Removal of: general left recursion

Assume non-terminals A1, . . . , Am

for i := 1 to m do
for j := 1 to i−1 do

replace each grammar rule of the form Ai → Ajβ by // i < j
rule Ai → α1β | α2β | . . . | αkβ

where Aj → α1 | α2 | . . . | αk

is the current rule(s) for Aj // cur rent
end
{ corresponds to i = j }
remove, if necessary, immediate left recursion for Ai

end

“current” = rule in the current stage of algo

Example (for the general case)

Let A = A1, B = A2.

A → Ba | Aa | c
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | BaA′b | cA′b | d

A → BaA′ | cA′

A′ → aA′ | ε
B → cA′bB′ | dB′

B′ → bB′ | aA′bB′ | ε

Left factor removal

• CFG: not just describe a context-free languages
• also: intended (indirect) description of a parser for that language
⇒ common left factor undesirable
• cf.: determinization of automata for the lexer

30 4 Parsing
4.4 Massaging grammars

Simple situation

before
A→ αβ | αγ | . . .

after
A → αA′ | . . .
A′ → β | γ

Example: sequence of statements

sequences of statements

Before
stmt-seq → stmt ; stmt-seq

| stmt

After
stmt-seq → stmt stmt-seq ′
stmt-seq ′ → ; stmt-seq | ε

Example: conditionals

Before
if -stmt → if (exp) stmt-seq end

| if (exp) stmt-seq else stmt-seq end

After
if -stmt → if (exp) stmt-seq else-or-end

else-or-end → else stmt-seq end | end

Example: conditionals (without else)

Before
if -stmt → if (exp) stmt-seq

| if (exp) stmt-seq else stmt-seq

After
if -stmt → if (exp) stmt-seq else-or-empty

else-or-empty → else stmt-seq | ε

4 Parsing
4.4 Massaging grammars 31

Not all factorization doable in “one step”

Starting point
A → abcB | abC | aE

After 1 step
A → abA′ | aE
A′ → cB | C

After 2 steps
A → aA′′
A′′ → bA′ | E
A′ → cB | C

longest left factor

• note: we choose the longest common prefix (= longest left factor) in the first step

Left factorization

while there are changes to the grammar do
for each nonterminal A do

let α be a prefix of max. length that is shared
by two or more productions for A

i f α 6= ε
then

let A→ α1 | . . . | αn be all
prod. for A and suppose that α1, . . . , αk share α
so that A→ αβ1 | . . . | αβk | αk+1 | . . . | αn ,
that the βj’s share no common prefix, and
that the αk+1, . . . , αn do not share α.

replace rule A→ α1 | . . . | αn by the rules
A→ αA′ | αk+1 | . . . | αn

A′ → β1 | . . . | βk

end
end

end

The algorithm is pretty straightforward. The only thing to keep in might is that what
is called α in the pseudo-code needs to be the longest comment prefix and the β’s must
include all right-hand sides that start with that (common longest prefix) α.

32 4 Parsing
4.5 LL-parsing (mostly LL(1))

4.5 LL-parsing (mostly LL(1))

After having covered the more technical definitions of the first and follow sets and trans-
formations to remove left-recursion resp. common left factors, we go back to top-down
parsing, in particular to the specific form of LL(1) parsing.

Additionally, we discuss issues about abstract syntax trees vs. parse trees.

Parsing LL(1) grammars

• this lecture: we don’t do LL(k) with k > 1
• LL(1): particularly easy to understand and to implement (efficiently)
• not as expressive than LR(1) (see later), but still kind of decent

LL(1) parsing principle

Parse from 1) left-to-right (as always anyway), do a 2) left-most derivation and resolve
the “which-right-hand-side” non-determinism by 3) looking 1 symbol ahead.

• two flavors for LL(1) parsing here (both are top-down parsers)
– recursive descent
– table-based LL(1) parser

• predictive parsers

If one wants to be very precise: it’s recursive descent with one look-ahead and without
backtracking. It’s the single most common case for recursive descent parsers. Longer
look-aheads are possible, but less common. Technically, even allowing back-tracking can
be done using recursive descent as principle (even if not done in practice).

Sample expression grammar again

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′
term′ → mulop factor term′ | ε

mulop → ∗
factor → (exp) | n

(4.6)

4 Parsing
4.5 LL-parsing (mostly LL(1)) 33

Look-ahead of 1: straightforward, but not trivial

• look-ahead of 1:
– not much of a look-ahead, anyhow
– just the “current token”

⇒ read the next token, and, based on that, decide
• but: what if there’s no more symbols?
⇒ read the next token if there is, and decide based on the token or else the fact that

there’s none left2

Example: 2 productions for non-terminal factor

factor → (exp) | number

That situation here is more or less trivial, but that’s not all to LL(1) . . .

Recursive descent: general set-up

1. global variable, say tok, representing the “current token” (or pointer to current
token)

2. parser has a way to advance that to the next token (if there’s one)

Idea

For each non-terminal nonterm, write one procedure which:

• succeeds, if starting at the current token position, the “rest” of the token stream
starts with a syntactically correct word of terminals representing nonterm

• fail otherwise

• ignored (for now): when doing the above successfully, build the AST for the accepted
nonterminal.

Recursive descent (in C-like)

method factor for nonterminal factor
f ina l int LPAREN=1,RPAREN=2,NUMBER=3,
PLUS=4,MINUS=5,TIMES=6;

void factor () {
switch (tok) {
case LPAREN: eat (LPAREN) ; expr () ; eat (RPAREN) ;
case NUMBER: eat (NUMBER) ;
}

}

2Sometimes “special terminal” $ used to mark the end (as mentioned).

34 4 Parsing
4.5 LL-parsing (mostly LL(1))

Recursive descent (in ocaml)

type token = LPAREN | RPAREN | NUMBER
| PLUS | MINUS | TIMES

let f a c t o r () = (∗ f unc t i on f o r f a c t o r s ∗)
match ! tok with

LPAREN −> eat (LPAREN) ; expr () ; eat (RPAREN)
| NUMBER −> eat (NUMBER)

Slightly more complex

• previous 2 rules for factor : situation not always as immediate as that

LL(1) principle (again)

given a non-terminal, the next token must determine the choice of right-hand side.

When talking about the next token, it must be the next token/terminal in the sense
of First, but it need not be a token directly mentioned on the right-hand sides of the
corresponding rules.

⇒ definition of the First set

Lemma 4.5.1 (LL(1) (without nullable symbols)). A reduced context-free grammar
without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and
for all pairs of productions A→ α1 and A→ α2 with α1 6= α2:

First1(α1) ∩ First1(α2) = ∅ .

Common problematic situation

• often: common left factors problematic

if -stmt → if (exp) stmt
| if (exp) stmt else stmt

• requires a look-ahead of (at least) 2
• ⇒ try to rearrange the grammar

1. Extended BNF ([3] suggests that)
if -stmt → if (exp) stmt[else stmt]

1. left-factoring:

if -stmt → if (exp) stmt else−part
else−part → ε | else stmt

4 Parsing
4.5 LL-parsing (mostly LL(1)) 35

Recursive descent for left-factored if -stmt

procedure ifstmt ()
begin

match (" i f ") ;
match (" (") ;
exp () ;
match (") ") ;
stmt () ;
i f token = " else "
then match (" else ") ;

stmt ()
end

end ;

Left recursion is a no-go

factors and terms

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(4.7)

• consider treatment of exp: First(exp)?

• whatever is in First(term), is in First(exp)3 recursion.

Left-recursion

Left-recursive grammar never works for recursive descent.

Removing left recursion may help

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′
term′ → mulop factor term′ | ε

mulop → ∗
factor → (exp) | n

3And it would not help to look-ahead more than 1 token either.

36 4 Parsing
4.5 LL-parsing (mostly LL(1))

procedure exp ()
begin

term () ;
exp′ ()

end

procedure exp′ ()
begin

case token of
"+" : match ("+") ;

term () ;
exp′ ()

" −" : match (" − ") ;
term () ;
exp′ ()

end
end

Recursive descent works, alright, but . . .

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

. . . who wants this form of trees?

Left-recursive grammar with nicer parse trees

1 + 2 ∗ (3 + 4)

4 Parsing
4.5 LL-parsing (mostly LL(1)) 37

exp

exp

term

factor

Nr

addop

+

term

term

factor

Nr

mulop

∗

term

factor

(exp

Nr mulop

∗

Nr

)

The simple “original” expression grammar (even nicer)

Flat expression grammar

exp → exp op exp | (exp) | number
op → + | − | ∗

1 + 2 ∗ (3 + 4)

exp

exp

Nr

op

+

exp

exp

Nr

op

∗

exp

(exp

exp

Nr

op

+

exp

Nr

)

Associtivity problematic

The issues here, including associativity, have been touched upon already when discussing
ambiguity.

Precedence & assoc.

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

38 4 Parsing
4.5 LL-parsing (mostly LL(1))

Formula

3 + 4 + 5

parsed “as”

(3 + 4) + 5

3− 4− 5

parsed “as”

(3− 4)− 5

Tree

exp

exp

exp

term

factor

number

addop

+

term

factor

number

addop

+

term

factor

number

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

Now use the grammar without left-rec (but right-rec instead)

No left-rec.

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

4 Parsing
4.5 LL-parsing (mostly LL(1)) 39

Formula

3− 4− 5

parsed “as”

3− (4− 5)

Tree

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

But if we need a “left-associative” AST?

• we want (3− 4)− 5, not 3− (4− 5)

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

3

4 -1

5

-6

40 4 Parsing
4.5 LL-parsing (mostly LL(1))

Code to “evaluate” ill-associated such trees correctly

function exp′ (v a l s o f a r : int) : int ;
begin

i f token = '+ ' or token = '− '
then

case token of
'+ ' : match ('+ ') ;

v a l s o f a r := va l s o f a r + term ;
' − ' : match (' − ') ;

v a l s o f a r := va l s o f a r − term ;
end case ;
return exp′ (v a l s o f a r) ;

else return v a l s o f a r
end ;

• extra “accumulator” argument valsofar
• instead of evaluating the expression, one could build the AST with the appropriate

associativity instead:
• instead of valueSoFar, one had rootOfTreeSoFar

The example parses expressions and evalutes them while doing that. In most cases in a
full-fledged parser, one does not need a value as output of a successful parse-run, but an
AST. But the issue of the fact, that sometimes the associativity is “the wrong way”. Also
the “accumulator”-pattern illustrated here in the evaluation setting could help out with
AST

“Designing” the syntax, its parsing, & its AST

trade offs:

1. starting from: design of the language, how much of the syntax is left “implicit”4
2. which language class? Is LL(1) good enough, or something stronger wanted?
3. how to parse? (top-down, bottom-up, etc.)
4. parse-tree/concrete syntax trees vs. ASTs

AST vs. CST

• once steps 1.–3. are fixed: parse-trees fixed!
• parse-trees = essence of grammatical derivation process
• often: parse trees only “conceptually” present in a parser
• AST:

– abstractions of the parse trees
– essence of the parse tree

4Lisp is famous/notorious in that its surface syntax is more or less an explicit notation for the ASTs. Not
that it was originally planned like this . . .

4 Parsing
4.5 LL-parsing (mostly LL(1)) 41

– actual tree data structure, as output of the parser
– typically on-the fly: AST built while the parser parses, i.e. while it executes a

derivation in the grammar

AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the parse tree

AST: How “far away” from the CST?

• AST: only thing relevant for later phases ⇒ better be clean . . .
• AST “=” CST?

– building AST becomes straightforward
– possible choice, if the grammar is not designed “weirdly”,

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

3

4 -1

5

-6

parse-trees like that better be cleaned up as AST

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

slightly more reasonably looking as AST (but underlying grammar not directly useful for
recursive descent)

42 4 Parsing
4.5 LL-parsing (mostly LL(1))

exp

exp

number

op

−

exp

exp

number

op

−

exp

number

That parse tree looks reasonable clear and intuitive

−

number −

number number

exp : −

exp : number exp : −

exp : number exp : number

Certainly minimal amount of nodes, which is nice as such. However, what is missing
(which might be interesting) is the fact that the 2 nodes labelled “−” are expressions!

This is how it’s done (a recipe)

Assume, one has a “non-weird” grammar

exp → exp op exp | (exp) | number
op → + | − | ∗

• typically that means: assoc. and precedences etc. are fixed outside the non-weird
grammar
– by massaging it to an equivalent one (no left recursion etc.)
– or (better): use parser-generator that allows to specify assoc . . . like “ "∗"

binds stronger than "+", it associates to the left . . . ” , without cluttering the
grammar.

• if grammar for parsing is not as clear: do a second one describing the ASTs

Remember (independent from parsing)

BNF describe trees

4 Parsing
4.5 LL-parsing (mostly LL(1)) 43

This is how it’s done (recipe for OO data structures)

Recipe

• turn each non-terminal to an abstract class
• turn each right-hand side of a given non-terminal as (non-abstract) subclass of the

class for considered non-terminal
• chose fields & constructors of concrete classes appropriately
• terminal: concrete class as well, field/constructor for token’s value

Example in Java

exp → exp op exp | (exp) | number
op → + | − | ∗

abstract public class Exp {
}

public class BinExp extends Exp { // exp −> exp op exp
public Exp l e f t , r i g h t ;
public Op op ;
public BinExp (Exp l , Op o , Exp r) {

l e f t=l ; op=o ; r i g h t=r ; }
}

public class ParentheticExp extends Exp { // exp −> (op)
public Exp exp ;
public ParentheticExp (Exp e) {exp = l ; }

}

public class NumberExp extends Exp { // exp −> NUMBER
public number ; // token va lue
public Number(int i) {number = i ; }

}

abstract public class Op { // non−t ermina l = a b s t r a c t
}

public class Plus extends Op { // op −> "+"
}

public class Minus extends Op { // op −> "−"
}

public class Times extends Op { // op −> "∗"
}

The latter classes are perhaps pushing it too far. It’s done to show that one can mechani-
cally use the recipe once grammar is given, so it’s a clean solution (perhaps one get better
efficiency if one would not make classes / objects out of everything, though).

44 4 Parsing
4.5 LL-parsing (mostly LL(1))

3− (4− 5)

Exp e = new BinExp (
new NumberExp (3) ,
new Minus () ,
new BinExp (new Parenthet icExpr (

new NumberExp (4) ,
new Minus () ,
new NumberExp (5))))

Pragmatic deviations from the recipe

• it’s nice to have a guiding principle, but no need to carry it too far . . .
• To the very least: the ParentheticExpr is completely without purpose: grouping

is captured by the tree structure
⇒ that class is not needed
• some might prefer an implementation of

op → + | − | ∗

as simply integers, for instance arranged like
public class BinExp extends Exp { // exp −> exp op exp

public Exp l e f t , r i g h t ;
public int op ;
public BinExp (Exp l , int o , Exp r) {

pos=p ; l e f t=l ; oper=o ; r i g h t=r ; }
public f ina l stat ic int PLUS=0, MINUS=1, TIMES=2;

}

and used as BinExpr.PLUS etc.

Recipe for ASTs, final words:

• space considerations for AST representations are irrelevant in most cases
• clarity and cleanness trumps “quick hacks” and “squeezing bits”
• some deviation from the recipe or not, the advice still holds:

Do it systematically

A clean grammar is the specification of the syntax of the language and thus the parser.
It is also a means of communicating with humans what the syntax of the language is,
at least communicating with pros, like participants of a compiler course, who of course
can read BNF . . . A clean grammar is a very systematic and structured thing which
consequently can and should be systematically and cleanly represented in an AST,
including judicious and systematic choice of names and conventions (nonterminal exp
represented by class Exp, non-terminal stmt by class Stmt etc)

4 Parsing
4.5 LL-parsing (mostly LL(1)) 45

Extended BNF may help alleviate the pain

BNF

exp → exp addop term | term
term → term mulop factor | factor

EBNF

exp → term{ addop term }
term → factor{ mulop factor }

but remember:

• EBNF just a notation, just because we do not see (left or right) recursion in { . . . }, does not
mean there is no recursion.

• not all parser generators support EBNF
• however: often easy to translate into loops- 5

• does not offer a general solution if associativity etc. is problematic

Pseudo-code representing the EBNF productions

procedure exp ;
begin
term ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"
do

match (token) ;
term ; // r e c u r s i v e c a l l

end
end

procedure term ;
begin

factor ; { r e c u r s i v e c a l l }
while token = "∗ "
do

match (token) ;
factor ; // r e c u r s i v e c a l l

end
end

5That results in a parser which is somehow not “pure recursive descent”. It’s “recursive descent, but
sometimes, let’s use a while-loop, if more convenient concerning, for instance, associativity”

46 4 Parsing
4.5 LL-parsing (mostly LL(1))

How to produce “something” during RD parsing?

Recursive descent

So far (mostly): RD = top-down (parse-)tree traversal via recursive procedure.6 Possible outcome:
termination or failure.

• Now: instead of returning “nothing” (return type void or similar), return some meaningful,
and build that up during traversal

• for illustration: procedure for expressions:
– return type int,
– while traversing: evaluate the expression

Evaluating an exp during RD parsing

function exp () : int ;
var temp : int
begin

temp := term () ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"

case token of
"+" : match ("+") ;

temp := temp + term () ;
" −": match (" −")

temp := temp − term () ;
end

end
return temp ;

end

Building an AST: expression

function exp () : syntaxTree ;
var temp , newtemp : syntaxTree
begin

temp := term () ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"

case token of
"+" : match ("+") ;

newtemp := makeOpNode ("+") ;
l e f tCh i l d (newtemp) := temp ;
r i gh tCh i l d (newtemp) := term () ;
temp := newtemp ;

" −": match (" −")
newtemp := makeOpNode (" − ") ;
l e f tCh i l d (newtemp) := temp ;
r i gh tCh i l d (newtemp) := term () ;
temp := newtemp ;

end
end
return temp ;

end

6Modulo the fact that the tree being traversed is “conceptual” and not the input of the traversal procedure;
instead, the traversal is “steered” by stream of tokens.

4 Parsing
4.5 LL-parsing (mostly LL(1)) 47

• note: the use of temp and the while loop

Building an AST: factor

factor → (exp) | number

function factor () : syntaxTree ;
var f a c t : syntaxTree
begin

case token of
" (" : match (" (") ;

f a c t := exp () ;
match (") ") ;

number :
match (number)
f a c t := makeNumberNode(number) ;

else : e r r o r . . . // f a l l through
end
return f a c t ;

end

Building an AST: conditionals

if -stmt → if (exp) stmt [else stmt]

function ifStmt () : syntaxTree ;
var temp : syntaxTree
begin

match (" i f ") ;
match (" (") ;
temp := makeStmtNode (" i f ")
t e s tCh i l d (temp) := exp () ;
match (") ") ;
thenChi ld (temp) := stmt () ;
i f token = " else "
then match " else " ;

e l s eCh i l d (temp) := stmt () ;
else e l s eCh i l d (temp) := ni l ;
end
return temp ;

end

Building an AST: remarks and “invariant”

• LL(1) requirement: each procedure/function/method (covering one specific non-terminal)
decides on alternatives, looking only at the current token

• call of function A for non-terminal A:
– upon entry: first terminal symbol for A in token
– upon exit: first terminal symbol after the unit derived from A in token

• match("a") : checks for "a" in token and eats the token (if matched).

48 4 Parsing
4.5 LL-parsing (mostly LL(1))

LL(1) parsing

For the rest of the top-down parsing section, we look at a “variation”, not as far as the principle is
concerned, but as far as the implementation is concerned. Instead of making a recursive solution,
one condenses the relevant information in tabular form. This data structure is called an LL(1)
table. That table is easily constructed making use of the First- and Follow-sets, and instead of
mutually recursive calls, the algo is iterative, manipulating an explicit stack. As a look forward:
also the bottom-up parsers will make use of a table (which then will be an LR-table or one of its
variants, not an LL-table).

• remember LL(1) grammars & LL(1) parsing principle:

LL(1) parsing principle

1 look-ahead enough to resolve “which-right-hand-side” non-determinism.

• instead of recursion (as in RD): explicit stack
• decision making: collated into the LL(1) parsing table
• LL(1) parsing table:

– finite data structure M (for instance, a 2 dimensional array)
M : ΣN × ΣT → ((ΣN × Σ∗) + error)

– M [A, a] = w
• we assume: pure BNF

Often, depending on the book, the entry in the parse table does not contain a full rule as here,
needed is only the right-hand-side. In that case the table is of type ΣN × ΣT → (Σ∗ +error).

Construction of the parsing table

Table recipe

1. If A→ α ∈ P and α⇒∗ aβ, then add A→ α to table entry M [A,a]
2. If A → α ∈ P and α ⇒∗ ε and S $ ⇒∗ βAaγ (where a is a token (=non-terminal) or $),

then add A→ α to table entry M [A,a]

Table recipe (again, now using our old friends First and Follow)

Assume A→ α ∈ P .

1. If a ∈ First(α), then add A→ α to M [A,a].
2. If α is nullable and a ∈ Follow(A), then add A→ α to M [A,a].

The two recipes are equivalent. One can use the recipes to fill out LL(1) table, we will do that in
the following. In case a slot in such a table means that the grammar is not LL(1)-parseable, i.e.,
the LL(1) parsing principle is violated. One may compare that also to Lemma 4.5.1.

4 Parsing
4.5 LL-parsing (mostly LL(1)) 49

Example: if-statements

• grammars is left-factored and not left recursive

stmt → if -stmt | other
if -stmt → if (exp) stmt else−part

else−part → else stmt | ε
exp → 0 | 1

First Follow
stmt other, if $, else
if -stmt if $, else
else−part else, ε $, else
exp 0,1)

The slide lists the first and follow set for all non-terminals (as was the basic definition for those
concepts). In the recipe, though, we actually need the first-set of words, namely for the right-
hand sides of the productions (for the Follow-set, the definition for non-terminals is good enough).
Therefore, one might, before filling out the LL(1)-table also list the first set of all right-hand sides
of the grammar. On the other hand, it’s not a big step, especially in this grammar.

Example: if statement: “LL(1) parse table”

• 2 productions in the “red table entry”
• thus: it’s technically not an LL(1) table (and it’s not an LL(1) grammar)
• note: removing left-recursion and left-factoring did not help!

Saying that it’s “not-an-LL(1)-table” is perhaps a bit nit-picking. The shape is according to the
required format. It’s only that in the slot marked red, there are two rules. That’s a conflict
and makes it at least not a legal LL(1) table. So, if in an exam question, the task is “build the
LL(1)-table for the following grammar Is the grammar LL(1)”. Then one is supposed to fill
up a table like that, and then point out, if there is a double entry, which is the symptom that
the grammar is not LL(1). Similar remarks later for LR-parsers. Actually, for LR-parsers, tools

50 4 Parsing
4.5 LL-parsing (mostly LL(1))

like yacc build up a table (not an LL, but an LR-table) and, in case of double entries, making a
choice which one to include. The user, in those cases, will reveive a warning about the grammar
containing a corresponding conflict. So the user should be aware that the grammar is actually not
parseable (because a parse would require backtracking, which is not done). Conflicts are typically
to be avoided, though upon analyzing it carefully, there may be cases, were one can “live with it”,
that the parser makes a particular choice and ignore another. What kind of situations might that
be? Actually, the one here in the example might be one. The given grammar “suffers” from the
ambiguity called dangling-else problem. The left-factoring massage did not help there. Anyway,
the conflict in the table puts the finger onto that problem: when trying to parse an else-part and
seeing the else-keyword next, the top-down parser would not know, if the else belongs to the
last “dangling” conditional or to some older one (if that existed). Typically, the parser would
choose the first alternative, i.e., the first production for the else-part. If one is sure of the parser’s
behavior (namely always choosing the first alternative, in case of a conflict) and if one convinces
oneself that this is the intended behavior of a dangling-else (in that it should belong to the last
open conditional), then one may “live with it”. But it’s a bit brittle.

LL(1) table-based algo

while the top of the parsing stack 6= $
i f the top of the parsing stack is terminal a

and the next input token = a
then

pop the parsing stack ;
advance the input ; // ``match ' '

else i f the top the parsing is non-terminal A
and the next input token is a terminal or $
and parsing table M [A,a] contains

production A→ X1X2 . . . Xn

then (∗ generate ∗)
pop the parsing stack
for i := n to 1 do
push Xi onto the stack ;

else error
i f the top of the stack = $
then accept

end

4 Parsing
4.5 LL-parsing (mostly LL(1)) 51

LL(1): illustration of a run of the algo

The most interesting steps are of course those dealing with the dangling else, namely those with
the non-terminal else−part at the top of the stack. That’s where the LL(1) table is ambiguous.
In principle, with else−part on top of the stack (in the picture it’s just L), the parser table allows
always to make the decision that the “current statement” resp “current conditional” is done.

Expressions

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

left-recursive ⇒ not LL(k)

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

52 4 Parsing
4.6 Error handling

First Follow
exp (,number $,)
exp′ +,−, ε $,)
addop +,− (,number
term (,number $,),+,−
term′ ∗, ε $,),+,−
mulop ∗ (,number
factor (,number $,),+,−,∗

Expressions: LL(1) parse table

4.6 Error handling

The error handling section is not part of the pensum (it never was), insofar it will not be asked
in the written exam. That does not mean that, that we don’t want some adequate error handling
for the compiler in the oblig. The slides are not presented in detail in class. Parsers (and lexers)
are built on some robust, established and well-understood theoretical foundations. That’s less
the case for how to deal with errors, where it’s more of an art, and more pragmatics enter the
pictures. It does not mean it’s unimportant, it’s just that the topic is less conceptually clarified.
So, while certainly there is research, in compilers it’s mostly done “by common sense”. Parsers (and
compilers) can certainly be tested systematically, finding out if the parser detects all syntactically
erroneous situations. Whether the corresponding feedback is useful for debugging, that a question
of whether humans can make sense out of the feedback. Different parser technologies (bottom-up
vs. top-down for instance) may have different challenges to provide decent feedback. One core
challenge maybe the disconnect between the technicalities of the internal workings of the parser
(which the programmer may not be aware of) and the source-level representation. A parser runs
into trouble, like encoutering an unexpected symbol, when currently looking at a field in the LL-
or LR-table. That constitutes some “syntactic error” and should be reported, but it’s not even
clear what the “real cause” of an error is. Error localization as such cannot be formally solved,
since one cannot properly define was the source of an error is in general. So, we focus here more
on general “advice”.

4 Parsing
4.6 Error handling 53

Error handling

• at the least: do an understandable error message
• give indication of line / character or region responsible for the error in the source file
• potentially stop the parsing
• some compilers do error recovery

– give an understandable error message (as minimum)
– continue reading, until it’s plausible to resume parsing ⇒ find more errors
– however: when finding at least 1 error: no code generation
– observation: resuming after syntax error is not easy

Error messages

• important:
– try to avoid error messages that only occur because of an already reported error!
– report error as early as possible, if possible at the first point where the program cannot

be extended to a correct program.
– make sure that, after an error, one doesn’t end up in a infinite loop without reading any

input symbols.
• What’s a good error message?

– assume: that the method factor() chooses the alternative (exp) but that it, when
control returns from method exp(), does not find a)

– one could report : right paranthesis missing
– But this may often be confusing, e.g. if what the program text is: (a + b c)
– here the exp() method will terminate after (a + b, as c cannot extend the ex-

pression). You should therefore rather give the message error in expression or
right paranthesis missing.

54 4 Parsing
4.6 Error handling

Handling of syntax errors using recursive descent

Syntax errors with sync stack

4 Parsing
4.7 Bottom-up parsing 55

Procedures for expression with "error recovery"

4.7 Bottom-up parsing

Bottom-up parsing: intro

"R" stands for right-most derivation.

LR(0) • only for very simple grammars
• approx. 300 states for standard programming languages
• only as warm-up for SLR(1) and LALR(1)

SLR(1) • expressive enough for most grammars for standard PLs
• same number of states as LR(0)
• main focus here

LALR(1) • slightly more expressive than SLR(1)
• same number of states as LR(0)
• we look at ideas behind that method as well

LR(1) covers all grammars, which can in principle be parsed by looking at the next token

There might seem to be a contradiction in the explanation of LR(0): if LR(0) is so weak that it
works only for unreasonably simple languages, why does the slides speaks about standard languages,
and that LR(0) automata for those have 300 states, if one does not use LR(0)? The answer is,
the other more expressive parsers (SLR(1) and LALR(1)) use the same construction of states, so
that’s why one can estimate the number of states, even if standard languages don’t have an LR(0)
parser; they may have an LALR(1)-parser, which has, it its core, LR(0)-states.

56 4 Parsing
4.7 Bottom-up parsing

Grammar classes overview (again)

unambiguous ambiguous

LR(k)
LR(1)

LALR(1)
SLR
LR(0)

LL(0)

LL(1)
LL(k)

LR-parsing and its subclasses

• right-most derivation (but left-to-right parsing)
• in general: bottom-up: more powerful than top-down
• typically: tool-supported (unlike recursive descent, which may well be hand-coded)
• based on parsing tables + explicit stack
• thankfully: left-recursion no longer problematic
• typical tools: yacc and friends (like bison, CUP, etc.)
• another name: shift-reduce parser

LR parsing tablestates

tokens + non-terms

Example grammar

S′ → S
S → ABt7 | . . .
A → t4t5 | t1B | . . .
B → t2t3 | At6 | . . .

• assume: grammar unambiguous
• assume word of terminals t1t2 . . . t7 and its (unique) parse-tree

• general agreement for bottom-up parsing:
– start symbol never on the right-hand side of a production
– routinely add another “extra” start-symbol (here S′)

4 Parsing
4.7 Bottom-up parsing 57

The fact that the start symbol never occurs on the right-hand side of a production will later be
relied upon when constructing a DFA for “scanning” the stack, to control the reactions of the
stack machine. This restriction leads to a unique, well-defined initial state. All goes just smoother
(and the construction of the LR-automaton is slightly more straighforward) if one obeys that
convention.

Parse tree for t1 . . . t7

S′

S

A

t1

B

t2 t3

B

A

t4 t5 t6 t7

Remember: parse tree independent from left- or right-most-derivation

LR: left-to right scan, right-most derivation?

Potentially puzzling question at first sight:

what?: right-most derivation, when parsing left-to-right?

• short answer: parser builds the parse tree bottom-up
• derivation:

– replacement of nonterminals by right-hand sides
– derivation: builds (implicitly) a parse-tree top-down

- sentential form: word from Σ∗ derivable from start-symbol

Right-sentential form: right-most derivation

S ⇒∗r α

Slighly longer answer

LR parser parses from left-to-right and builds the parse tree bottom-up. When doing the parse,
the parser (implicitly) builds a right-most derivation in reverse (because of bottom-up).

58 4 Parsing
4.7 Bottom-up parsing

Example expression grammar (from before)

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(4.8)

exp

term

term

factor

number ∗

factor

number

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number ↪→ factor ∗number
↪→ term ∗number
↪→ term ∗ factor
↪→ term
↪→ exp

The slides show in a series of overlays, how the parse-tree is growing, and at the same time, how the
word number∗number is reduced step by step to the start symbol. That’s the reverse direction
compared to how one can use grammars to derive words and which corresponds to the direction
of how top-down parsers work.

Reduction in reverse = right derivation

Reduction

n∗n ↪→ factor ∗n
↪→ term ∗n
↪→ term ∗ factor
↪→ term
↪→ exp

4 Parsing
4.7 Bottom-up parsing 59

Right derivation

n∗n ⇐r factor ∗n
⇐r term ∗n
⇐r term ∗ factor
⇐r term
⇐r exp

• underlined part:
– different in reduction vs. derivation
– represents the “part being replaced”

∗ for derivation: right-most non-terminal
∗ for reduction: indicates the so-called handle (or part of it)

• consequently: all intermediate words are right-sentential forms

Handle

Definition 4.7.1 (Handle). Assume S ⇒∗r αAw ⇒r αβw. A production A → β at position k
following α is a handle of αβw. We write 〈A→ β, k〉 for such a handle.

Note:

• w (right of a handle) contains only terminals
• w: corresponds to the future input still to be parsed!
• αβ will correspond to the stack content (β the part touched by reduction step).
• the ⇒r -derivation-step in reverse:

– one reduce-step in the LR-parser-machine
– adding (implicitly in the LR-machine) a new parent to children β (= bottom-up!)

• “handle”-part β can be empty (= ε)

Schematic picture of parser machine (again)

. . . if 1 + 2 ∗ (3 + 4) . . .

q0q1

q2

q3 . . .
qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

60 4 Parsing
4.7 Bottom-up parsing

General LR “parser machine” configuration

• stack:
– contains: terminals + non-terminals (+ $)
– containing: what has been read already but not yet “processed”

• position on the “tape” (= token stream)
– represented here as word of terminals not yet read
– end of “rest of token stream”: $, as usual

• state of the machine
– in the following schematic illustrations: not yet part of the discussion
– later : part of the parser table, currently we explain without referring to the state of the

parser-engine
– currently we assume: tree and rest of the input given
– the trick ultimately will be: how do achieve the same without that tree already given

(just parsing left-to-right)

Schematic run (reduction: from top to bottom)

$ t1t2t3t4t5t6t7 $
$ t1 t2t3t4t5t6t7 $
$ t1t2 t3t4t5t6t7 $
$ t1t2t3 t4t5t6t7 $
$ t1B t4t5t6t7 $
$A t4t5t6t7 $
$At4 t5t6t7 $
$At4t5 t6t7 $
$AA t6t7 $
$AAt6 t7 $
$AB t7 $
$ABt7 $
$S $
$S′ $

2 basic steps: shift and reduce

• parsers reads input and uses stack as intermediate storage
• so far: no mention of look-ahead (i.e., action depending on the value of the next token(s)),

but that may play a role, as well

Shift

Move the next input symbol (terminal) over to the top of the stack (“push”)

Reduce

Remove the symbols of the right-most subtree from the stack and replace it by the non-terminal
at the root of the subtree (replace = “pop + push”).

• decision easy to do if one has the parse tree already!
• reduce step: popped resp. pushed part = right- resp. left-hand side of handle

4 Parsing
4.7 Bottom-up parsing 61

The remark that it’s “easy to do” refers to something that is illustrated next: the question namely
the decision-making process of the parser. should the parser do a shift or a reduce and if so,
reduce with what rule. If one assumes the “target” parse-tree as already given (as we currently do
in our presentation, for instance also in the following slides), then tree embodies those decisions.
Ultimately, of course, the tree is not given a priori, it’s the parser’s task to build the tree (at least
implicitly) by making those decisions about what the next step is (shift or reduce).

Example: LR parse for “+” (given the tree)

E′ → E
E → E+ n | n

CST

E′

E

E

n + n

Run

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $E + n $ shift
4 $E+ n $ shift
5 $E+ n $ reduce E → E+ n
6 $E $ red.: E′ → E
7 $E′ $ accept

note: line 3 vs line 6!; both contain E on top of stack

(right) derivation: reduce-steps “in reverse”

E′ ⇒ E ⇒ E+ n⇒ n + n

The example is supposed to shed light on how the machine can make decisions assuming that the
tree is already given. For that, one should compare the situation in stage 3 and state 6. In both
situations, the machine has the same stack content (containing only the end-marker and E on top
of the stack). However, at stage 3, the machine does a shift, whereas in stage 6, it does a reduce.

62 4 Parsing
4.7 Bottom-up parsing

Since the stack content (representing the “past” of the parse, i.e., the already processed input)
is the identical in both cases, the parser machine is necessarily in the same state in both stages,
which mean, it cannot be the state that makes the difference. What then? In the example, the
form of the parse tree shows what the parser should do. But of course the tree is not available.
Instead (and not surprisingly). If the past input cannot be used to make the distinction, one takes
the “future” input. Maybe not all of it, but part of it. That’s a form of a look-ahead (that will
not yet be done for LR(0), as that for is without look-ahead).

Example with ε-transitions: parentheses

S′ → S
S → (S)S | ε

side remark: unlike previous grammar, here:

• production with two non-terminals on the right
⇒ difference between left-most and right-most derivations (and mixed ones)

Parentheses: run and right-most derivation

CST

S′

S

(

S

ε)

S

ε

Run

parse stack input action
1 $ () $ shift
2 $ () $ reduce S → ε
3 $ (S) $ shift
4 $ (S) $ reduce S → ε
5 $ (S)S $ reduce S → (S)S
6 $S $ reduce S′ → S
7 $S′ $ accept

Note: the 2 reduction steps for the ε productions

4 Parsing
4.7 Bottom-up parsing 63

Right-most derivation and right-sentential forms

S′ ⇒r S ⇒r (S)S ⇒r (S)⇒r ()

Right-sentential forms & the stack

- sentential form: word from Σ∗ derivable from start-symbol

Right-sentential form: right-most derivation

S ⇒∗r α

• right-sentential forms:
– part of the “run”
– but: split between stack and input

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $ E + n $ shift
4 $ E + n $ shift
5 $ E + n $ reduce E → E + n
6 $ E $ red.: E′ → E

7 $ E′ $ accept

E′ ⇒r E ⇒r E + n ⇒r n + n

n + n ↪→ E + n ↪→ E ↪→ E′

E′ ⇒r E ⇒r E+ n | ∼ E+ | n ∼ E | + n⇒r n | + n ∼| n + n

The | here is introduced as “ad-hoc” notation to illustrate the separation between the
parse stack on the left and the future input on the right.

Viable prefixes of right-sentential forms and handles

• right-sentential form: E+ n
• viable prefixes of RSF

– prefixes of that RSF on the stack
– here: 3 viable prefixes of that RSF: E, E+, E+ n

• handle: remember the definition earlier
• here: for instance in the sentential form n + n

– handle is production E → n on the left occurrence of n in n + n (let’s write
n1 + n2 for now)

– note: in the stack machine:
∗ the left n1 on the stack
∗ rest + n2 on the input (unread, because of LR(0))

64 4 Parsing
4.7 Bottom-up parsing

• if the parser engine detects handle n1 on the stack, it does a reduce-step
• However (later): reaction depends on current state of the parser engine

A typical situation during LR-parsing

General design for an LR-engine

• some ingredients clarified up-to now:
– bottom-up tree building as reverse right-most derivation,
– stack vs. input,
– shift and reduce steps

• however: 1 ingredient missing: next step of the engine may depend on
– top of the stack (“handle”)
– look ahead on the input (but not for LL(0))
– and: current state of the machine (same stack-content, but different reactions

at different stages of the parse)

But what are the states of an LR-parser?

General idea:

Construct an NFA (and ultimately DFA) which works on the stack (not the input). The
alphabet consists of terminals and non-terminals ΣT ∪ ΣN . The language

Stacks(G) = {α | α may occur on the stack during
LR-parsing of a sentence in L(G) }

4 Parsing
4.7 Bottom-up parsing 65

is regular!

Note that this is a restriction of what one can do with a stack-machine (or push-down
automaton) can do. As mentioned, exploiting the full-power of context-free grammars is
impractical, already for the fact that one does not want ambiguity (and non-determinism
and backtracking). One further general restriction is that one wants a bounded look-head,
maybe a look-ahead of one. The restriction here is a kind of strange one, insofar it does
not all the stack content to be of arbitrary shape, but all allowed stack contents (for one
grammar) must be regular.

On the other hand, the restriction is also kind of natural. Any push-down automaton
consists of a stack and a finite-state automaton. It’s a natural general restriction, that
the automaton is deterministic: given a particular input determines the state the machine
is in. Realizing that the stack-content is an “abstract representation” of the past, it’s
natural that the finite-state automaton is also deterministic wrt. that abstract past. Or to
say it differently: the parser machine has in some way an unbounded memory, the stack.
The memory is insfor restricted, in that it can be used not via random access, but only
via a stack discipline with push and pop (that inhererent to the notion of context-free
grammars). Having an infinite memory is fine, one can in principle remember everything
(using only push and without ever forgetting anything by using pop). But the machine
has to make also decisions based on the past. So for that decision-making part, it cannot
make infinite many different decision, based on ininitely many pasts. Relevant are are only
finitely many different pasts. This is the abstraction built into the stack-memory: doing a
push followed by a pop does not change the stack. So both situations have the same stack
content, so a past with a history of push and pop is treated the same as if nothing had
happend at all. So, it’s natural to connect the state of the machine on which the decision
is made on the stack content.

LR(0) parsing as easy pre-stage

• LR(0): in practice too simple, but easy conceptual step towards LR(1), SLR(1) etc.
• LR(1): in practice good enough, LR(k) not used for k > 1
• to build the automaton: LR(0)-items

LR(0) parsing is introduced as easy pre-stage for the more expressive forms of bottom-up
parsing later. In itself, it’s not expressive enough to be practivally useful. But the con-
struction underlies directly or at least conceptually the more complex parser constructions
to come. In particular: for LR(0) parsing, the core of the construction is the so-called
LR(0)-DFA, based on LR(0)-items. This construction is directly also used for SLR-parsing.
For LR(1) and LALR(1), the construction of the corresponding DFA is not identical, but
analogous to the construction of LR(0)-DFA.

LR(0) items

LR(0) item

production with specific “parser position” . in its right-hand side

66 4 Parsing
4.7 Bottom-up parsing

• . : “meta-symbol” (not part of the production)

LR(0) item for a production A→ βγ

A→ β.γ

• item with dot at the beginning: initial item
• item with dot at the end: complete item

Example: items of LR-grammar

Next two examples. They should make the concept of items clear enough. The only point
to keep in mind is the treatment of the ε symbol.

Grammar for parentheses: 3 productions

S′ → S
S → (S)S | ε

8 items

S′ → .S
S′ → S.
S → . (S)S
S → (.S)S
S → (S.)S
S → (S) .S
S → (S)S.
S → .

• S → ε gives S → . as item (not S → ε. and S → .ε)

As a side remark for later: it will turn out: grammar is not LR(0).

Another example: items for addition grammar

Grammar for addition: 3 productions

E′ → E
E → E+ n | n

4 Parsing
4.7 Bottom-up parsing 67

(coincidentally also:) 8 items

E′ → .E
E′ → E.
E → .E+ n
E → E.+ n
E → E+ .n
E → E+ n.
E → .n
E → n.

Also here, it will turn out: not an LR(0) grammar

Finite automata of items

• general set-up: items as states in an automaton
• automaton: “operates” not on the input, but the stack
• automaton either

– first NFA, afterwards made deterministic (subset construction), or
– directly DFA

States formed of sets of items

In a state marked by/containing item

A→ β.γ

• β on the stack
• γ: to be treated next (terminals on the input, but can contain also non-terminals(!))

The explanation of what the items as state of the automaton means is conceptual. One
piece may be (at the current point) a bit mysterious, resp. does not quite fit: the fact that
the γ can contain non-terminals. We come to that soon, and we will see later in examples,
what happens.

State transitions of the NFA

• X ∈ Σ
• two kinds of transitions

Terminal or non-terminal

A→ α.Xη A→ αX.η
X

68 4 Parsing
4.7 Bottom-up parsing

ε (X → β)

A→ α.Xη X → .β
ε

• In case X = terminal (i.e. token) =
– the left step corresponds to a shift step

• for non-terminals (see next slide):
– interpretation more complex: non-terminals are officially never on the input
– note: in that case, item A→ α.Xη has two (kinds of) outgoing transitions

Explanations

We have explained shift steps so far as: parser eats one terminal (= input token) and
pushes it on the stack.

Transitions for non-terminals and ε

• so far: we never pushed a non-terminal from the input to the stack, we replace in a
reduce-step the right-hand side by a left-hand side

• but: replacement in a reduce steps can be seen as
1. pop right-hand side off the stack,
2. instead, “assume” corresponding non-terminal on input,
3. eat the non-terminal an push it on the stack.

• two kinds of transitions
• assume production X → β and initial item X → .β

Transitions (repeated)

Terminal or non-terminal

A→ α.Xη A→ αX.η
X

Epsilon (X: non-terminal here)

Given production X → β:

A→ α.Xη X → .β
ε

4 Parsing
4.7 Bottom-up parsing 69

NFA: parentheses

S′ → .S S′ → S.

S → . (S)S S → . S → (S)S.

S → (.S)S S → (S.)S

S → (S) .S

S

ε
ε

(ε ε

S

)

S

ε

ε

In the figure, we use colors for illustration, only, i.e., they are not officially part of the
construction. The colors are intended to represent the following:

• “reddish”: complete items
• “blueish”: init-item (less important)
• “violet’ish”: both.

Furthermore, you may notice for the initial items and complete items:

• one initial item state per production of the grammar
• initial items is where the ε-transisitions go into, but with exception of the initial state

(with S′-production)
• no outgoing edges from the complete items.

Note the uniformity of the ε-transitions in the following sense. For each production with a
given non-terminal (for instance S in the given example), there is one ingoing ε-transition
from each state/item where the . is in front of said non-terminal.

To look forward, and concerning the role of the ε-transitions. Those are allowed for non-
determistic automata, but not for DFAs. The underlying construction (discussed later)
is building the ε-closure, in this case the close of A′ → A. If one does that directly, one
obtains directly a DFA (as opposed to first do an NFA to make deterministic in a second
phase).

Initial and final states

initial states:

• we made our lives easier : assume one extra start symbol say S′ (augmented grammar)
⇒ initial item S′ → .S as (only) initial state

70 4 Parsing
4.7 Bottom-up parsing

final states:

acceptance condition of the overall machine: a bit more complex

• input must be empty
• stack must be empty except the (new) start symbol
• NFA has a word to say about acceptence

– but not in form of being in an accepting state
– so: no accepting states
– but: accepting action (see later)

The NFA (or later DFA) has a specific task, it is used to “scan” the stack (at least
conceptually), not the input. The automaton is not so much for accepting a stack and then
stop, it’s more like determining the state that corresponds to the current stack content.
Therefore there are no accepting states in the sense of a FSA!

NFA: addition

E′ → .E E′ → E.

E → .E+ n E → .n E → n.

E → E.+ n E → E+ .n E → E+ n.

E

ε
ε

ε
ε

E

n

+ n

Determinizing: from NFA to DFA

• standard subset-construction7
• states then contain sets of items
• important: ε-closure
• also: direct construction of the DFA possible

In the following two slides, we show the DFAs corresponding to the NFAs shown before.
For the construction on how to determinize NFAs (and minimize them), we refer to the
corresponding sections in the chapter about lexing. Anyway, we will afterwards also look
at a direct construction of the DFA (without the detour over NFAs). That will result in
the same automata anyway.

7Technically, we don’t require here a total transition function, we leave out any error state.

4 Parsing
4.7 Bottom-up parsing 71

DFA: parentheses

S′ → .S

S → . (S)S
S → .

0

S′ → S.

1

S → (.S)S
S → . (S)S
S → .

2

S → (S.)S
3

S → (S) .S
S → . (S)S
S → .

4

S → (S)S.
5

S

(

S(

)
(

S

DFA: addition

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

Direct construction of an LR(0)-DFA

• quite easy: just build in the closure directly. . .

ε-closure

• if A→ α.Bγ is an item in a state where
• there are productions B → β1 | β2 . . . then
• add items B → .β1 , B → .β2 . . . to the state
• continue that process, until saturation

initial state

S′ → .S

plus closure

72 4 Parsing
4.7 Bottom-up parsing

Direct DFA construction: transitions

. . .

A1 → α1.Xβ1

. . .

A2 → α2.Xβ2

. . .

A1 → α1X.β1

A2 → α2X.β2

plus closure

X

• X: terminal or non-terminal, both treated uniformely
• All items of the form A→ α.Xβ must be included in the post-state
• and all others (indicated by ". . . ") in the pre-state: not included

One can e-check the previous examples (first doing the NFA, then the DFA): the outcome
is the same.

How does the DFA do the shift/reduce and the rest?

• we have seen: bottom-up parse tree generation
• we have seen: shift-reduce and the stack vs. input
• we have seen: the construction of the DFA

But: how does it hang together?

We need to interpret the “set-of-item-states” in the light of the stack content and figure
out the reaction in terms of

• transitions in the automaton
• stack manipulations (shift/reduce)
• acceptance
• input (apart from shifting) not relevant when doing LR(0)

and the reaction better be uniquely determined

Stack contents and state of the automaton

• remember: at any config. of stack/input in a run
1. stack contains words from Σ∗
2. DFA operates deterministically on such words

• the stack contains “abstraction of the past”:
• when feeding that “past” on the stack into the automaton

– starting with the oldest symbol (not in a LIFO manner)
– starting with the DFA’s initial state
⇒ stack content determines state of the DFA

• actually: each prefix also determines uniquely a state
• top state:

4 Parsing
4.7 Bottom-up parsing 73

– state after the complete stack content
– corresponds to the current state of the stack-machine
⇒ crucial when determining reaction

State transition allowing a shift

• assume: top-state (= current state) contains item

X → α.aβ

• construction thus has transition as follows

. . .

X → α.aβ
. . .

s
. . .

X → αa.β
. . .

t

a

• shift is possible
• if shift is the correct operation and a is terminal symbol corresponding to the current

token: state afterwards = t

State transition: analogous for non-term’s

Production

X → α.Bβ

Transition

. . .

X → α.Bβ

s
. . .

X → αB.β

t
B

Rest

• “goto = shift for non-terms”
• intuition: “second half of a reduce step”

• same as before, now with non-terminal B

74 4 Parsing
4.7 Bottom-up parsing

• note: we never read non-term from input
• not officially called a shift
• corresponds to the reaction followed by a reduce step, it’s not the reduce step itself
• think of the reduce

– not as: replace on top of the stack the handle (right-hand side) by non-term B,
– but instead as:

1. pop off the handle from the top of the stack
2. put the non-term B “back onto the input” (corresponding to the above state
s)

3. eat the B and “shift” it to the stack
• later: a goto reaction in the parse table

State (not transition) where a reduce is possible

• remember: complete items
• assume top state s containing complete item A→ γ.

. . .

A→ γ.

s

• a complete right-hand side (“handle”) γ on the stack and thus done
• may be replaced by right-hand side A
⇒ reduce step
• builds up (implicitly) new parent node A in the bottom-up procedure
• Note: A on top of the stack instead of γ:

– new top state!
– remember the “goto-transition” (shift of a non-terminal)

A conceptual picture for the reduce step is as follows. As said, we remove the handle from
the stack, and “pretend”, as if the A is next on the input, and thus we “shift” it on top of
the stack, doing the corresponding A-transition.

Remarks: states, transitions, and reduce steps

• ignoring the ε-transitions (for the NFA)
• there are 2 “kinds” of transitions in the DFA

1. terminals: reals shifts
2. non-terminals: “following a reduce step”

No edges to represent (all of) a reduce step!

• if a reduce happens, parser engine changes state!
• however: this state change is not represented by a transition in the DFA (or NFA

for that matter)
• especially not by outgoing errors of completed items

4 Parsing
4.7 Bottom-up parsing 75

• if the (rhs of the) handle is removed from top stack ⇒
– “go back to the (top) state before that handle had been added”: no edge for

that
• later: stack notation simply remembers the state as part of its configuration

Example: LR parsing for addition (given the tree)

E′ → E
E → E+ n | n

CST

E′

E

E

n + n

Run

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $E + n $ shift
4 $E+ n $ shift
5 $E+ n $ reduce E → E+ n
6 $E $ red.: E′ → E
7 $E′ $ accept

note: line 3 vs line 6!; both contain E on top of stack

This is a revisit of an example resp. slide from earlier, when we discussed how a parser can do
decisions, resp. that it would be easy to do decisions for the parser machine if it had the tree
already. Unfortunately it has the tree not available, the only thing it has is “the past” which is
represented (partially) by the stack content. As discussed earlier, interesting in the run are stage
3 and state 6, which have the same stack content, which also means, the parser is in the same
state of its LR(0)-DFA. With the automaton constructed as before, that’s state 1. The state 1 is
important, as it illustrates a shift/reduce conflict. Remember: reduce-steps are not represented
in the LR(0)-automaton via transitions. They are only implicitly represented by complete items.
Thus, as shift-reduce conflict is not characterized by 2 outgoing edges. It’s one outgoing edge
from a state containing a complete item.

76 4 Parsing
4.7 Bottom-up parsing

Earlier we hinted at that an automaton could make decisions based on a look-head. That is not yet
done: the LR(0), in state 1 especially, can do a reduce step or a shift step, which constitutes the
conflict. Later, we will see under which circumstances, looking at the “next symbol” can help to
make the decision. That leads to SLR parsing (or even later to LR(1)/LALR(1)). In the particular
situation of state 1 in the example, the next possible symbol would be + or else $

DFA of addition example

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +

n

• note line 3 vs. line 6
• both stacks = E ⇒ same (top) state in the DFA (state 1)

The point being made when lookig at that 1 is the following: the state is a complete state (a state
containing a complete item). Besides that, there is an outgoing edge. That means, in that state,
there are two reactions possible: a shift (following the edge) and a reduce, as indicated by the
complete item. That indicates a conflict-situation, especially if we don’t make use of look-aheads,
as we do currently, when discussing LR(0). The conflict-situation is called, not surprisingly, a
“shift-reduce-conflict”, more precisely an LR(0)-shift/reduce conflict. The qualification LR(0) is
necessary, as sometimes, a more close look at the situation and taking a look-ahead into account
may defuse the conflict. Those more fine-grainend considerations will lead to extensions of the
plain LR(0)-parsing (like SLR(0), or LR(1) and LALR(1)).

LR(0) grammars

LR(0) grammar

The top-state alone determines the next step.

• especially: no shift/reduce conflicts in the form shown
• thus: previous addition-grammar is not LR(0)

Simple parentheses

A → (A) | a

4 Parsing
4.7 Bottom-up parsing 77

DFA

A′ → .A

A→ . (A)
A→ .a

0

A′ → A.

1

A→ (.A)
A→ . (A)
A→ .a

3

A→ a.
2

A→ (A.)
4

A→ (A) .
5

A

a(

(a

A

)

Simple parentheses is LR(0)

DFA

A′ → .A

A→ . (A)
A→ .a

0

A′ → A.

1

A→ (.A)
A→ . (A)
A→ .a

3

A→ a.
2

A→ (A.)
4

A→ (A) .
5

A

a(

(a

A

)

Remarks

state possible action
0 only shift
1 only red: (A′ → A)
2 only red: (A→ a)
3 only shift
4 only shift
5 only red (A→ (A))

78 4 Parsing
4.7 Bottom-up parsing

NFA for simple parentheses (bonus slide)

A′ → .A A′ → A.

A→ . (A) A→ .a

A→ (.A) A→ (A.)

A→ a.

A→ (A) .

A

ε
ε

ε
ε(

a

A)

For completeness sake: that’s the NFA for the “simple parentheses”.

Parsing table for an LR(0) grammar

• table structure: slightly different for SLR(1), LALR(1), and LR(1) (see later)
• note: the “goto” part: “shift” on non-terminals (only 1 non-terminal A here)
• corresponding to the A-labelled transitions

state action rule input goto
(a) A

0 shift 3 2 1
1 reduce A′ → A
2 reduce A→ a
3 shift 3 2 4
4 shift 5
5 reduce A→ (A)

Parsing of ((a))

stage parsing stack input action

1 $0 ((a)) $ shift
2 $0(3 (a)) $ shift
3 $0(3(3 a)) $ shift
4 $0(3(3a2)) $ reduce A → a
5 $0(3(3A4)) $ shift
6 $0(3(3A4)5) $ reduce A → (A)
7 $0(3A4) $ shift
8 $0(3A4)5 $ reduce A → (A)
9 $0A1 $ accept

• note: stack on the left
– contains top state information
– in particular: overall top state on the right-most end

• note also: accept action
– reduce wrt. to A′ → A and
– empty stack (apart from $, A, and the state annotation)
⇒ accept

The left-most column is just line numbers (“stage” of the computation), it’s not the state.

4 Parsing
4.7 Bottom-up parsing 79

Parse tree of the parse

A′

A

(

A

(

A

a))

• As said:
– the reduction “contains” the parse-tree
– reduction: builds it bottom up
– reduction in reverse: contains a right-most derivation (which is “top-down”)

• accept action: corresponds to the parent-child edge A′ → A of the tree

Parsing of erroneous input

• empty slots it the table: “errors”

stage parsing stack input action
1 $0 ((a) $ shift
2 $0(3 (a) $ shift
3 $0(3(3 a) $ shift
4 $0(3(3a2) $ reduce A → a
5 $0(3(3A4) $ shift
6 $0(3(3A4)5 $ reduce A → (A)
7 $0(3A4 $????

stage parsing stack input action
1 $0 () $ shift
2 $0(3) $?????

Invariant

important general invariant for LR-parsing: never shift something “illegal” onto the stack

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains A→ α.Xβ, where X is a terminal
• shift X from input to top of stack. The new state pushed on the stack: state t where s X−→ t
• else: if s does not have such a transition: error

2. s contains a complete item (say A→ γ.): reduce by rule A→ γ:
• A reduction by S′ → S: accept, if input is empty; else error:
• else:

pop: remove γ (including “its” states from the stack)
back up: assume to be in state u which is now head state

push: push A to the stack, new head state t where u A−→ t (in the DFA)

80 4 Parsing
4.7 Bottom-up parsing

DFA parentheses again: LR(0)?

S′ → S
S → (S)S | ε

S′ → .S

S → . (S)S
S → .

0

S′ → S.

1

S → (.S)S
S → . (S)S
S → .

2

S → (S.)S
3

S → (S) .S
S → . (S)S
S → .

4

S → (S)S.
5

S

(

S(

)
(

S

Look at states 0, 2, and 4

DFA addition again: LR(0)?

E′ → E
E → E+ n | n

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +

n

How to make a decision in state 1?

4 Parsing
4.7 Bottom-up parsing 81

Decision? If only we knew the ultimate tree already (expecially the parts still
to come). . .

CST

E′

E

E

n + n

Run

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $E + n $ shift
4 $E+ n $ shift
5 $E+ n $ reduce E → E+ n
6 $E $ red.: E′ → E
7 $E′ $ accept

• current stack: represents already known part of the parse tree
• since we don’t have the future parts of the tree yet:
⇒ look-ahead on the input (without building the tree yet)
• LR(1) and its variants: look-ahead of 1 (= look at the current type of the token)

Addition grammar (again)

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +

n

• How to make a decision in state 1? (here: shift vs. reduce)
⇒ look at the next input symbol (in the token)

82 4 Parsing
4.7 Bottom-up parsing

One look-ahead

• LR(0), not useful, too weak
• add look-ahead, here of 1 input symbol (= token)
• different variations of that idea (with slight difference in expresiveness)
• tables slightly changed (compared to LR(0))
• but: still can use the LR(0)-DFAs

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

. . .

A→ α.

. . .

B → β.

SLR(1) solution: use follow sets of non-terms

• If Follow(A) ∩ Follow(B) = ∅
⇒ next symbol (in token) decides!

– if token ∈ Follow(α) then reduce using A→ α
– if token ∈ Follow(β) then reduce using B → β
– . . .

Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:

. . .

A→ α.

. . .

B1 → β1.b1γ1

B2 → β2.b2γ2

b1

b2

SLR(1) solution: again: use follow sets of non-terms

• If Follow(A) ∩ {b1,b2, . . .} = ∅
⇒ next symbol (in token) decides!

– if token ∈ Follow(A) then reduce using A → α, non-terminal A determines new top
state

– if token ∈ {b1,b2, . . .} then shift. Input symbol bi determines new top state
– . . .

4 Parsing
4.7 Bottom-up parsing 83

SLR(1) requirement on states (as in the book)

• formulated as conditions on the states (of LR(0)-items)
• given the LR(0)-item DFA as defined

SLR(1) condition, on all states s

1. For any item A → α.Xβ in s with X a terminal, there is no complete item B → γ. in s
with X ∈ Follow(B).

2. For any two complete items A→ α. and B → β. in s, Follow(α) ∩ Follow(β) = ∅

Revisit addition one more time

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +

n

• Follow(E′) = {$}
⇒ – shift for +

– reduce with E′ → E for $ (which corresponds to accept, in case the input is empty)

SLR(1) algo

let s be the current state, on top of the parse stack

1. s contains A → α.Xβ, where X is a terminal and X is the next token on the input,
then

• shift X from input to top of stack. The new state pushed on the stack: state t where
s

X−→ t8

2. s contains a complete item (say A→ γ.) and the next token in the input is in Follow(A):
reduce by rule A→ γ:

• A reduction by S′ → S: accept, if input is empty9

• else:
pop: remove γ (including “its” states from the stack)
back up: assume to be in state u which is now head state
push: push A to the stack, new head state t where u A−→ t

3. if next token is such that neither 1. or 2. applies: error
8Cf. to the LR(0) algo: since we checked the existence of the transition before, the else-part is missing
now.

9Cf. to the LR(0) algo: This happens now only if next token is $. Note that the follow set of S′ in the
augmented grammar is always only $

84 4 Parsing
4.7 Bottom-up parsing

Parsing table for SLR(1)

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +

n

state input goto
n + $ E

0 s : 2 1
1 s : 3 accept
2 r : (E → n)
3 s : 4
4 r : (E → E+ n) r : (E → E+ n)

for state 2 and 4: n /∈ Follow(E)

Parsing table: remarks

• SLR(1) parsing table: rather similar-looking to the LR(0) one
• differences: reflect the differences in: LR(0)-algo vs. SLR(1)-algo
• same number of rows in the table (= same number of states in the DFA)
• only: colums “arranged” differently

– LR(0): each state uniformely: either shift or else reduce (with given rule)
– now: non-uniform, dependent on the input. But that does not apply to the previous

example. We’ll see that in the next, then.
• it should be obvious:

– SLR(1) may resolve LR(0) conflicts
– but: if the follow-set conditions are not met: SLR(1) shift-shift and/or SLR(1) shift-

reduce conflicts
– would result in non-unique entries in SLR(1)-table10

SLR(1) parser run (= “reduction”)

state input goto
n + $ E

0 s : 2 1
1 s : 3 accept
2 r : (E → n)
3 s : 4
4 r : (E → E + n) r : (E → E + n)

10by which it, strictly speaking, would no longer be an SLR(1)-table :-)

4 Parsing
4.7 Bottom-up parsing 85

stage parsing stack input action

1 $0 n + n + n $ shift: 2
2 $0n2 + n + n $ reduce: E → n
3 $0E1 + n + n $ shift: 3
4 $0E1+3 n + n $ shift: 4
5 $0E1+3n4 + n $ reduce: E → E + n
6 $0E1 n $ shift 3
7 $0E1+3 n $ shift 4
8 $0E1+3n4 $ reduce: E → E + n
9 $0E1 $ accept

Corresponding parse tree

E′

E

E

E

n + n + n

Revisit the parentheses again: SLR(1)?

Grammar: parentheses

S′ → S
S → (S)S | ε

Follow set

Follow(S) = {),$}

86 4 Parsing
4.7 Bottom-up parsing

DFA for parentheses

S′ → .S

S → . (S)S
S → .

0

S′ → S.

1

S → (.S)S
S → . (S)S
S → .

2

S → (S.)S
3

S → (S) .S
S → . (S)S
S → .

4

S → (S)S.
5

S

(

S(

)
(

S

SLR(1) parse table

state input goto
() $ S

0 s : 2 r : S → ε r : S → ε 1
1 accept
2 s : 2 r : S → ε r : S → ε 3
3 s : 4
4 s : 2 r : S → ε r : S → ε 5
5 r : S → (S) S r : S → (S) S

Parentheses: SLR(1) parser run (= “reduction”)

state input goto
() $ S

0 s : 2 r : S → ε r : S → ε 1
1 accept
2 s : 2 r : S → ε r : S → ε 3
3 s : 4
4 s : 2 r : S → ε r : S → ε 5
5 r : S → (S)S r : S → (S)S

4 Parsing
4.7 Bottom-up parsing 87

stage parsing stack input action
1 $0 () () $ shift: 2
2 $0(2) () $ reduce: S → ε
3 $0(2S3) () $ shift: 4
4 $0(2S3)4 () $ shift: 2
5 $0(2S3)4(2) $ reduce: S → ε
6 $0(2S3)4(2S3) $ shift: 4
7 $0(2S3)4(2S3)4 $ reduce: S → ε
8 $0(2S3)4(2S3)4S5 $ reduce: S → (S) S
9 $0(2S3)4S5 $ reduce: S → (S) S
10 $0S1 $ accept

Remarks

Note how the stack grows, and would continue to grow if the sequence of () would continue.
That’s characteristic for a right-recursive formulation of rules, and may constitute a problem for
LR-parsing (stack-overflow).

Ambiguity & LR-parsing

• LR(k) (and LL(k)) grammars: unambiguous
• definition/construction: free of shift/reduce and reduce/reduce conflict (given the chosen

level of look-ahead)
• However: ambiguous grammar tolerable, if (remaining) conflicts can be solved “meaningfully”

otherwise:

Additional means of disambiguation:

1. by specifying associativity / precedence “externally”
2. by “living with the fact” that LR parser (commonly) prioritizes shifts over reduces

• for the second point (“let the parser decide according to its preferences”):
– use sparingly and cautiously
– typical example: dangling-else
– even if parsers makes a decision, programmar may or may not “understand intuitively”

the resulting parse tree (and thus AST)
– grammar with many S/R-conflicts: go back to the drawing board

Example of an ambiguous grammar
stmt → if -stmt | other

if -stmt → if (exp) stmt
| if (exp) stmt else stmt

exp → 0 | 1

In the following, E for exp, etc.

88 4 Parsing
4.7 Bottom-up parsing

Simplified conditionals

Simplified “schematic” if-then-else

S → I | other
I → if S | if S else S

Follow-sets

Follow
S′ {$}
S {$, else}
I {$, else}

• since ambiguous: at least one conflict must be somewhere

DFA of LR(0) items

Checking the previously shown conditions for SLR(1) parsing, one sees that there is a SLR(1)
conflict in state 5: the follow-set of I contains else. In the following tables, only the shift-reaction
is added in the corresponding slot (not both shift and reduce action), since that is default reaction
of a parser tool, when facing a shift-reduce conflict.

4 Parsing
4.7 Bottom-up parsing 89

Simple conditionals: parse table

Grammar

S → I (1)
| other (2)

I → if S (3)
| ifS else S (4)

SLR(1)-parse-table, conflict “resolved”

state input goto
if else other $ S I

0 s : 4 s : 3 1 2
1 accept
2 r : 1 r : 1
3 r : 2 r : 2
4 s : 4 s : 3 5 2
5 s : 6 r : 3
6 s : 4 s : 3 7 2
7 r : 4 r : 4

• shift-reduce conflict in state 5: reduce with rule 3 vs. shift (to state 6)
• conflict there: resolved in favor of shift to 6
• note: extra start state left out from the table

Parser run (= reduction)

Parser run, different choice

state input goto
if else other $ S I

0 s : 4 s : 3 1 2
1 accept
2 r : 1 r : 1
3 r : 2 r : 2
4 s : 4 s : 3 5 2
5 s : 6 r : 3
6 s : 4 s : 3 7 2
7 r : 4 r : 4

90 4 Parsing
4.7 Bottom-up parsing

stage parsing stack input action
1 $0 if if other else other $ shift: 4
2 $0if 4 if other else other $ shift: 4
3 $0if 4if 4 other else other $ shift: 3
4 $0if 4if 4other3 else other $ reduce: 2
5 $0if 4if 4S5 else other $ reduce 3
6 $0if 4I2 else other $ reduce 1
7 $0if 4S5 else other $ shift 6
8 $0if 4S5else6 other $ shift 3
9 $0if 4S5else6other3 $ reduce 2

10 $0if 4S5else6S7 $ reduce 4
11 $0S1 $ accept

Parse trees for the “simple conditions”

shift-precedence: conventional

S

if

I

if

S

other else

S

other

“wrong” tree

S

if

I

if

S

other else

S

other

standard “dangling else” convention

“an else belongs to the last previous, still open (= dangling) if-clause”

The example serves two purposes: for once shed a light on how the dangling else problem can
be “solved” by preferring as shift over a reduce reaction. More generally, it should give (using
that standard situation) give a feeling how generally a shift-vs-reduce changes the structure of the

4 Parsing
4.7 Bottom-up parsing 91

parse-tree (and indirectly most probably thereby also the AST). It’s an issue of associativity and
precedence (at least when dealing with binary operators), and we will see that in the following
standard setting of expressions.

Use of ambiguous grammars

• advantage of ambiguous grammars: often simpler
• if ambiguous: grammar guaranteed to have conflicts
• can be (often) resolved by specifying precedence and associativity
• supported by tools like yacc and CUP . . .

E′ → E
E → E+E | E ∗E | n

DFA for + and ×

E′ → .E

E → .E+E

E → .E ∗E

E → .n

0

E′ → E.

E → E.+E

E → E.∗E

1

E → E+ .E

E → .E+E

E → .E ∗E

E → .n

3

E → E+E.

E → E.+E

E → E.∗E

5

E → E ∗E.

E → E.+E

E → E.∗E

6

E → n.

2
E → E ∗ .E

E → .E+E

E → .E ∗E

E → .n

4

E

n

+

∗

n

E

∗

∗

+

E

+

n

States with conflicts

• state 5
– stack contains ...E+E
– for input $: reduce, since shift not allowed form $
– for input +; reduce, as + is left-associative
– for input ∗: shift, as ∗ has precedence over +

• state 6:
– stack contains ...E ∗E

92 4 Parsing
4.7 Bottom-up parsing

– for input $: reduce, since shift not allowed form $
– for input +; reduce, a ∗ has precedence over +
– for input ∗: reduce, as ∗ is left-associative

• see also the table on the next slide

Parse table + and ×

state input goto
n + ∗ $ E

0 s : 2 1
1 s : 3 s : 4 accept
2 r : E → n r : E → n r : E → n
3 s : 2 5
4 s : 2 6
5 r : E → E+E s : 4 r : E → E+E
6 r : E → E ∗E r : E → E ∗E r : E → E ∗E

How about exponentiation (written ↑ or ∗∗)?

Defined as right-associative. See exercise

An interesting line is the one for state 5, and the difference in reaction when ecncountering a
addition vs. a multiplication sign. Basically, the shift for multiplication realizes the fact that
multiplication has a higher precedence than addition

Compare: unambiguous grammar for + and ∗

Unambiguous grammar: precedence and left-assoc built in

E′ → E
E → E+T | T
T → T ∗n | n

Follow
E′ {$} (as always for start symbol)
E {$,+}
T {$,+,∗}

4 Parsing
4.7 Bottom-up parsing 93

DFA for unambiguous + and ×

E′ → .E

E → .E+T

E → .T

E → .T ∗n
E → .n

0

E′ → E.

E → E.+T

1
E → E+ .T

T → .T ∗n
T → .n

2

T → n.

3

E → T .

T → T .∗n

4

T → T ∗ .n
5

E → E+T .

T → T .∗n

6

T → T ∗n.
7

E

n

T

+

n
T

∗
n

∗

DFA remarks

• the DFA now is SLR(1)
– check states with complete items
state 1: Follow(E′) = {$}
state 4: Follow(E) = {$,+}
state 6: Follow(E) = {$,+}
state 3/7: Follow(T) = {$,+,∗}

– in no case there’s a shift/reduce conflict (check the outgoing edges vs. the follow set)
– there’s not reduce/reduce conflict either

LR(1) parsing

• most general from of LR(1) parsing
• aka: canonical LR(1) parsing
• usually: considered as unecessarily “complex” (i.e. LALR(1) or similar is good enough)
• “stepping stone” towards LALR(1)

Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a non-look-ahead DFA (based on LR(0)-items)

94 4 Parsing
4.7 Bottom-up parsing

A help to remember

SLR(1) “improved” LR(0) parsing LALR(1) is “crippled” LR(1) parsing.

Limits of SLR(1) grammars

Assignment grammar fragment11

stmt → call-stmt | assign-stmt
call-stmt → identifier

assign-stmt → var := exp
var → [exp] | identifier
exp → var | n

Assignment grammar fragment, simplified

S → id | V :=E
V → id
E → V | n

The problematic situation, as we will see on the next slide, concerns identifiers (resp. variables as
left-hand side of an assignment or as a call expression).

11Inspired by Pascal, analogous problems in C . . .

4 Parsing
4.7 Bottom-up parsing 95

non-SLR(1): Reduce/reduce conflict

S′ → .S

S → .id

S → .V :=E

V → .id

S → id.

V → id.

. . .

. . .

S

id

V

S′ → .S

S → .id

S → .V :=E

V → .id

S → id. $

V → id. $, :=

. . .

. . .

S

id

V

First Follow
S id $
V id $, :=
E id,n $

Checking the previously shown conditions for SLR(1)-parsing shows (amongst others) a reduce/re-
duce conflict situation in the state on the right-hand side. The R/R conflict is on the symbol $:
the parser does not know which production to use in the reduce step. The red terminals are not
part of the state, they are just shown for illustration (representing the follow symbols of S resp.
of V). The LR(1) construction (sketched on the next slides) builds in one additional look-ahead
symbol officially as parts of the items and thus states.

96 4 Parsing
4.7 Bottom-up parsing

Situation can be saved: more look-ahead

S′ → .S $

S → .id $

S → .V :=E $

V → .id :=

S → id. $

V → id. :=

. . .

. . .

S

id

V

The (sketch of the) automaton here looks pretty similar to the previous one. However, we should
think now of the non-terminals as officially part of the items. The interesting piece in this example
is the transition from the initial state following the id-transition, to the state containing the items
→ id. and V → id.. That was the state on the previous slide with the reduce/reduce conflict (on
the following symbol $). Now, without showing the construction in detail (later we give at least
the rules for the construction of the NFA, not the DFA with the closure): the interesting situation
is, in the first state, the item S → .V :=E,$. With the . in front of the V , that’s when we have
to take the ε-closure into account, basically adding also the initial items (here one initial item) for
the productions for V into account. Now, by adding that item V → .id, we can use the additional
“look-ahead piece of information” in that item to mark that V was added to the closure when
being in front of an :=. That leads (in this situation) to the item of the form [V → .id, :=]. This
information is more specific than the knowledge about the general follow-set of V , which constains
:= and $. Now, by recording that extra piece of information in the closure, the state remembers
that the only thing at the current state that is allowed to follow the V is the :=. That will defuse
the discussed conflict, namely as follows: if we follow the id-arrow, we end up in the state on the
right-hand side. Such a transition does not touch the additional new look-ahead information (here
the $ resp the := symbol). Thus, in the state at the right-hand side, the reduce-reduce conflict
has disappeared!

LALR(1) (and LR(1)): Being more precise with the follow-sets

• LR(0)-items: too “indiscriminate” wrt. the follow sets
• remember the definition of SLR(1) conflicts
• LR(0)/SLR(1)-states:

– sets of items12 due to subset construction
– the items are LR(0)-items
– follow-sets as an after-thought

12That won’t change in principle (but the items get more complex)

4 Parsing
4.7 Bottom-up parsing 97

Add precision in the states of the automaton already

Instead of using LR(0)-items and, when the LR(0) DFA is done, try to add a little disambiguation
with the help of the follow sets for states containing complete items, better make more fine-
grained items from the very start:

• LR(1) items
• each item with “specific follow information”: look-ahead

LR(1) items

• main idea: simply make the look-ahead part of the item
• obviously: proliferation of states13

LR(1) items

[A→ α.β,a] (4.9)

• a: terminal/token, including $

LALR(1)-DFA (or LR(1)-DFA)

13Not to mention if we wanted look-ahead of k > 1, which in practice is not done, though.

98 4 Parsing
4.7 Bottom-up parsing

Remarks on the DFA

• Cf. state 2 (seen before)
– in SLR(1): problematic (reduce/reduce), as Follow(V) = {:=,$}
– now: diambiguation, by the added information

• LR(1) would give the same DFA

Full LR(1) parsing

• AKA: canonical LR(1) parsing
• the best you can do with 1 look-ahead
• unfortunately: big tables
• pre-stage to LALR(1)-parsing

SLR(1)

LR(0)-item-based parsing, with afterwards adding some extra “pre-compiled” info (about follow-
sets) to increase expressivity

LALR(1)

LR(1)-item-based parsing, but afterwards throwing away precision by collapsing states, to save
space

LR(1) transitions: arbitrary symbol

• transitions of the NFA (not DFA)

X-transition

[A→ α.Xβ,a] [A→ αX.β,a]X

LR(1) transitions: ε

ε-transition

for all
B → β1 | β2 . . . and all b ∈ First(γa)

[A→ α.Bγ ,a] [B → .β ,b]ε

4 Parsing
4.7 Bottom-up parsing 99

including special case (γ = ε)

for all B → β1 | β2 . . .

[A→ α.B ,a] [B → .β ,a]ε

LALR(1) vs LR(1)

LALR(1)

100 4 Parsing
4.7 Bottom-up parsing

LR(1)

Core of LR(1)-states

• actually: not done that way in practice
• main idea: collapse states with the same core

Core of an LR(1) state

= set of LR(0)-items (i.e., ignoring the look-ahead)

• observation: core of the LR(1) item = LR(0) item
• 2 LR(1) states with the same core have same outgoing edges, and those lead to states with

the same core

4 Parsing
4.7 Bottom-up parsing 101

LALR(1)-DFA by as collapse

• collapse all states with the same core
• based on above observations: edges are also consistent
• Result: almost like a LR(0)-DFA but additionally

– still each individual item has still look ahead attached: the union of the “collapsed”
items

– especially for states with complete items [A → α,a,b, . . .] is smaller than the follow
set of A

– ⇒ less unresolved conflicts compared to SLR(1)

Concluding remarks of LR / bottom up parsing

• all constructions (here) based on BNF (not EBNF)
• conflicts (for instance due to ambiguity) can be solved by

– reformulate the grammar, but generarate the same language14

– use directives in parser generator tools like yacc, CUP, bison (precedence, assoc.)
– or (not yet discussed): solve them later via semantical analysis
– NB: not all conflics are solvable, also not in LR(1) (remember ambiguous languages)

LR/bottom-up parsing overview

advantages remarks
LR(0) defines states also used by

SLR and LALR
not really used, many con-
flicts, very weak

SLR(1) clear improvement over
LR(0) in expressiveness,
even if using the same
number of states. Table
typically with 50K entries

weaker than LALR(1).
but often good enough.
Ok for hand-made parsers
for small grammars

LALR(1) almost as expressive as
LR(1), but number of
states as LR(0)!

method of choice for most
generated LR-parsers

LR(1) the method covering
all bottom-up, one-
look-ahead parseable
grammars

large number of states
(typically 11M of entries),
mostly LALR(1) preferred

Remember: once the table specific for LR(0), . . . is set-up, the parsing algorithms all work the
same

Error handling

Minimal requirement

Upon “stumbling over” an error (= deviation from the grammar): give a reasonable & understand-
able error message, indicating also error location. Potentially stop parsing
14If designing a new language, there’s also the option to massage the language itself. Note also: there are

inherently ambiguous languages for which there is no unambiguous grammar.

102 4 Parsing
4.7 Bottom-up parsing

• for parse error recovery
– one cannot really recover from the fact that the program has an error (an syntax error

is a syntax error), but
– after giving decent error message:

∗ move on, potentially jump over some subsequent code,
∗ until parser can pick up normal parsing again
∗ so: meaningfull checking code even following a first error

– avoid: reporting an avalanche of subsequent spurious errors (those just “caused” by the
first error)

– “pick up” again after semantic errors: easier than for syntactic errors

Error messages

• important:
– avoid error messages that only occur because of an already reported error!
– report error as early as possible, if possible at the first point where the program cannot

be extended to a correct program.
– make sure that, after an error, one doesn’t end up in an infinite loop without reading

any input symbols.
• What’s a good error message?

– assume: that the method factor() chooses the alternative (exp) but that it , when
control returns from method exp(), does not find a)

– one could report : right parenthesis missing
– But this may often be confusing, e.g. if what the program text is: (a + b c)
– here the exp() method will terminate after (a + b, as c cannot extend the ex-

pression). You should therefore rather give the message error in expression or
right parenthesis missing.

Error recovery in bottom-up parsing

• panic recovery in LR-parsing
– simple form
– the only one we shortly look at

• upon error: recovery ⇒
– pops parts of the stack
– ignore parts of the input

• until “on track again”
• but: how to do that
• additional problem: non-determinism

– table: constructed conflict-free under normal operation
– upon error (and clearing parts of the stack + input): no guarantee it’s clear how to

continue
⇒ heuristic needed (like panic mode recovery)

Panic mode idea

• try a fresh start,
• promising “fresh start” is: a possible goto action
• thus: back off and take the next such goto-opportunity

4 Parsing
4.7 Bottom-up parsing 103

Possible error situation

parse stack input action
1 $0a1b2c3(4d5e6 f) gh . . .$ no entry for f
2 $0a1b2c3Bv gh . . .$ back to normal
3 $0a1b2c3Bvg7 h . . .$. . .

state input goto
. . .) f g A B . . .

. . .
3 u v
4 − − −
5 − − −
6 − − − −
. . .
u − − reduce . . .
v − − shift : 7
. . .

Panic mode recovery

Algo

1. Pop states for the stack until a state is found with non-empty goto entries
2. • If there’s legal action on the current input token from one of the goto-states, push token

on the stack, restart the parse.
• If there’s several such states: prefer shift to a reduce
• Among possible reduce actions: prefer one whose associated non-terminal is least general

3. if no legal action on the current input token from one of the goto-states: advance input until
there is a legal action (or until end of input is reached)

Example again

parse stack input action
1 $0a1b2c3(4d5e6 f) gh . . .$ no entry for f
2 $0a1b2c3Bv gh . . .$ back to normal
3 $0a1b2c3Bvg7 h . . .$. . .

• first pop, until in state 3
• then jump over input

– until next input g
– since f and) cannot be treated

• choose to goto v (shift in that state)

Panic mode may loop forever

parse stack input action
1 $0 (n n) $
2 $0(6 n n) $
3 $0(6n5 n) $
4 $0(6factor4 n) $
6 $0(6term3 n) $
7 $0(6exp10 n) $ panic!
8 $0(6factor4 n) $ been there before: stage 4!

104 4 Parsing
4.7 Bottom-up parsing

Panicking and looping

parse stack input action
1 $0 (n n) $
2 $0(6 n n) $
3 $0(6n5 n) $
4 $0(6factor4 n) $
6 $0(6term3 n) $
7 $0(6exp10 n) $ panic!
8 $0(6factor4 n) $ been there before: stage 4!

• error raised in stage 7, no action possible
• panic:

1. pop-off exp10
2. state 6: 3 goto’s

exp term factor
goto to 10 3 4
with n next: action there — reduce r4 reduce r6

3. no shift, so we need to decide between the two reduces
4. factor : less general, we take that one

How to deal with looping panic?

• make sure to detec loop (i.e. previous “configurations”)
• if loop detected: doen’t repeat but do something special, for instance

– pop-off more from the stack, and try again
– pop-off and insist that a shift is part of the options

Left out (from the book and the pensum)

• more info on error recovery
• expecially: more on yacc error recovery
• it’s not pensum, and for the oblig: need to deal with CUP-specifics (not classic yacc specifics

even if similar) anyhow, and error recovery is not part of the oblig (halfway decent error
handling is).

Bibliography
Bibliography 105

Bibliography
[] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles, Techniques

and Tools. Pearson,Addison-Wesley, second edition.

[] Appel, A. W. (1998a). Modern Compiler Implementation in Java. Cambridge University Press.

[] Appel, A. W. (1998b). Modern Compiler Implementation in ML/Java/C. Cambridge University
Press.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

106 Index
Index

Index
ε-production, 17
$ (end marker symbol), 21

abstract syntax tree, 1
ambiguity of a grammar, 10
ambiguous grammar, 26
associativity, 26, 27, 37

bottom-up parsing, 55

comlete item, 66
common left factor, 11
constraint, 15
CUP, 91

dangling-else, 87
determinization, 29

EBNF, 29, 34, 45
ε-production, 27

First set, 12
first-set, 12
Follow set, 12
follow set, 21, 59
follow-set, 12

grammar
ambiguous, 10
start symbol, 21

handle, 59

initial item, 66
item

complete, 66
initial, 66

LALR(1), 55
left factor, 26
left factorization, 11
left recursion, 26
left-factoring, 25, 34, 49
left-recursion, 25, 27, 35, 49

immediate, 25
LL(1), 34
LL(1) grammars, 48
LL(1) parse table, 49
LL(k), 11
LR(0), 55, 65, 82
LR(1), 55

nullable, 12

nullable symbols, 12

parse
error, 101

parser, 1
predictive, 34
recursive descent, 34

parsing
bottom-up, 55

predictive parser, 34
prefix

viable, 63

recursive descent parser, 34

sentential form, 12
shift-reduce parser, 56
SLR(1), 55, 82
syntax error, 1

type error, 2

viable prefix, 63

worklist, 18, 20
worklist algorithm, 18, 20

yacc, 91

	Contents
	Parsing
	Introduction to parsing
	Top-down parsing
	First and follow sets
	Massaging grammars
	LL-parsing (mostly LL(1))
	Error handling
	Bottom-up parsing

