
Chapter 4
Parsing

Course “Compiler Construction”
Martin Steffen
Spring 2021

Section
Introduction to parsing

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-3

What’s a parser generally doing

task of parser = syntax analysis

• input: stream of tokens from lexer
• output:

• abstract syntax tree
• or meaningful diagnosis of source of syntax error

• the full “power” (i.e., expressiveness) of CFGs not used
• thus:

• consider restrictions of CFGs, i.e., a specific subclass,
and/or

• represented in specific ways (no left-recursion,
left-factored . . .)

lexer parser rest of the
front end

symbol table

source
program

tokentoken

get next

token

AST interm.
rep.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-5

Top-down vs. bottom-up

• all parsers (together with lexers): left-to-right
• remember: parsers operate with trees

• parse tree (concrete syntax tree): representing
grammatical derivation

• abstract syntax tree: data structure
• 2 fundamental classes
• while parser eats through the token stream, it grows,
i.e., builds up (at least conceptually) the parse tree:

Bottom-up
Parse tree is being grown from
the leaves to the root.

Top-down
Parse tree is being grown from
the root to the leaves.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-6

Parsing restricted classes of CFGs

• parser: better be “efficient”
• full complexity of CFLs: not really needed in practice
• classification of CF languages vs. CF grammars, e.g.:

• left-recursion-freedom: condition on a grammar
• ambiguous language vs. ambiguous grammar

• classification of grammars ⇒ classification of languages
• a CF language is (inherently) ambiguous, if there’s no

unambiguous grammar for it
• a CF language is top-down parseable, if there exists a

grammar that allows top-down parsing . . .
• in practice: classification of parser generating tools:

• based on accepted notation for grammars: (BNF or
some form of EBNF etc.)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-7

Classes of CFG grammars/languages

• maaaany have been proposed & studied, including their
relationships
• lecture concentrates on

• top-down parsing, in particular
• LL(1)
• recursive descent

• bottom-up parsing
• LR(1)
• SLR
• LALR(1) (the class covered by yacc-style tools)

• grammars typically written in pure BNF

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-8

Relationship of some grammar (not
language) classes

unambiguous ambiguous

LR(k)
LR(1)

LALR(1)
SLR
LR(0)

LL(0)

LL(1)
LL(k)

taken from [1]

Section
Top-down parsing

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-10

General task (once more)

• Given: a CFG (but appropriately restricted)
• Goal: “systematic method” s.t.

1. for every given word w: check syntactic correctness
2. [build AST/representation of the parse tree as side

effect]
3. [do reasonable error handling]

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-11

Schematic view on “parser machine”

. . . if 1 + 2 ∗ (3 + 4) . . .

q0q1

q2

q3 . . .
qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

Note: sequence of tokens (not characters)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

exp

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

term exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

factor term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

(((
((number term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

numberterm′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number�ε exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

numberexp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

numberaddop term exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number��+ term exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +term exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +factor term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +(((((number term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +numberterm′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +numbermulop factor term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number�∗ factor term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (exp) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ ��(exp) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (exp) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (term exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (factor term′ exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ ((((((number term′ exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (numberterm′ exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number�ε exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (numberexp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (numberaddop term exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number��+ term exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + term exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + factor term′ exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number +(((((number term′ exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + numberterm′ exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number�ε exp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + numberexp′) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number�ε) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number ��) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number) term′ exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number) �ε exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number) exp′

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number) �ε

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

Derivation of an expression
. . . 1 + 2 ∗ (3 + 4) . . .

number +number∗ (number + number)

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

(1)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-13

Remarks concerning the derivation

Note:
• input = stream of tokens
• there: 1 . . . stands for token class number (for
readability/concreteness), in the grammar: just
number
• in full detail: pair of token class and token value
〈number, 1〉

Notation:
• underline: the place (occurrence of non-terminal where

production is used)
• (((((

(
crossed out:
• terminal = token is considered treated
• parser “moves on”
• later implemented as match or eat procedure

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-14

Not as a “film” but at a glance: reduction
sequence

exp ⇒
term exp′ ⇒
factor term′ exp′ ⇒
((((number term′ exp′ ⇒
numberterm′ exp′ ⇒
number�ε exp′ ⇒
numberexp′ ⇒
numberaddop term exp′ ⇒
number�+ term exp′ ⇒
number +term exp′ ⇒
number +factor term′ exp′ ⇒
number +((((number term′ exp′ ⇒
number +numberterm′ exp′ ⇒
number +numbermulop factor term′ exp′ ⇒
number +number�∗ factor term′ exp′ ⇒
number +number ∗ (exp) term′ exp′ ⇒
number +number ∗ �(exp) term′ exp′ ⇒
number +number ∗ (exp) term′ exp′ ⇒
. . .

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-16

Non-determinism?

• not a “free” expansion/reduction/generation of some
word, but
• reduction of start symbol towards the target word of

terminals

exp ⇒∗ 1 + 2 ∗ (3 + 4)
• i.e.: input stream of tokens “guides” the derivation

process (at least it fixes the target)
• but: how much “guidance” does the target word (in
general) gives?

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-17

Oracular derivation

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → (exp) | number
exp ⇒1 ↓ 1 + 2 ∗ 3
exp + term ⇒3 ↓ 1 + 2 ∗ 3
term + term ⇒5 ↓ 1 + 2 ∗ 3
factor + term ⇒7 ↓ 1 + 2 ∗ 3
number + term ↓ 1 + 2 ∗ 3
number + term 1 ↓ +2 ∗ 3
number + term ⇒4 1+ ↓ 2 ∗ 3
number + term ∗ factor ⇒5 1+ ↓ 2 ∗ 3
number + factor ∗ factor ⇒7 1+ ↓ 2 ∗ 3
number + number ∗ factor 1+ ↓ 2 ∗ 3
number + number ∗ factor 1 + 2 ↓ ∗3
number + number ∗ factor ⇒7 1 + 2∗ ↓ 3
number + number ∗number 1 + 2∗ ↓ 3
number + number ∗number 1 + 2 ∗ 3 ↓

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-18

Two principle sources of non-determinism

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

• α1, α2, β: word of terminals and nonterminals
• w: word of terminals, only
• A: one non-terminal

2 choices to make

1. where, i.e., on which occurrence of a non-terminal in
α1Aα2 to apply a production

2. which production to apply (for the chosen
non-terminal).

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-19

Left-most derivation

• that’s the easy part of non-determinism
• taking care of “where-to-reduce” non-determinism:
left-most derivation
• notation ⇒l

• some of the example derivations earlier used that

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-20

Non-determinism vs. ambiguity
• Note: the “where-to-reduce”-non-determinism 6=
ambiguitiy of a grammar
• in a way (“theoretically”): where to reduce next is
irrelevant:
• the order in the sequence of derivations does not matter
• what does matter: the derivation tree (aka the parse

tree)

Lemma (Left or right, who cares)

S ⇒∗l w iff S ⇒∗r w iff S ⇒∗ w.

• however (“practically”): a (deterministic) parser
implementation: must make a choice

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-20

Non-determinism vs. ambiguity
• Note: the “where-to-reduce”-non-determinism 6=
ambiguitiy of a grammar
• in a way (“theoretically”): where to reduce next is
irrelevant:
• the order in the sequence of derivations does not matter
• what does matter: the derivation tree (aka the parse

tree)

Lemma (Left or right, who cares)

S ⇒∗l w iff S ⇒∗r w iff S ⇒∗ w.

• however (“practically”): a (deterministic) parser
implementation: must make a choice

Using production A→ β

S ⇒∗l w1 A α2 ⇒ w1 β α2 ⇒∗l w

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-21

What about the “which-right-hand side”
non-determinism?

A→ β | γ

Is that the correct choice?

S ⇒∗l w1 A α2 ⇒ w1 β α2 ⇒∗l w

• reduction with “guidance”: don’t loose sight of the
target w
• “past” is fixed: w = w1w2
• “future” is not:

Aα2 ⇒l βα2 ⇒∗l w2 or else Aα2 ⇒l γα2 ⇒∗l w2 ?

Needed (minimal requirement):

In such a situation, “future target” w2 must determine which
of the rules to take!

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-22

Deterministic, yes, but still impractical

Aα2 ⇒l βα2 ⇒∗l w2 or else Aα2 ⇒l γα2 ⇒∗l w2 ?

• the “target” w2 is of unbounded length!
⇒ impractical, therefore:

Look-ahead of length k
resolve the “which-right-hand-side” non-determinism
inspecting only fixed-length prefix of w2 (for all situations as
above)

LL(k) grammars

CF-grammars which can be parsed doing that.

Section
First and follow sets

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-24

First and Follow sets
• general concept for grammars
• certain types of analyses (e.g. parsing):

• info needed about possible “forms” of derivable words,

First-set of A
which terminal symbols can appear at the start of strings
derived from a given nonterminal A

Follow-set of A
Which terminals can follow A in some sentential form.

• sentential form: word derived from grammar’s starting
symbol
• later: different algos for first and follow sets, for all
non-terminals of a given grammar
• mostly straightforward
• one complication: nullable symbols (non-terminals)
• Note: those sets depend on grammar, not the language

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-25

First sets

Definition (First set)

Given a grammar G and a non-terminal A. The first-set of
A, written FirstG(A) is defined as

FirstG(A) = {a | A⇒∗G aα, a ∈ ΣT }+ {ε | A⇒∗G ε} .
(2)

Definition (Nullable)

Given a grammar G. A non-terminal A ∈ ΣN is nullable, if
A⇒∗ ε.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-26

Examples

• Cf. the Tiny grammar
• in Tiny, as in most languages

First(if -stmt) = {”if”}
• in many languages:

First(assign-stmt) = {identifier, ”(”}

• typical Follow (see later) for statements:

Follow(stmt) = {”; ”, ”end”, ”else”, ”until”}

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-27

Remarks

• note: special treatment of the empty word ε
• in the following: if grammar G clear from the context

• ⇒∗ for ⇒∗G
• First for FirstG

• . . .
• definition so far: “top-level” for start-symbol, only
• next: a more general definition

• definition of First set of arbitrary symbols (and even
words)

• and also: definition of First for a symbol in terms of
First for “other symbols” (connected by productions)

⇒ recursive definition

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-28

A more algorithmic/recursive definition
• grammar symbol X: terminal or non-terminal or ε

Definition (First set of a symbol)

Given a grammar G and grammar symbol X. The first-set
of X, written First(X), is defined as follows:
1. If X ∈ ΣT + {ε}, then First(X) contains X.
2. If X ∈ ΣN : For each production

X → X1X2 . . . Xn

2.1 First(X) contains First(X1) \ {ε}
2.2 If, for some i < n, all First(X1), . . . ,First(Xi) contain

ε, then First(X) contains First(Xi+1) \ {ε}.
2.3 If all First(X1), . . . ,First(Xn) contain ε, then

First(X) contains {ε}.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-29

For words

Definition (First set of a word)

Given a grammar G and word α. The first-set of

α = X1 . . . Xn ,

written First(α) is defined inductively as follows:
1. First(α) contains First(X1) \ {ε}
2. for each i = 2, . . . n, if First(Xk) contains ε for all

k = 1, . . . , i− 1, then First(α) contains First(Xi) \ {ε}
3. If all First(X1), . . . ,First(Xn) contain ε, then

First(X) contains {ε}.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-30

Pseudo code

f o r all X ∈ A ∪ {ε} do
F i r s t [X] := X

end ;

f o r all non-terminals A do
F i r s t [A] := {}

end
wh i l e there are changes to any F i r s t [A] do

f o r each production A→ X1 . . . Xn do
k := 1 ;
c o n t i n u e := t rue
wh i l e c o n t i n u e = t rue and k ≤ n do

F i r s t [A] := F i r s t [A] ∪ F i r s t [Xk] \ {ε}
i f ε /∈ F i r s t [Xk] then c o n t i n u e := f a l s e
k := k + 1

end ;
i f c o n t i n u e = t rue
then F i r s t [A] := F i r s t [A] ∪ {ε}

end ;
end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-31

If only we could do away with special cases
for the empty words . . .

for a grammar without ε-productions.1

f o r all non-terminals A do
F i r s t [A] := {} // count s as change

end
wh i l e there are changes to any F i r s t [A] do

f o r each production A→ X1 . . . Xn do
F i r s t [A] := F i r s t [A] ∪ F i r s t [X1]

end ;
end

1A production of the form A→ ε.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-32

Example expression grammar (from before)

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(3)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-33

Example expression grammar (expanded)

exp → exp addop term
exp → term

addop → +
addop → −
term → term mulop factor
term → factor

mulop → ∗
factor → (exp)
factor → n

(4)

nr pass 1 pass 2 pass 3

1 exp → exp addop term

2 exp → term

3 addop → +

4 addop → −

5 term → term mulop factor

6 term → factor

7 mulop → ∗

8 factor → (exp)

9 factor → n

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-35

“Run” of the algo

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-36

Collapsing the rows & final result
• results per pass:

1 2 3
exp {(,n}
addop {+,−}
term {(,n}
mulop {∗}
factor {(,n}

• final results (at the end of pass 3):

First[_]
exp {(,n}
addop {+,−}
term {(,n}
mulop {∗}
factor {(,n}

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-37

Work-list formulation

f o r all non-terminals A do
F i r s t [A] := {}

WL := P // a l l p r o d u c t i o n s
end
wh i l e WL 6= ∅ do

remove one (A→ X1 . . . Xn) from WL
i f F i r s t [A] 6= F i r s t [A] ∪ F i r s t [X1]
then F i r s t [A] := F i r s t [A] ∪ F i r s t [X1]

add a l l p r o d u c t i o n s (A→ X′
1 . . . X

′
m) to WL

e l s e s k i p
end

• no ε-productions
• worklist here: “collection” of productions
• alternatively, with slight reformulation: “collection” of
non-terminals instead also possible

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-38

Follow sets

Definition (Follow set)

Given a grammar G with start symbol S, and a non-terminal
A.
The follow-set of A, written FollowG(A), is

FollowG(A) = {a | S $⇒∗G α1Aaα2, a ∈ ΣT + {$ }} .
(5)

• $ as special end-marker
• typically: start symbol not on the right-hand side of a
production

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-39

Follow sets, recursively

Definition (Follow set of a non-terminal)

Given a grammar G and nonterminal A. The Follow-set of
A, written Follow(A) is defined as follows:
1. If A is the start symbol, then Follow(A) contains $.
2. If there is a production B → αAβ, then Follow(A)

contains First(β) \ {ε}.
3. If there is a production B → αAβ such that
ε ∈ First(β), then Follow(A) contains Follow(B).

• $: “end marker” special symbol, only to be contained in
the follow set

More imperative representation in pseudo
code

Follow [S] := {$}
f o r all non-terminals A 6= S do

Follow [A] := {}
end
whi le there are changes to any Follow−s e t do

fo r each production A→ X1 . . . Xn do
fo r each Xi which i s a non−t e rm i n a l do

Follow [Xi] := Follow [Xi]∪(F i r s t (Xi+1 . . . Xn) \ {ε})
i f ε ∈ F i r s t (Xi+1Xi+2 . . . Xn)
then Follow [Xi] := Follow [Xi] ∪ Follow [A]

end
end

end

Note! First() = {ε}

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-41

Expression grammar once more

exp → exp addop term
exp → term

addop → +
addop → −
term → term mulop factor
term → factor

mulop → ∗
factor → (exp)
factor → n

(6)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-42

nr pass 1 pass 2

1 exp → exp addop term

2 exp → term

5 term → term mulop factor

6 term → factor

8 factor → (exp)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-43

“Run” of the algo

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-44

Illustration of first/follow sets

a ∈ First(A) a ∈ Follow(A)

• red arrows: illustration of information flow in the algos
• run of Follow:

• relies on First
• in particular a ∈ First(E) (right tree)

• $ ∈ Follow(B)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-45

More complex situation (nullability)

a ∈ First(A) a ∈ Follow(A)

Section
Massaging grammars

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-47

Some simple examples for both

• left-recursion

exp → exp + term

• classical example for common left factor: rules for
conditionals

if -stmt → if (exp) stmt end
| if (exp) stmt else stmt end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-48

Transforming the expression grammar

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

• obviously left-recursive
• remember: this variant used for proper associativity!

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-49

After removing left recursion

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′
term′ → mulop factor term′ | ε

mulop → ∗
factor → (exp) | n

• still unambiguous
• unfortunate: associativity now different!
• note also: ε-productions & nullability

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-50

Left-recursion removal

Left-recursion removal
A transformation process to turn a CFG into one without left
recursion

• price: ε-productions
• 3 cases to consider

• immediate (or direct) recursion
• simple
• general

• indirect (or mutual) recursion

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-51

Left-recursion removal: simplest case

A → Aα | β A → βA′

A′ → αA′ | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-52

Schematic representation

A → Aα | β

A

A

A

A

β

α

α

α

A → βA′

A′ → αA′ | ε

A

β A′

α A′

α A′

α A′

ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-53

Remarks

• both grammars generate the same (context-free)
language (= set of words over terminals)
• in EBNF:

A→ β{α}

• two negative aspects of the transformation
1. generated language unchanged, but: change in resulting

structure (parse-tree), i.a.w. change in associativity,
which may result in change of meaning

2. introduction of ε-productions
• more concrete example for such a production: grammar
for expressions

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-54

Left-recursion removal: immediate
recursion (multiple)

Before

A → Aα1 | . . . | Aαn
| β1 | . . . | βm

After

A → β1A
′ | . . . | βmA′

A′ → α1A
′ | . . . | αnA′

| ε

Note: can be written in EBNF as:

A→ (β1 | . . . | βm)(α1 | . . . | αn)∗

Removal of: general left recursion

Assume non-terminals A1, . . . , Am

f o r i := 1 to m do
f o r j := 1 to i −1 do

replace each grammar rule of the form Ai → Ajβ by // i < j
rule Ai → α1β | α2β | . . . | αkβ

where Aj → α1 | α2 | . . . | αk

is the current rule(s) for Aj // c u r r e n t
end
{ c o r r e s p o n d s to i = j }
remove, if necessary, immediate left recursion for Ai

end

“current” = rule in the current stage of algo

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-56

Example (for the general case)

A → Ba | Aa | c
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | BaA′b | cA′b | d

A → BaA′ | cA′

A′ → aA′ | ε
B → cA′bB′ | dB′

B′ → bB′ | aA′bB′ | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-56

Example (for the general case)

A → Ba | Aa | c
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | BaA′b | cA′b | d

A → BaA′ | cA′

A′ → aA′ | ε
B → cA′bB′ | dB′

B′ → bB′ | aA′bB′ | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-56

Example (for the general case)

A → Ba | Aa | c
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | BaA′b | cA′b | d

A → BaA′ | cA′

A′ → aA′ | ε
B → cA′bB′ | dB′

B′ → bB′ | aA′bB′ | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-56

Example (for the general case)

A → Ba | Aa | c
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ε
B → Bb | BaA′b | cA′b | d

A → BaA′ | cA′

A′ → aA′ | ε
B → cA′bB′ | dB′

B′ → bB′ | aA′bB′ | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-57

Left factor removal

• CFG: not just describe a context-free languages
• also: intended (indirect) description of a parser for that
language

⇒ common left factor undesirable
• cf.: determinization of automata for the lexer

Simple situation

A→ αβ | αγ | . . . A → αA′ | . . .
A′ → β | γ

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-58

Example: sequence of statements

Before

stmt-seq → stmt ; stmt-seq
| stmt

After

stmt-seq → stmt stmt-seq ′
stmt-seq ′ → ; stmt-seq | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-59

Example: conditionals

Before

if -stmt → if (exp) stmt-seq end
| if (exp) stmt-seq else stmt-seq end

After

if -stmt → if (exp) stmt-seq else-or-end
else-or-end → else stmt-seq end | end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-60

Example: conditionals (without else)

Before

if -stmt → if (exp) stmt-seq
| if (exp) stmt-seq else stmt-seq

After

if -stmt → if (exp) stmt-seq else-or-empty
else-or-empty → else stmt-seq | ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-61

Not all factorization doable in “one step”
Starting point

A → abcB | abC | aE

After 1 step

A → abA′ | aE
A′ → cB | C

After 2 steps

A → aA′′
A′′ → bA′ | E
A′ → cB | C

• note: we choose the longest common prefix (= longest
left factor) in the first step

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-62

Left factorization

wh i l e there are changes to the grammar do
f o r each nonterminal A do

l e t α be a prefix of max. length that is shared
by two or more productions for A

i f α 6= ε
then

l e t A→ α1 | . . . | αn be all
prod. for A and suppose that α1, . . . , αk share α
so that A→ αβ1 | . . . | αβk | αk+1 | . . . | αn ,
that the βj ’s share no common prefix, and
that the αk+1, . . . , αn do not share α.

replace rule A→ α1 | . . . | αn by the rules
A→ αA′ | αk+1 | . . . | αn

A′ → β1 | . . . | βk

end
end

end

Section
LL-parsing (mostly LL(1))

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-64

Parsing LL(1) grammars
• this lecture: we don’t do LL(k) with k > 1
• LL(1): particularly easy to understand and to
implement (efficiently)
• not as expressive than LR(1) (see later), but still kind of
decent

LL(1) parsing principle

Parse from 1) left-to-right (as always anyway), do a 2)
left-most derivation and resolve the “which-right-hand-side”
non-determinism by 3) looking 1 symbol ahead.

• two flavors for LL(1) parsing here (both are top-down
parsers)
• recursive descent
• table-based LL(1) parser

• predictive parsers

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-65

Sample expression grammar again

factors and terms

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′
term′ → mulop factor term′ | ε

mulop → ∗
factor → (exp) | n

(7)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-66

Look-ahead of 1: straightforward, but not
trivial
• look-ahead of 1:

• not much of a look-ahead, anyhow
• just the “current token”

⇒ read the next token, and, based on that, decide
• but: what if there’s no more symbols?
⇒ read the next token if there is, and decide based on the

token or else the fact that there’s none left2

Example: 2 productions for non-terminal factor

factor → (exp) | number

That situation here is more or less trivial, but that’s not all
to LL(1) . . .

2Sometimes “special terminal” $ used to mark the end (as
mentioned).

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-67

Recursive descent: general set-up

1. global variable, say tok, representing the “current
token” (or pointer to current token)

2. parser has a way to advance that to the next token (if
there’s one)

Idea
For each non-terminal nonterm, write one procedure which:
• succeeds, if starting at the current token position, the
“rest” of the token stream starts with a syntactically
correct word of terminals representing nonterm
• fail otherwise

• ignored (for now): when doing the above successfully,
build the AST for the accepted nonterminal.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-68

Recursive descent (in C-like)

method factor for nonterminal factor
1 f i n a l i n t LPAREN=1,RPAREN=2,NUMBER=3,
2 PLUS=4,MINUS=5,TIMES=6;

1 vo id f a c t o r () {
2 sw i tch (tok) {
3 case LPAREN: ea t (LPAREN) ; expr () ; ea t (RPAREN) ;
4 case NUMBER: ea t (NUMBER) ;
5 }
6 }

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-69

Recursive descent (in ocaml)

type token = LPAREN | RPAREN | NUMBER
| PLUS | MINUS | TIMES

l e t f a c t o r () = (∗ f u n c t i o n f o r f a c t o r s ∗)
match ! tok with

LPAREN −> eat (LPAREN) ; exp r () ; ea t (RPAREN)
| NUMBER −> eat (NUMBER)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-70

Slightly more complex

• previous 2 rules for factor : situation not always as
immediate as that

LL(1) principle (again)

given a non-terminal, the next token must determine the
choice of right-hand side.

⇒ definition of the First set
Lemma (LL(1) (without nullable symbols))

A reduced context-free grammar without nullable
non-terminals is an LL(1)-grammar iff for all non-terminals
A and for all pairs of productions A→ α1 and A→ α2 with
α1 6= α2:

First1(α1) ∩ First1(α2) = ∅ .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-71

Common problematic situation

• often: common left factors problematic

if -stmt → if (exp) stmt
| if (exp) stmt else stmt

• requires a look-ahead of (at least) 2
• ⇒ try to rearrange the grammar

1. Extended BNF ([2] suggests that)
if -stmt → if (exp) stmt[else stmt]

1. left-factoring:

if -stmt → if (exp) stmt else−part
else−part → ε | else stmt

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-72

Recursive descent for left-factored if -stmt

1 procedure i f s tm t ()
2 beg in
3 match (" i f ") ;
4 match (" (") ;
5 exp () ;
6 match (") ") ;
7 stmt () ;
8 i f token = " e l s e "
9 then match (" e l s e ") ;

10 stmt ()
11 end
12 end ;

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-73

Left recursion is a no-go

factors and terms

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(8)

• consider treatment of exp: First(exp)?
• whatever is in First(term), is in First(exp)3 recursion.

Left-recursion
Left-recursive grammar never works for recursive descent.

3And it would not help to look-ahead more than 1 token either.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-74

Removing left recursion may help

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′
term′ → mulop factor term′ | ε

mulop → ∗
factor → (exp) | n

procedure exp ()
beg in

term () ;
exp ′ ()

end

procedure exp ′ ()
beg in

case token of
"+": match ("+") ;

term () ;
exp ′ ()

" −": match (" −") ;
term () ;
exp ′ ()

end
end

Recursive descent works, alright, but . . .

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

(exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

. . . who wants this form of trees?

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-76

Left-recursive grammar with nicer parse
trees

1 + 2 ∗ (3 + 4)

exp

exp

term

factor

Nr

addop

+

term

term

factor

Nr

mulop

∗

term

factor

(exp

Nr mulop

∗

Nr

)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-77

The simple “original” expression grammar
(even nicer)
Flat expression grammar

exp → exp op exp | (exp) | number
op → + | − | ∗

1 + 2 ∗ (3 + 4)
exp

exp

Nr

op

+

exp

exp

Nr

op

∗

exp

(exp

exp

Nr

op

+

exp

Nr

)

Associtivity problematic

Precedence & assoc.

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

3 + 4 + 5

parsed “as”

(3 + 4) + 5

exp

exp

exp

term

factor

number

addop

+

term

factor

number

addop

+

term

factor

number

Associtivity problematic

Precedence & assoc.

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

3− 4− 5

parsed “as”

(3− 4)− 5

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

Now use the grammar without left-rec (but
right-rec instead)
No left-rec.

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

3− 4− 5

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

Now use the grammar without left-rec (but
right-rec instead)
No left-rec.

exp → term exp′

exp′ → addop term exp′ | ε
addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

3− 4− 5

parsed “as”

3− (4− 5)

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

But if we need a “left-associative” AST?
• we want (3− 4)− 5, not 3− (4− 5)

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

3

4 -1

5

-6

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-81

Code to “evaluate” ill-associated such trees
correctly

f u n c t i o n exp ′ (v a l s o f a r : i n t) : i n t ;
beg in

i f token = '+ ' or token = ' − '
then

case token of
'+ ' : match (' + ') ;

v a l s o f a r := v a l s o f a r + term ;
' − ' : match (' − ') ;

v a l s o f a r := v a l s o f a r − term ;
end case ;
r e t u r n exp ′ (v a l s o f a r) ;

e l s e r e tu rn v a l s o f a r
end ;

• extra “accumulator” argument valsofar
• instead of evaluating the expression, one could build the
AST with the appropriate associativity instead:
• instead of valueSoFar, one had
rootOfTreeSoFar

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-82

“Designing” the syntax, its parsing, & its
AST

trade offs:

1. starting from: design of the language, how much of the
syntax is left “implicit”4

2. which language class? Is LL(1) good enough, or
something stronger wanted?

3. how to parse? (top-down, bottom-up, etc.)
4. parse-tree/concrete syntax trees vs. ASTs

4Lisp is famous/notorious in that its surface syntax is more or less
an explicit notation for the ASTs. Not that it was originally planned like
this . . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-83

AST vs. CST

• once steps 1.–3. are fixed: parse-trees fixed!
• parse-trees = essence of grammatical derivation process
• often: parse trees only “conceptually” present in a
parser
• AST:

• abstractions of the parse trees
• essence of the parse tree
• actual tree data structure, as output of the parser
• typically on-the fly: AST built while the parser parses,

i.e. while it executes a derivation in the grammar

AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the
parse tree

AST: How “far away” from the CST?
• AST: only thing relevant for later phases ⇒ better be
clean . . .
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed

“weirdly”,

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

3

4 -1

5

-6

parse-trees like that better be cleaned up as AST

AST: How “far away” from the CST?
• AST: only thing relevant for later phases ⇒ better be
clean . . .
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed

“weirdly”,
exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

slightly more reasonably looking as AST (but underlying
grammar not directly useful for recursive descent)

AST: How “far away” from the CST?

• AST: only thing relevant for later phases ⇒ better be
clean . . .
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed

“weirdly”,

exp

exp

number

op

−

exp

exp

number

op

−

exp

number

That parse tree looks reasonable clear and intuitive

AST: How “far away” from the CST?
• AST: only thing relevant for later phases ⇒ better be
clean . . .
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed

“weirdly”,
−

number −

number number

Wouldn’t that be the best AST here?

AST: How “far away” from the CST?
• AST: only thing relevant for later phases ⇒ better be
clean . . .
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed

“weirdly”,
−

number −

number number

Wouldn’t that be the best AST here?
Certainly minimal amount of nodes, which is nice as such.
However, what is missing (which might be interesting) is the
fact that the 2 nodes labelled “−” are expressions!

AST: How “far away” from the CST?
• AST: only thing relevant for later phases ⇒ better be
clean . . .
• AST “=” CST?

• building AST becomes straightforward
• possible choice, if the grammar is not designed

“weirdly”,
exp : −

exp : number exp : −

exp : number exp : number

Wouldn’t that be the best AST here?
Certainly minimal amount of nodes, which is nice as such.
However, what is missing (which might be interesting) is the
fact that the 2 nodes labelled “−” are expressions!

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-85

This is how it’s done (a recipe)

Assume, one has a “non-weird” grammar
exp → exp op exp | (exp) | number
op → + | − | ∗

• typically that means: assoc. and precedences etc. are
fixed outside the non-weird grammar
• by massaging it to an equivalent one (no left recursion

etc.)
• or (better): use parser-generator that allows to specify

assoc . . . , without cluttering the grammar.
• if grammar for parsing is not as clear: do a second one

describing the ASTs

Remember (independent from parsing)

BNF describe trees

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-86

This is how it’s done (recipe for OO data
structures)

Recipe

• turn each non-terminal to an abstract class
• turn each right-hand side of a given non-terminal as
(non-abstract) subclass of the class for considered
non-terminal
• chose fields & constructors of concrete classes
appropriately
• terminal: concrete class as well, field/constructor for
token’s value

Example in Java
exp → exp op exp | (exp) | number
op → + | − | ∗

1 ab s t r a c t p ub l i c c l a s s Exp {
2 }

1 pub l i c c l a s s BinExp extends Exp { // exp −> exp op exp
2 pub l i c Exp l e f t , r i g h t ;
3 pub l i c Op op ;
4 pub l i c BinExp (Exp l , Op o , Exp r) {
5 l e f t=l ; op=o ; r i g h t=r ; }
6 }

1 pub l i c c l a s s P a r e n t h e t i c E x p extends Exp { // exp −> (op)
2 pub l i c Exp exp ;
3 pub l i c P a r e n t h e t i c E x p (Exp e) { exp = l ; }
4 }

1 pub l i c c l a s s NumberExp extends Exp { // exp −> NUMBER
2 pub l i c number ; // token v a l u e
3 pub l i c Number (i n t i) {number = i ; }
4 }

Example in Java

exp → exp op exp | (exp) | number
op → + | − | ∗

1 ab s t r a c t p ub l i c c l a s s Op { // non−t e rm i n a l = a b s t r a c t
2 }

1 pub l i c c l a s s Plus extends Op { // op −> "+"
2 }

1 pub l i c c l a s s Minus extends Op { // op −> "−"
2 }

1 pub l i c c l a s s Times extends Op { // op −> "∗"
2 }

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-88

3− (4− 5)

Exp e = new BinExp (
new NumberExp (3) ,
new Minus () ,
new BinExp (new P a r e n t h e t i c E x p r (

new NumberExp (4) ,
new Minus () ,
new NumberExp (5))))

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-89

Pragmatic deviations from the recipe
• it’s nice to have a guiding principle, but no need to
carry it too far . . .
• To the very least: the ParentheticExpr is
completely without purpose: grouping is captured by
the tree structure

⇒ that class is not needed
• some might prefer an implementation of

op → + | − | ∗

as simply integers, for instance arranged like
1 pub l i c c l a s s BinExp extends Exp { // exp −> exp op exp
2 pub l i c Exp l e f t , r i g h t ;
3 pub l i c i n t op ;
4 pub l i c BinExp (Exp l , i n t o , Exp r) {
5 pos=p ; l e f t=l ; oper=o ; r i g h t=r ; }
6 pub l i c f i n a l s t a t i c i n t PLUS=0, MINUS=1, TIMES=2;
7 }

and used as BinExpr.PLUS etc.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-90

Recipe for ASTs, final words:
• space considerations for AST representations are
irrelevant in most cases
• clarity and cleanness trumps “quick hacks” and
“squeezing bits”
• some deviation from the recipe or not, the advice still
holds:

Do it systematically
A clean grammar is the specification of the syntax of the
language and thus the parser. It is also a means of
communicating with humans what the syntax of the
language is, at least communicating with pros, like
participants of a compiler course, who of course can read
BNF . . . A clean grammar is a very systematic and
structured thing which consequently can and should be
systematically and cleanly represented in an AST, including
judicious and systematic choice of names and conventions
(nonterminal exp represented by class Exp, non-terminal
stmt by class Stmt etc)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-91

Extended BNF may help alleviate the pain

BNF

exp → exp addop term | term
term → term mulop factor | factor

EBNF

exp → term{ addop term }
term → factor{ mulop factor }

but remember:
• EBNF just a notation, just because we do not see (left
or right) recursion in { . . . }, does not mean there is no
recursion.
• not all parser generators support EBNF
• however: often easy to translate into loops- 5

• does not offer a general solution if associativity etc. is
problematic

5That results in a parser which is somehow not “pure recursive
descent”. It’s “recursive descent, but sometimes, let’s use a while-loop,
if more convenient concerning, for instance, associativity”

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-92

Pseudo-code representing the EBNF
productions

1 procedure exp ;
2 beg in
3 term ; { r e c u r s i v e c a l l }
4 wh i l e token = "+" or token = "−"
5 do
6 match (token) ;
7 term ; // r e c u r s i v e c a l l
8 end
9 end

1 procedure term ;
2 beg in
3 f a c t o r ; { r e c u r s i v e c a l l }
4 wh i l e token = "∗"
5 do
6 match (token) ;
7 f a c t o r ; // r e c u r s i v e c a l l
8 end
9 end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-93

How to produce “something” during RD
parsing?

Recursive descent
So far (mostly): RD = top-down (parse-)tree traversal via
recursive procedure.6 Possible outcome: termination or
failure.

• Now: instead of returning “nothing” (return type void
or similar), return some meaningful, and build that up
during traversal
• for illustration: procedure for expressions:

• return type int,
• while traversing: evaluate the expression

6Modulo the fact that the tree being traversed is “conceptual” and
not the input of the traversal procedure; instead, the traversal is
“steered” by stream of tokens.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-94

Evaluating an exp during RD parsing

1 f u n c t i o n exp () : i n t ;
2 var temp : i n t
3 beg in
4 temp := term () ; { r e c u r s i v e c a l l }
5 wh i l e token = "+" or token = "−"
6 case token of
7 "+": match ("+") ;
8 temp := temp + term () ;
9 " −": match (" −")

10 temp := temp − term () ;
11 end
12 end
13 r e t u r n temp ;
14 end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-95

Building an AST: expression

1 f u n c t i o n exp () : s yn taxTree ;
2 var temp , newtemp : syn taxTree
3 beg in
4 temp := term () ; { r e c u r s i v e c a l l }
5 wh i l e token = "+" or token = "−"
6 case token of
7 "+": match ("+") ;
8 newtemp := makeOpNode ("+") ;
9 l e f t C h i l d (newtemp) := temp ;

10 r i g h t C h i l d (newtemp) := term () ;
11 temp := newtemp ;
12 " −": match (" −")
13 newtemp := makeOpNode (" −") ;
14 l e f t C h i l d (newtemp) := temp ;
15 r i g h t C h i l d (newtemp) := term () ;
16 temp := newtemp ;
17 end
18 end
19 r e t u r n temp ;
20 end

• note: the use of temp and the while loop

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-96

Building an AST: factor

factor → (exp) | number

1 f u n c t i o n f a c t o r () : s yn taxTree ;
2 var f a c t : s yn taxTree
3 beg in
4 case token of
5 " (" : match (" (") ;
6 f a c t := exp () ;
7 match (") ") ;
8 number :
9 match (number)

10 f a c t := makeNumberNode (number) ;
11 e l s e : e r r o r . . . // f a l l th rough
12 end
13 r e t u r n f a c t ;
14 end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-97

Building an AST: conditionals

if -stmt → if (exp) stmt [else stmt]

1 f u n c t i o n i fS tmt () : s yn taxTree ;
2 var temp : syn taxTree
3 beg in
4 match (" i f ") ;
5 match (" (") ;
6 temp := makeStmtNode (" i f ")
7 t e s t C h i l d (temp) := exp () ;
8 match (") ") ;
9 t h e n C h i l d (temp) := stmt () ;

10 i f token = " e l s e "
11 then match " e l s e " ;
12 e l s e C h i l d (temp) := stmt () ;
13 e l s e e l s e C h i l d (temp) := n i l ;
14 end
15 r e t u r n temp ;
16 end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-98

Building an AST: remarks and “invariant”

• LL(1) requirement: each procedure/function/method
(covering one specific non-terminal) decides on
alternatives, looking only at the current token
• call of function A for non-terminal A:

• upon entry: first terminal symbol for A in token
• upon exit: first terminal symbol after the unit derived

from A in token
• match("a") : checks for "a" in token and eats the
token (if matched).

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-99

LL(1) parsing

• remember LL(1) grammars & LL(1) parsing principle:

LL(1) parsing principle

1 look-ahead enough to resolve “which-right-hand-side”
non-determinism.

• instead of recursion (as in RD): explicit stack
• decision making: collated into the LL(1) parsing table
• LL(1) parsing table:

• finite data structure M (for instance, a 2 dimensional
array)
M : ΣN × ΣT → ((ΣN × Σ∗) + error)

• M [A, a] = w

• we assume: pure BNF

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-100

Construction of the parsing table

Table recipe

1. If A→ α ∈ P and α⇒∗ aβ, then add A→ α to table
entry M [A,a]

2. If A→ α ∈ P and α⇒∗ ε and S $⇒∗ βAaγ (where a
is a token (=non-terminal) or $), then add A→ α to
table entry M [A,a]

Table recipe (again, now using our old friends First and
Follow)

Assume A→ α ∈ P .
1. If a ∈ First(α), then add A→ α to M [A,a].
2. If α is nullable and a ∈ Follow(A), then add A→ α to

M [A,a].

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-101

Example: if-statements

• grammars is left-factored and not left recursive

stmt → if -stmt | other
if -stmt → if (exp) stmt else−part

else−part → else stmt | ε
exp → 0 | 1

First Follow
stmt other, if $, else
if -stmt if $, else
else−part else, ε $, else
exp 0,1)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-102

Example: if statement: “LL(1) parse table”

• 2 productions in the “red table entry”
• thus: it’s technically not an LL(1) table (and it’s not an

LL(1) grammar)
• note: removing left-recursion and left-factoring did not
help!

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-103

LL(1) table-based algo

1 whi le the top of the parsing stack 6= $
2 i f the top of the parsing stack is terminal a
3 and the next input token = a
4 then
5 pop the parsing stack ;
6 advance the input ; // ``match ' '
7 e l s e i f the top the parsing is non-terminal A
8 and the next input token is a terminal or $
9 and parsing table M [A,a] contains

10 production A→ X1X2 . . . Xn

11 then (∗ gen e r a t e ∗)
12 pop the parsing stack
13 f o r i := n to 1 do
14 push Xi onto the stack ;
15 e l s e error
16 i f the top of the stack = $
17 then accept
18 end

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-104

LL(1): illustration of a run of the algo

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-105

Expressions
Original grammar

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

First Follow
exp (,number $,)
exp′ +,−, ε $,)
addop +,− (,number
term (,number $,),+,−
term′ ∗, ε $,),+,−
mulop ∗ (,number
factor (,number $,),+,−,∗

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-105

Expressions
Original grammar

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

left-recursive ⇒ not LL(k)

First Follow
exp (,number $,)
exp′ +,−, ε $,)
addop +,− (,number
term (,number $,),+,−
term′ ∗, ε $,),+,−
mulop ∗ (,number
factor (,number $,),+,−,∗

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-105

Expressions
Left-rec removed

exp → term exp′
exp′ → addop term exp′ | ε

addop → + | −
term → factor term′

term′ → mulop factor term′ | ε
mulop → ∗
factor → (exp) | n

First Follow
exp (,number $,)
exp′ +,−, ε $,)
addop +,− (,number
term (,number $,),+,−
term′ ∗, ε $,),+,−
mulop ∗ (,number
factor (,number $,),+,−,∗

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-106

Expressions: LL(1) parse table

Section
Error handling

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-108

Error handling

• at the least: do an understandable error message
• give indication of line / character or region responsible
for the error in the source file
• potentially stop the parsing
• some compilers do error recovery

• give an understandable error message (as minimum)
• continue reading, until it’s plausible to resume parsing
⇒ find more errors

• however: when finding at least 1 error: no code
generation

• observation: resuming after syntax error is not easy

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-109

Error messages
• important:

• try to avoid error messages that only occur because of
an already reported error!

• report error as early as possible, if possible at the first
point where the program cannot be extended to a
correct program.

• make sure that, after an error, one doesn’t end up in a
infinite loop without reading any input symbols.

• What’s a good error message?
• assume: that the method factor() chooses the

alternative (exp) but that it, when control returns from
method exp(), does not find a)

• one could report : right paranthesis missing
• But this may often be confusing, e.g. if what the

program text is: (a + b c)
• here the exp() method will terminate after (a + b,

as c cannot extend the expression). You should
therefore rather give the message error in
expression or right paranthesis
missing.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-110

Handling of syntax errors using recursive
descent

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-111

Syntax errors with sync stack

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-112

Procedures for expression with "error
recovery"

Section
Bottom-up parsing

Chapter 4 “Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-114

Bottom-up parsing: intro

"R" stands for right-most derivation.

LR(0) • only for very simple grammars
• approx. 300 states for standard
programming languages
• only as warm-up for SLR(1) and LALR(1)

SLR(1) • expressive enough for most grammars for
standard PLs
• same number of states as LR(0)
• main focus here

LALR(1) • slightly more expressive than SLR(1)
• same number of states as LR(0)
• we look at ideas behind that method as
well

LR(1) covers all grammars, which can in principle be
parsed by looking at the next token

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-115

Grammar classes overview (again)

unambiguous ambiguous

LR(k)
LR(1)

LALR(1)
SLR
LR(0)

LL(0)

LL(1)
LL(k)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-116

LR-parsing and its subclasses
• right-most derivation (but left-to-right parsing)
• in general: bottom-up: more powerful than top-down
• typically: tool-supported (unlike recursive descent,
which may well be hand-coded)
• based on parsing tables + explicit stack
• thankfully: left-recursion no longer problematic
• typical tools: yacc and friends (like bison, CUP, etc.)
• another name: shift-reduce parser

LR parsing tablestates

tokens + non-terms

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-117

Example grammar

S′ → S
S → ABt7 | . . .
A → t4t5 | t1B | . . .
B → t2t3 | At6 | . . .

• assume: grammar unambiguous
• assume word of terminals t1t2 . . . t7 and its (unique)
parse-tree
• general agreement for bottom-up parsing:

• start symbol never on the right-hand side of a
production

• routinely add another “extra” start-symbol (here S′)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-118

Parse tree for t1 . . . t7

S′

S

A

t1

B

t2 t3

B

A

t4 t5 t6 t7

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-119

LR: left-to right scan, right-most
derivation?
Potentially puzzling question at first sight:
what?: right-most derivation, when parsing left-to-right?

• short answer: parser builds the parse tree bottom-up
• derivation:

• replacement of nonterminals by right-hand sides
• derivation: builds (implicitly) a parse-tree top-down

Right-sentential form: right-most derivation

S ⇒∗r α

Slighly longer answer
LR parser parses from left-to-right and builds the parse tree
bottom-up. When doing the parse, the parser (implicitly)
builds a right-most derivation in reverse (because of
bottom-up).

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-120

Example expression grammar (from before)

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(9)

exp

term

term

factor

number ∗

factor

number

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-121

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-121

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number ↪→ factor ∗number

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-121

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number ↪→ factor ∗number
↪→ term ∗number

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-121

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number ↪→ factor ∗number
↪→ term ∗number
↪→ term ∗ factor

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-121

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number ↪→ factor ∗number
↪→ term ∗number
↪→ term ∗ factor
↪→ term

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-121

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number

number∗number ↪→ factor ∗number
↪→ term ∗number
↪→ term ∗ factor
↪→ term
↪→ exp

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-122

Reduction in reverse = right derivation
Reduction

n∗n ↪→ factor ∗n
↪→ term ∗n
↪→ term ∗ factor
↪→ term
↪→ exp

Right derivation

n∗n ⇐r factor ∗n
⇐r term ∗n
⇐r term ∗ factor
⇐r term
⇐r exp

• underlined part:
• different in reduction vs. derivation
• represents the “part being replaced”

• for derivation: right-most non-terminal
• for reduction: indicates the so-called handle (or part of

it)
• consequently: all intermediate words are right-sentential
forms

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-123

Handle

Definition (Handle)

Assume S ⇒∗r αAw ⇒r αβw. A production A→ β at
position k following α is a handle of αβw. We write
〈A→ β, k〉 for such a handle.

Note:
• w (right of a handle) contains only terminals
• w: corresponds to the future input still to be parsed!
• αβ will correspond to the stack content (β the part
touched by reduction step).
• the ⇒r -derivation-step in reverse:

• one reduce-step in the LR-parser-machine
• adding (implicitly in the LR-machine) a new parent to

children β (= bottom-up!)
• “handle”-part β can be empty (= ε)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-124

Schematic picture of parser machine (again)

. . . if 1 + 2 ∗ (3 + 4) . . .

q0q1

q2

q3 . . .
qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-125

General LR “parser machine” configuration

• stack:
• contains: terminals + non-terminals (+ $)
• containing: what has been read already but not yet

“processed”
• position on the “tape” (= token stream)

• represented here as word of terminals not yet read
• end of “rest of token stream”: $, as usual

• state of the machine
• in the following schematic illustrations: not yet part of

the discussion
• later: part of the parser table, currently we explain

without referring to the state of the parser-engine
• currently we assume: tree and rest of the input given
• the trick ultimately will be: how do achieve the same

without that tree already given (just parsing
left-to-right)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-126

Schematic run (reduction: from top to
bottom)

$ t1t2t3t4t5t6t7 $
$ t1 t2t3t4t5t6t7 $
$ t1t2 t3t4t5t6t7 $
$ t1t2t3 t4t5t6t7 $
$ t1B t4t5t6t7 $
$A t4t5t6t7 $
$At4 t5t6t7 $
$At4t5 t6t7 $
$AA t6t7 $
$AAt6 t7 $
$AB t7 $
$ABt7 $
$S $
$S′ $

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-127

2 basic steps: shift and reduce
• parsers reads input and uses stack as intermediate
storage
• so far: no mention of look-ahead (i.e., action depending
on the value of the next token(s)), but that may play a
role, as well

Shift
Move the next input
symbol (terminal) over
to the top of the stack
(“push”)

Reduce
Remove the symbols of the
right-most subtree from the
stack and replace it by the
non-terminal at the root of
the subtree (replace = “pop
+ push”).

• decision easy to do if one has the parse tree already!
• reduce step: popped resp. pushed part = right- resp.

left-hand side of handle

Example: LR parse for “+” (given the tree)
E′ → E
E → E+ n | n

E′

E

E

n + n

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $E + n $ shift
4 $E+ n $ shift
5 $E+ n $ reduce E → E+ n
6 $E $ red.: E′ → E
7 $E′ $ accept

note: line 3 vs line 6!; both contain E
on top of stack

(right) derivation: reduce-steps “in reverse”

E′ ⇒ E ⇒ E+ n⇒ n + n

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-129

Example with ε-transitions: parentheses

S′ → S
S → (S)S | ε

side remark: unlike previous grammar, here:
• production with two non-terminals on the right
⇒ difference between left-most and right-most derivations

(and mixed ones)

Parentheses: run and right-most derivation

S′

S

(

S

ε)

S

ε

parse stack input action
1 $ () $ shift
2 $ () $ reduce S → ε

3 $ (S) $ shift
4 $ (S) $ reduce S → ε

5 $ (S)S $ reduce S → (S)S
6 $S $ reduce S′ → S

7 $S′ $ accept

Note: the 2 reduction steps for the
ε productions

Right-most derivation and right-sentential forms

S′ ⇒r S ⇒r (S)S ⇒r (S)⇒r ()

Right-sentential forms & the stack
Right-sentential form: right-most derivation

S ⇒∗r α

• right-sentential forms:
• part of the “run”
• but: split between stack and inputparse stack input action

1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $ E + n $ shift
4 $ E + n $ shift
5 $ E + n $ reduce E → E + n
6 $ E $ red.: E′ → E

7 $ E′ $ accept

E′ ⇒r E ⇒r E + n⇒r n + n

n + n ↪→ E + n ↪→ E ↪→ E′

E′ ⇒r E ⇒r E+ n | ∼ E+ | n ∼ E | + n⇒r n | + n ∼| n + n

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-132

Viable prefixes of right-sentential forms and
handles
• right-sentential form: E+ n
• viable prefixes of RSF

• prefixes of that RSF on the stack
• here: 3 viable prefixes of that RSF: E, E+, E+ n

• handle: remember the definition earlier
• here: for instance in the sentential form n + n

• handle is production E → n on the left occurrence of n
in n + n (let’s write n1 + n2 for now)

• note: in the stack machine:
• the left n1 on the stack
• rest + n2 on the input (unread, because of LR(0))

• if the parser engine detects handle n1 on the stack, it
does a reduce-step
• However (later): reaction depends on current state of
the parser engine

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-133

A typical situation during LR-parsing

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-134

General design for an LR-engine

• some ingredients clarified up-to now:
• bottom-up tree building as reverse right-most derivation,
• stack vs. input,
• shift and reduce steps

• however: 1 ingredient missing: next step of the engine
may depend on
• top of the stack (“handle”)
• look ahead on the input (but not for LL(0))
• and: current state of the machine

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-135

But what are the states of an LR-parser?

General idea:
Construct an NFA (and ultimately DFA) which works on the
stack (not the input). The alphabet consists of terminals
and non-terminals ΣT ∪ ΣN . The language

Stacks(G) = {α | α may occur on the stack during LR-
parsing of a sentence in L(G) }

is regular!

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-136

LR(0) parsing as easy pre-stage

• LR(0): in practice too simple, but easy conceptual step
towards LR(1), SLR(1) etc.
• LR(1): in practice good enough, LR(k) not used for
k > 1
• to build the automaton: LR(0)-items

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-137

LR(0) items

LR(0) item

production with specific “parser position” . in its right-hand
side

• . : “meta-symbol” (not part of the production)

LR(0) item for a production A→ βγ

A→ β.γ

• item with dot at the beginning: initial item
• item with dot at the end: complete item

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-138

Grammar for parentheses: 3 productions

S′ → S
S → (S)S | ε

8 items

S′ → .S
S′ → S.
S → . (S)S
S → (.S)S
S → (S.)S
S → (S) .S
S → (S)S.
S → .

• S → ε gives S → . as item (not S → ε. and S → .ε)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-139

Grammar for addition: 3 productions

E′ → E
E → E+ number | number

(coincidentally also:) 8 items

E′ → .E
E′ → E.
E → .E+ number
E → E.+ number
E → E+ .number
E → E+ number.
E → .number
E → number.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-140

Finite automata of items
• general set-up: items as states in an automaton
• automaton: “operates” not on the input, but the stack
• automaton either

• first NFA, afterwards made deterministic (subset
construction), or

• directly DFA

States formed of sets of items
In a state marked by/containing item

A→ β.γ

• β on the stack
• γ: to be treated next (terminals on the input, but can
contain also non-terminals(!))

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-141

State transitions of the NFA

• X ∈ Σ
• two kinds of transitions

Terminal or non-terminal

A→ α.Xη A→ αX.η
X

ε (X → β)

A→ α.Xη X → .β
ε

• In case X = terminal (i.e. token) =
• the left step corresponds to a shift step

• for non-terminals (see next slide):
• interpretation more complex: non-terminals are officially

never on the input
• note: in that case, item A→ α.Xη has two (kinds of)

outgoing transitions

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-142

Transitions for non-terminals and ε

• so far: we never pushed a non-terminal from the input
to the stack, we replace in a reduce-step the right-hand
side by a left-hand side
• but: replacement in a reduce steps can be seen as

1. pop right-hand side off the stack,
2. instead, “assume” corresponding non-terminal on input,
3. eat the non-terminal an push it on the stack.

• two kinds of transitions
• assume production X → β and initial item X → .β

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-143

Transitions (repeated)

Terminal or non-terminal

A→ α.Xη A→ αX.η
X

Epsilon (X: non-terminal
here)

Given production X → β:

A→ α.Xη X → .β
ε

NFA: parentheses

S′ → .S S′ → S.

S → . (S)S S → . S → (S)S.

S → (.S)S S → (S.)S

S → (S) .S

S

ε
ε

(ε ε

S

)

S

ε

ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-145

Initial and final states

initial states:
• we made our lives easier: assume one extra start symbol
say S′ (augmented grammar)

⇒ initial item S′ → .S as (only) initial state

final states:
acceptance condition of the overall machine: a bit more
complex
• input must be empty
• stack must be empty except the (new) start symbol
• NFA has a word to say about acceptence

• but not in form of being in an accepting state
• so: no accepting states
• but: accepting action (see later)

NFA: addition

E′ → .E E′ → E.

E → .E+ n E → .n E → n.

E → E.+ n E → E+ .n E → E+ n.

E

ε
ε

ε
ε

E

n

+ n

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-147

Determinizing: from NFA to DFA

• standard subset-construction7

• states then contain sets of items
• important: ε-closure
• also: direct construction of the DFA possible

7Technically, we don’t require here a total transition function, we
leave out any error state.

DFA: parentheses

S′ → .S

S → . (S)S
S → .

0

S′ → S.

1

S → (.S)S
S → . (S)S
S → .

2

S → (S.)S
3

S → (S) .S
S → . (S)S
S → .

4

S → (S)S.
5

S

(

S(

)
(

S

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-149

DFA: addition

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-150

Direct construction of an LR(0)-DFA

• quite easy: just build in the closure directly. . .

ε-closure
• if A→ α.Bγ is an item in a state where
• there are productions B → β1 | β2 . . . then
• add items B → .β1 , B → .β2 . . . to the state
• continue that process, until saturation

initial state

S′ → .S

plus closure

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-151

Direct DFA construction: transitions

. . .

A1 → α1.Xβ1

. . .

A2 → α2.Xβ2

. . .

A1 → α1X.β1

A2 → α2X.β2

plus closure

X

• X: terminal or non-terminal, both treated uniformely
• All items of the form A→ α.Xβ must be included in

the post-state
• and all others (indicated by ". . . ") in the pre-state: not
included

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-152

How does the DFA do the shift/reduce and
the rest?
• we have seen: bottom-up parse tree generation
• we have seen: shift-reduce and the stack vs. input
• we have seen: the construction of the DFA

But: how does it hang together?
We need to interpret the “set-of-item-states” in the light of
the stack content and figure out the reaction in terms of
• transitions in the automaton
• stack manipulations (shift/reduce)
• acceptance
• input (apart from shifting) not relevant when doing
LR(0)

and the reaction better be uniquely determined

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-153

Stack contents and state of the automaton

• remember: at any config. of stack/input in a run
1. stack contains words from Σ∗
2. DFA operates deterministically on such words

• the stack contains “abstraction of the past”:
• when feeding that “past” on the stack into the
automaton
• starting with the oldest symbol (not in a LIFO manner)
• starting with the DFA’s initial state
⇒ stack content determines state of the DFA

• actually: each prefix also determines uniquely a state
• top state:

• state after the complete stack content
• corresponds to the current state of the stack-machine
⇒ crucial when determining reaction

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-154

State transition allowing a shift

• assume: top-state (= current state) contains item

X → α.aβ

• construction thus has transition as follows

. . .

X → α.aβ
. . .

s
. . .

X → αa.β
. . .

t

a

• shift is possible
• if shift is the correct operation and a is terminal symbol
corresponding to the current token: state afterwards = t

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-155

State transition: analogous for non-term’s

X → α.Bβ . . .

X → α.Bβ

s
. . .

X → αB.β

t
B

• “goto = shift for non-terms”
• intuition: “second half of a reduce step”

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-156

State (not transition) where a reduce is
possible
• remember: complete items
• assume top state s containing complete item A→ γ.

. . .

A→ γ.

s

• a complete right-hand side (“handle”) γ on the stack
and thus done
• may be replaced by right-hand side A
⇒ reduce step
• builds up (implicitly) new parent node A in the
bottom-up procedure
• Note: A on top of the stack instead of γ:

• new top state!
• remember the “goto-transition” (shift of a non-terminal)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-157

Remarks: states, transitions, and reduce
steps
• ignoring the ε-transitions (for the NFA)
• there are 2 “kinds” of transitions in the DFA

1. terminals: reals shifts
2. non-terminals: “following a reduce step”

No edges to represent (all of) a reduce step!

• if a reduce happens, parser engine changes state!
• however: this state change is not represented by a
transition in the DFA (or NFA for that matter)
• especially not by outgoing errors of completed items

• if the (rhs of the) handle is removed from top stack ⇒
• “go back to the (top) state before that handle had been

added”: no edge for that
• later: stack notation simply remembers the state as
part of its configuration

Example: LR parsing for addition (given the
tree)

E′ → E
E → E+ n | n

E′

E

E

n + n

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $E + n $ shift
4 $E+ n $ shift
5 $E+ n $ reduce E → E+ n
6 $E $ red.: E′ → E
7 $E′ $ accept

note: line 3 vs line 6!; both contain E
on top of stack

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-159

DFA of addition example

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

• note line 3 vs. line 6
• both stacks = E ⇒ same (top) state in the DFA (state

1)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-160

LR(0) grammars

LR(0) grammar

The top-state alone determines the next step.

• especially: no shift/reduce conflicts in the form shown
• thus: previous addition-grammar is not LR(0)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-161

Simple parentheses

A → (A) | a

A′ → .A

A→ . (A)
A→ .a

0

A′ → A.

1

A→ (.A)
A→ . (A)
A→ .a

3

A→ a.
2

A→ (A.)
4
A→ (A) .

5

A

a(

(a

A

)

Simple parentheses is LR(0)

A′ → .A

A→ . (A)
A→ .a

0

A′ → A.

1

A→ (.A)
A→ . (A)
A→ .a

3

A→ a.
2

A→ (A.)
4
A→ (A) .

5

A

a(

(a

A

)

state possible action
0 only shift
1 only red: (A′ → A)
2 only red: (A→ a)
3 only shift
4 only shift
5 only red (A→ (A))

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-163

NFA for simple parentheses (bonus slide)

A′ → .A A′ → A.

A→ . (A) A→ .a

A→ (.A) A→ (A.)

A→ a.

A→ (A) .

A

ε
ε

ε
ε(

a

A)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-164

Parsing table for an LR(0) grammar
• table structure: slightly different for SLR(1), LALR(1),
and LR(1) (see later)
• note: the “goto” part: “shift” on non-terminals (only 1
non-terminal A here)
• corresponding to the A-labelled transitions

state action rule input goto
(a) A

0 shift 3 2 1
1 reduce A′ → A
2 reduce A→ a
3 shift 3 2 4
4 shift 5
5 reduce A→ (A)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-165

Parsing of ((a))

stage parsing stack input action

1 $0 ((a)) $ shift
2 $0(3 (a)) $ shift
3 $0(3(3 a)) $ shift
4 $0(3(3a2)) $ reduce A→ a
5 $0(3(3A4)) $ shift
6 $0(3(3A4)5) $ reduce A→ (A)
7 $0(3A4) $ shift
8 $0(3A4)5 $ reduce A→ (A)
9 $0A1 $ accept

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-166

Parse tree of the parse

A′

A

(

A

(

A

a))

• As said:
• the reduction “contains” the parse-tree
• reduction: builds it bottom up
• reduction in reverse: contains a right-most derivation

(which is “top-down”)
• accept action: corresponds to the parent-child edge
A′ → A of the tree

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-167

Parsing of erroneous input
• empty slots it the table: “errors”

stage parsing stack input action
1 $0 ((a) $ shift
2 $0(3 (a) $ shift
3 $0(3(3 a) $ shift
4 $0(3(3a2) $ reduce A→ a
5 $0(3(3A4) $ shift
6 $0(3(3A4)5 $ reduce A→ (A)
7 $0(3A4 $????

stage parsing stack input action
1 $0 () $ shift
2 $0(3) $?????

Invariant
important general invariant for LR-parsing: never shift
something “illegal” onto the stack

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-168

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack
1. s contains A→ α.Xβ, where X is a terminal

• shift X from input to top of stack. The new state
pushed on the stack: state t where s X−→ t

• else: if s does not have such a transition: error
2. s contains a complete item (say A→ γ.): reduce by

rule A→ γ:
• A reduction by S′ → S: accept, if input is empty; else

error:
• else:

pop: remove γ (including “its” states from the
stack)

back up: assume to be in state u which is now
head state

push: push A to the stack, new head state t
where u A−→ t (in the DFA)

DFA parentheses again: LR(0)?
S′ → S
S → (S)S | ε

S′ → .S

S → . (S)S
S → .

0

S′ → S.

1

S → (.S)S
S → . (S)S
S → .

2

S → (S.)S
3

S → (S) .S
S → . (S)S
S → .

4

S → (S)S.
5

S

(

S(

)
(

S

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-170

DFA addition again: LR(0)?

E′ → E
E → E+ number | number

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

Decision? If only we knew the ultimate tree
already (expecially the parts still to
come). . .

E′

E

E

n + n

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $E + n $ shift
4 $E+ n $ shift
5 $E+ n $ reduce E → E+ n
6 $E $ red.: E′ → E
7 $E′ $ accept

• current stack: represents already known part of the
parse tree
• since we don’t have the future parts of the tree yet:
⇒ look-ahead on the input (without building the tree yet)
• LR(1) and its variants: look-ahead of 1

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-172

Addition grammar (again)

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

• How to make a decision in state 1? (here: shift vs.
reduce)

⇒ look at the next input symbol (in the token)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-173

One look-ahead

• LR(0), not useful, too weak
• add look-ahead, here of 1 input symbol (= token)
• different variations of that idea (with slight difference in
expresiveness)
• tables slightly changed (compared to LR(0))
• but: still can use the LR(0)-DFAs

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-174

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

. . .

A→ α.

. . .

B → β.

SLR(1) solution: use follow sets of non-terms

• If Follow(A) ∩ Follow(B) = ∅
⇒ next symbol (in token) decides!

• if token ∈ Follow(α) then reduce using A→ α
• if token ∈ Follow(β) then reduce using B → β
• . . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-174

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

. . .

A→ α.

. . .

B → β.

SLR(1) solution: use follow sets of non-terms

• If Follow(A) ∩ Follow(B) = ∅
⇒ next symbol (in token) decides!

• if token ∈ Follow(α) then reduce using A→ α
• if token ∈ Follow(β) then reduce using B → β
• . . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-175

Resolving LR(0) shift/reduce conflicts
LR(0) shift/reduce conflict:

. . .

A→ α.

. . .

B1 → β1.b1γ1

B2 → β2.b2γ2

b1

b2

SLR(1) solution: again: use follow sets of non-terms

• If Follow(A) ∩ {b1,b2, . . .} = ∅
⇒ next symbol (in token) decides!

• if token ∈ Follow(A) then reduce using A→ α,
non-terminal A determines new top state

• if token ∈ {b1,b2, . . .} then shift. Input symbol bi
determines new top state

• . . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-175

Resolving LR(0) shift/reduce conflicts
LR(0) shift/reduce conflict:

. . .

A→ α.

. . .

B1 → β1.b1γ1

B2 → β2.b2γ2

b1

b2

SLR(1) solution: again: use follow sets of non-terms

• If Follow(A) ∩ {b1,b2, . . .} = ∅
⇒ next symbol (in token) decides!

• if token ∈ Follow(A) then reduce using A→ α,
non-terminal A determines new top state

• if token ∈ {b1,b2, . . .} then shift. Input symbol bi
determines new top state

• . . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-176

Revisit addition one more time

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

• Follow(E′) = {$}
⇒ • shift for +

• reduce with E′ → E for $ (which corresponds to
accept, in case the input is empty)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-177

SLR(1) algo
let s be the current state, on top of the parse stack
1. s contains A→ α.Xβ, where X is a terminal and X is

the next token on the input, then
• shift X from input to top of stack. The new state

pushed on the stack: state t where s X−→ t8

2. s contains a complete item (say A→ γ.) and the next
token in the input is in Follow(A): reduce by rule
A→ γ:
• A reduction by S′ → S: accept, if input is empty9

• else:
pop: remove γ (including “its” states from the

stack)
back up: assume to be in state u which is now

head state
push: push A to the stack, new head state t

where u A−→ t

3. if next token is such that neither 1. or 2. applies: error
8Cf. to the LR(0) algo: since we checked the existence of the

transition before, the else-part is missing now.
9Cf. to the LR(0) algo: This happens now only if next token is $.

Note that the follow set of S′ in the augmented grammar is always only
$

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-178

Parsing table for SLR(1)

E′ → .E

E → .E+ n
E → .n

0

E′ → E.

E → E.+ n

1

E → n.
2

E → E+ .n
3

E → E+ n.
4

E

n +
n

state input goto
n + $ E

0 s : 2 1
1 s : 3 accept
2 r : (E → n)
3 s : 4
4 r : (E → E+ n) r : (E → E+ n)

for state 2 and 4: n /∈ Follow(E)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-179

Parsing table: remarks
• SLR(1) parsing table: rather similar-looking to the
LR(0) one
• differences: reflect the differences in: LR(0)-algo vs.
SLR(1)-algo
• same number of rows in the table (= same number of
states in the DFA)
• only: colums “arranged” differently

• LR(0): each state uniformely: either shift or else reduce
(with given rule)

• now: non-uniform, dependent on the input
• it should be obvious:

• SLR(1) may resolve LR(0) conflicts
• but: if the follow-set conditions are not met: SLR(1)

shift-shift and/or SLR(1) shift-reduce conflicts
• would result in non-unique entries in SLR(1)-table10

10by which it, strictly speaking, would no longer be an SLR(1)-table
:-)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-180

SLR(1) parser run (= “reduction”)

state input goto
n + $ E

0 s : 2 1
1 s : 3 accept
2 r : (E → n)
3 s : 4
4 r : (E → E + n) r : (E → E + n)

stage parsing stack input action

1 $0 n + n + n $ shift: 2
2 $0n2 + n + n $ reduce: E → n
3 $0E1 + n + n $ shift: 3
4 $0E1+3 n + n $ shift: 4
5 $0E1+3n4 + n $ reduce: E → E + n
6 $0E1 n $ shift 3
7 $0E1+3 n $ shift 4
8 $0E1+3n4 $ reduce: E → E + n
9 $0E1 $ accept

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-181

Corresponding parse tree

E′

E

E

E

number+number + number

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-182

Revisit the parentheses again: SLR(1)?

Grammar: parentheses

S′ → S
S → (S)S | ε

Follow set
Follow(S) = {),$}

DFA for parentheses

S′ → .S

S → . (S)S
S → .

0

S′ → S.

1

S → (.S)S
S → . (S)S
S → .

2

S → (S.)S
3

S → (S) .S
S → . (S)S
S → .

4

S → (S)S.
5

S

(

S(

)
(

S

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-184

SLR(1) parse table

state input goto
() $ S

0 s : 2 r : S → ε r : S → ε 1
1 accept
2 s : 2 r : S → ε r : S → ε 3
3 s : 4
4 s : 2 r : S → ε r : S → ε 5
5 r : S → (S) S r : S → (S) S

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-185

Parentheses: SLR(1) parser run (=
“reduction”)

state input goto
() $ S

0 s : 2 r : S → ε r : S → ε 1
1 accept
2 s : 2 r : S → ε r : S → ε 3
3 s : 4
4 s : 2 r : S → ε r : S → ε 5
5 r : S → (S)S r : S → (S)S

stage parsing stack input action
1 $0 () () $ shift: 2
2 $0(2) () $ reduce: S → ε
3 $0(2S3) () $ shift: 4
4 $0(2S3)4 () $ shift: 2
5 $0(2S3)4(2) $ reduce: S → ε
6 $0(2S3)4(2S3) $ shift: 4
7 $0(2S3)4(2S3)4 $ reduce: S → ε
8 $0(2S3)4(2S3)4S5 $ reduce: S → (S) S
9 $0(2S3)4S5 $ reduce: S → (S) S
10 $0S1 $ accept

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-186

Ambiguity & LR-parsing
• LR(k) (and LL(k)) grammars: unambiguous
• definition/construction: free of shift/reduce and
reduce/reduce conflict (given the chosen level of
look-ahead)
• However: ambiguous grammar tolerable, if (remaining)
conflicts can be solved “meaningfully” otherwise:

Additional means of disambiguation:

1. by specifying associativity / precedence “externally”
2. by “living with the fact” that LR parser (commonly)

prioritizes shifts over reduces

• for the second point (“let the parser decide according to
its preferences”):
• use sparingly and cautiously
• typical example: dangling-else
• even if parsers makes a decision, programmar may or

may not “understand intuitively” the resulting parse tree
(and thus AST)

• grammar with many S/R-conflicts: go back to the
drawing board

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-187

Example of an ambiguous grammar

stmt → if -stmt | other
if -stmt → if (exp) stmt

| if (exp) stmt else stmt
exp → 0 | 1

In the following, E for exp, etc.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-188

Simplified conditionals
Simplified “schematic” if-then-else

S → I | other
I → if S | if S else S

Follow-sets

Follow
S′ {$}
S {$, else}
I {$, else}

• since ambiguous: at least one conflict must be
somewhere

DFA of LR(0) items

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-190

Simple conditionals: parse table

Grammar

S → I (1)
| other (2)

I → if S (3)
| ifS else S (4)

SLR(1)-parse-table, conflict
“resolved”

state input goto
if else other $ S I

0 s : 4 s : 3 1 2
1 accept
2 r : 1 r : 1
3 r : 2 r : 2
4 s : 4 s : 3 5 2
5 s : 6 r : 3
6 s : 4 s : 3 7 2
7 r : 4 r : 4

• shift-reduce conflict in state 5: reduce with rule 3 vs.
shift (to state 6)
• conflict there: resolved in favor of shift to 6
• note: extra start state left out from the table

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-191

Parser run (= reduction)

state input goto
if else other $ S I

0 s : 4 s : 3 1 2
1 accept
2 r : 1 r : 1
3 r : 2 r : 2
4 s : 4 s : 3 5 2
5 s : 6 r : 3
6 s : 4 s : 3 7 2
7 r : 4 r : 4

stage parsing stack input action
1 $0 if if other else other $ shift: 4
2 $0if 4 if other else other $ shift: 4
3 $0if 4if 4 other else other $ shift: 3
4 $0if 4if 4other3 else other $ reduce: 2
5 $0if 4if 4S5 else other $ shift 6
6 $0if 4if 4S5else6 other $ shift: 3
7 $0if 4if 4S5else6other3 $ reduce: 2
8 $0if 4if 4S5else6S7 $ reduce: 4
9 $0if 4I2 $ reduce: 1

10 $0S1 $ accept

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-192

Parser run, different choice

state input goto
if else other $ S I

0 s : 4 s : 3 1 2
1 accept
2 r : 1 r : 1
3 r : 2 r : 2
4 s : 4 s : 3 5 2
5 s : 6 r : 3
6 s : 4 s : 3 7 2
7 r : 4 r : 4

stage parsing stack input action
1 $0 if if other else other $ shift: 4
2 $0if 4 if other else other $ shift: 4
3 $0if 4if 4 other else other $ shift: 3
4 $0if 4if 4other3 else other $ reduce: 2
5 $0if 4if 4S5 else other $ reduce 3
6 $0if 4I2 else other $ reduce 1
7 $0if 4S5 else other $ shift 6
8 $0if 4S5else6 other $ shift 3
9 $0if 4S5else6other3 $ reduce 2

10 $0if 4S5else6S7 $ reduce 4
11 $0S1 $ accept

Parse trees for the “simple conditions”

shift-precedence: conventional

S

if

I

if

S

other else

S

other

“wrong” tree

S

if

I

if

S

other else

S

other

standard “dangling else” convention
“an else belongs to the last previous, still open (= dangling)
if-clause”

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-194

Use of ambiguous grammars

• advantage of ambiguous grammars: often simpler
• if ambiguous: grammar guaranteed to have conflicts
• can be (often) resolved by specifying precedence and
associativity
• supported by tools like yacc and CUP . . .

E′ → E
E → E+E | E ∗E | number

DFA for + and ×

E′ → .E

E → .E+E

E → .E ∗E

E → .n

0

E′ → E.

E → E.+E

E → E.∗E

1

E → E+ .E

E → .E+E

E → .E ∗E

E → .n

3

E → E+E.

E → E.+E

E → E.∗E

5

E → E ∗E.

E → E.+E

E → E.∗E

6

E → n.

2
E → E ∗ .E

E → .E+E

E → .E ∗E

E → .n

4

E

n

+

∗

n

E

∗

∗

+

E

+

n

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-196

States with conflicts

• state 5
• stack contains ...E+E
• for input $: reduce, since shift not allowed form $
• for input +; reduce, as + is left-associative
• for input ∗: shift, as ∗ has precedence over +

• state 6:
• stack contains ...E ∗E
• for input $: reduce, since shift not allowed form $
• for input +; reduce, a ∗ has precedence over +
• for input ∗: reduce, as ∗ is left-associative

• see also the table on the next slide

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-197

Parse table + and ×

state input goto
n + ∗ $ E

0 s : 2 1
1 s : 3 s : 4 accept
2 r : E → n r : E → n r : E → n
3 s : 2 5
4 s : 2 6
5 r : E → E+E s : 4 r : E → E+E
6 r : E → E ∗E r : E → E ∗E r : E → E ∗E

How about exponentiation (written ↑ or ∗∗)?

Defined as right-associative. See exercise

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-198

Compare: unambiguous grammar for + and
∗

Unambiguous grammar: precedence and left-assoc built
in

E′ → E
E → E+T | T
T → T ∗n | n

Follow
E′ {$} (as always for start symbol)
E {$,+}
T {$,+,∗}

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-199

DFA for unambiguous + and ×

E′ → .E

E → .E+T

E → .T

E → .T ∗n
E → .n

0

E′ → E.

E → E.+T

1
E → E+ .T

T → .T ∗n
T → .n

2

T → n.

3

E → T .

T → T .∗n

4

T → T ∗ .n
5

E → E+T .

T → T .∗n

6

T → T ∗n.
7

E

n

T

+

n
T

∗
n

∗

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-200

DFA remarks

• the DFA now is SLR(1)
• check states with complete items

state 1: Follow(E′) = {$}
state 4: Follow(E) = {$,+}
state 6: Follow(E) = {$,+}

state 3/7: Follow(T) = {$,+,∗}
• in no case there’s a shift/reduce conflict (check the

outgoing edges vs. the follow set)
• there’s not reduce/reduce conflict either

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-201

LR(1) parsing

• most general from of LR(1) parsing
• aka: canonical LR(1) parsing
• usually: considered as unecessarily “complex” (i.e.
LALR(1) or similar is good enough)
• “stepping stone” towards LALR(1)

Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a
non-look-ahead DFA (based on LR(0)-items)

A help to remember
SLR(1) “improved” LR(0) parsing LALR(1) is “crippled”
LR(1) parsing.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-202

Limits of SLR(1) grammars

Assignment grammar fragment11

stmt → call-stmt | assign-stmt
call-stmt → identifier

assign-stmt → var := exp
var → [exp] | identifier
exp → var | number

Assignment grammar fragment, simplified

S → id | V :=E
V → id
E → V | n

11Inspired by Pascal, analogous problems in C . . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-203

non-SLR(1): Reduce/reduce conflict

S′ → .S

S → .id

S → .V :=E

V → .id

S → id.

V → id.

. . .

. . .

S

id

V

First Follow
S id $
V id $, :=
E id,number $

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-203

non-SLR(1): Reduce/reduce conflict

S′ → .S

S → .id

S → .V :=E

V → .id

S → id. $

V → id. $, :=

. . .

. . .

S

id

V

First Follow
S id $
V id $, :=
E id,number $

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-204

Situation can be saved: more look-ahead

S′ → .S $

S → .id $

S → .V :=E $

V → .id :=

S → id. $

V → id. :=

. . .

. . .

S

id

V

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-205

LALR(1) (and LR(1)): Being more precise
with the follow-sets
• LR(0)-items: too “indiscriminate” wrt. the follow sets
• remember the definition of SLR(1) conflicts
• LR(0)/SLR(1)-states:

• sets of items12 due to subset construction
• the items are LR(0)-items
• follow-sets as an after-thought

Add precision in the states of the automaton already
Instead of using LR(0)-items and, when the LR(0) DFA is
done, try to add a little disambiguation with the help of the
follow sets for states containing complete items, better make
more fine-grained items from the very start:
• LR(1) items
• each item with “specific follow information”: look-ahead

12That won’t change in principle (but the items get more complex)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-206

LR(1) items

• main idea: simply make the look-ahead part of the item
• obviously: proliferation of states13

LR(1) items

[A→ α.β,a] (10)

• a: terminal/token, including $

13Not to mention if we wanted look-ahead of k > 1, which in practice
is not done, though.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-207

LALR(1)-DFA (or LR(1)-DFA)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-208

Remarks on the DFA

• Cf. state 2 (seen before)
• in SLR(1): problematic (reduce/reduce), as

Follow(V) = {:=,$}
• now: diambiguation, by the added information

• LR(1) would give the same DFA

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-209

Full LR(1) parsing

• AKA: canonical LR(1) parsing
• the best you can do with 1 look-ahead
• unfortunately: big tables
• pre-stage to LALR(1)-parsing

SLR(1)

LR(0)-item-based parsing, with
afterwards adding some extra
“pre-compiled” info (about
follow-sets) to increase
expressivity

LALR(1)

LR(1)-item-based parsing,
but afterwards throwing
away precision by
collapsing states, to save
space

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-210

LR(1) transitions: arbitrary symbol

• transitions of the NFA (not DFA)

X-transition

[A→ α.Xβ,a] [A→ αX.β,a]X

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-211

LR(1) transitions: ε

ε-transition
for all

B → β1 | β2 . . . and all b ∈ First(γa)

[A→ α.Bγ ,a] [B → .β ,b]ε

including special case (γ = ε)

for all B → β1 | β2 . . .

[A→ α.B ,a] [B → .β ,a]ε

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-212

LALR(1) vs LR(1)

LALR(1)

LR(1)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-213

Core of LR(1)-states

• actually: not done that way in practice
• main idea: collapse states with the same core

Core of an LR(1) state

= set of LR(0)-items (i.e., ignoring the look-ahead)

• observation: core of the LR(1) item = LR(0) item
• 2 LR(1) states with the same core have same outgoing
edges, and those lead to states with the same core

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-214

LALR(1)-DFA by as collapse

• collapse all states with the same core
• based on above observations: edges are also consistent
• Result: almost like a LR(0)-DFA but additionally

• still each individual item has still look ahead attached:
the union of the “collapsed” items

• especially for states with complete items
[A→ α,a,b, . . .] is smaller than the follow set of A

• ⇒ less unresolved conflicts compared to SLR(1)

Concluding remarks of LR / bottom up
parsing

• all constructions (here) based on BNF (not EBNF)
• conflicts (for instance due to ambiguity) can be solved
by
• reformulate the grammar, but generarate the same

language14

• use directives in parser generator tools like yacc, CUP,
bison (precedence, assoc.)

• or (not yet discussed): solve them later via semantical
analysis

• NB: not all conflics are solvable, also not in LR(1)
(remember ambiguous languages)

14If designing a new language, there’s also the option to massage the
language itself. Note also: there are inherently ambiguous languages for
which there is no unambiguous grammar.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-216

LR/bottom-up parsing overview

advantages remarks
LR(0) defines states also used by

SLR and LALR
not really used, many con-
flicts, very weak

SLR(1) clear improvement over
LR(0) in expressiveness,
even if using the same
number of states. Table
typically with 50K entries

weaker than LALR(1). but
often good enough. Ok
for hand-made parsers for
small grammars

LALR(1) almost as expressive as
LR(1), but number of
states as LR(0)!

method of choice for most
generated LR-parsers

LR(1) the method covering all
bottom-up, one-look-ahead
parseable grammars

large number of states
(typically 11M of entries),
mostly LALR(1) preferred

Remember: once the table specific for LR(0), . . . is set-up, the
parsing algorithms all work the same

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-217

Error handling
Minimal requirement
Upon “stumbling over” an error (= deviation from the
grammar): give a reasonable & understandable error
message, indicating also error location. Potentially stop
parsing

• for parse error recovery
• one cannot really recover from the fact that the program

has an error (an syntax error is a syntax error), but
• after giving decent error message:

• move on, potentially jump over some subsequent code,
• until parser can pick up normal parsing again
• so: meaningfull checking code even following a first

error
• avoid: reporting an avalanche of subsequent spurious

errors (those just “caused” by the first error)
• “pick up” again after semantic errors: easier than for

syntactic errors

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-218

Error messages
• important:

• avoid error messages that only occur because of an
already reported error!

• report error as early as possible, if possible at the first
point where the program cannot be extended to a
correct program.

• make sure that, after an error, one doesn’t end up in an
infinite loop without reading any input symbols.

• What’s a good error message?
• assume: that the method factor() chooses the

alternative (exp) but that it , when control returns
from method exp(), does not find a)

• one could report : right parenthesis missing
• But this may often be confusing, e.g. if what the

program text is: (a + b c)
• here the exp() method will terminate after (a + b,

as c cannot extend the expression). You should
therefore rather give the message error in
expression or right parenthesis
missing.

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-219

Error recovery in bottom-up parsing
• panic recovery in LR-parsing

• simple form
• the only one we shortly look at

• upon error: recovery ⇒
• pops parts of the stack
• ignore parts of the input

• until “on track again”
• but: how to do that
• additional problem: non-determinism

• table: constructed conflict-free under normal operation
• upon error (and clearing parts of the stack + input): no

guarantee it’s clear how to continue
⇒ heuristic needed (like panic mode recovery)
Panic mode idea
• try a fresh start,
• promising “fresh start” is: a possible goto action
• thus: back off and take the next such goto-opportunity

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-220

Possible error situation

parse stack input action
1 $0a1b2c3(4d5e6 f) gh . . .$ no entry for f

state input goto
. . .) f g A B . . .

. . .
3 u v
4 − − −
5 − − −
6 − − − −
. . .
u − − reduce . . .
v − − shift : 7
. . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-220

Possible error situation

parse stack input action
1 $0a1b2c3(4d5e6 f) gh . . .$ no entry for f
2 $0a1b2c3Bv gh . . .$ back to normal
3 $0a1b2c3Bvg7 h . . .$. . .

state input goto
. . .) f g A B . . .

. . .
3 u v
4 − − −
5 − − −
6 − − − −
. . .
u − − reduce . . .
v − − shift : 7
. . .

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-221

Panic mode recovery

Algo

1. Pop states for the stack until a state is found with
non-empty goto entries

2. • If there’s legal action on the current input token from
one of the goto-states, push token on the stack, restart
the parse.

• If there’s several such states: prefer shift to a reduce
• Among possible reduce actions: prefer one whose

associated non-terminal is least general
3. if no legal action on the current input token from one of

the goto-states: advance input until there is a legal
action (or until end of input is reached)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-222

Example again

parse stack input action
1 $0a1b2c3(4d5e6 f) gh . . .$ no entry for f

• first pop, until in state 3
• then jump over input

• until next input g
• since f and) cannot be treated

• choose to goto v (shift in that state)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-222

Example again

parse stack input action
1 $0a1b2c3(4d5e6 f) gh . . .$ no entry for f
2 $0a1b2c3Bv gh . . .$ back to normal
3 $0a1b2c3Bvg7 h . . .$. . .

• first pop, until in state 3
• then jump over input

• until next input g
• since f and) cannot be treated

• choose to goto v (shift in that state)

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-223

Panic mode may loop forever

parse stack input action
1 $0 (n n) $
2 $0(6 n n) $
3 $0(6n5 n) $
4 $0(6factor4 n) $
6 $0(6term3 n) $
7 $0(6exp10 n) $ panic!
8 $0(6factor4 n) $ been there before: stage 4!

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-224

Panicking and looping

parse stack input action
1 $0 (n n) $
2 $0(6 n n) $
3 $0(6n5 n) $
4 $0(6factor4 n) $
6 $0(6term3 n) $
7 $0(6exp10 n) $ panic!
8 $0(6factor4 n) $ been there before: stage 4!

• error raised in stage 7, no action possible
• panic:

1. pop-off exp10
2. state 6: 3 goto’s

exp term factor
goto to 10 3 4
with n next: action there — reduce r4 reduce r6

3. no shift, so we need to decide between the two reduces
4. factor : less general, we take that one

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-225

How to deal with looping panic?

• make sure to detec loop (i.e. previous “configurations”)
• if loop detected: doen’t repeat but do something
special, for instance
• pop-off more from the stack, and try again
• pop-off and insist that a shift is part of the options

Left out (from the book and the pensum)

• more info on error recovery
• expecially: more on yacc error recovery
• it’s not pensum, and for the oblig: need to deal with
CUP-specifics (not classic yacc specifics even if
similar) anyhow, and error recovery is not part of the
oblig (halfway decent error handling is).

INF5110 –
Compiler

Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

Massaging
grammars

LL-parsing (mostly
LL(1))

Error handling

Bottom-up
parsing

4-226

References I

Bibliography

[1] Appel, A. W. (1998). Modern Compiler Implementation in ML/Java/C. Cambridge University Press.

[2] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

	Parsing
	Introduction to parsing
	Top-down parsing
	First and follow sets
	Massaging grammars
	LL-parsing (mostly LL(1))
	Error handling
	Bottom-up parsing

