
Chapter 1
Semantic analysis

Course “Compiler Construction”
Martin Steffen
Spring 2021

Chapter 1
Learning Targets of Chapter “Semantic analysis”.

1. “attributes”
2. attribute grammars
3. synthesized and inherited attributes
4. various applications of attribute grammars

Chapter 1
Outline of Chapter “Semantic analysis”.

Introduction

Attribute grammars

Section
Introduction

Chapter 1 “Semantic analysis”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-5

Overview over the chapter resp. SA in
general

• semantic analysis in general
• attribute grammars (AGs)
• symbol tables (not today)
• data types and type checking (not today)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-6

Where are we now?

What do we get from the parser?

• output of the parser: (abstract) syntax tree
• often: in anticipation: nodes in the tree contain “space”
to be filled out by SA
• examples:

• for expression nodes: types
• for identifier/name nodes: reference or pointer to the

declaration

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

What do we get from the parser?
• output of the parser: (abstract) syntax tree
• often: in anticipation: nodes in the tree contain “space”
to be filled out by SA
• examples:

• for expression nodes: types
• for identifier/name nodes: reference or pointer to the

declaration

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-8

General: semantic (or static) analysis

Rule of thumb
Check everything which is possible before executing
(run-time vs. compile-time), but cannot already done during
lexing/parsing (syntactical vs. semantical analysis)

• Goal: fill out “semantic” info (typically in the AST)
• typically:

• all names declared? (somewhere/uniquely/before use)
• typing:

• is the declared type consistent with use
• types of (sub)-expression consistent with used

operations
• border between sematical vs. syntactic checking not
always 100% clear
• if a then ...: checked for syntax (and semantics)
• if a + b then ...: semantical aspects as well?

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-9

SA is nessessarily approximative

• note: not all can (precisely) be checked at compile-time
• division by zero?
• “array out of bounds”
• “null pointer deref” (like r.a, if r is null)

• but note also: exact type cannot be determined
statically either

if x then 1 else "abc"

• statically: ill-typed1

• dynamically (“run-time type”): string or int, or
run-time type error, if x turns out not to be a boolean,
or if it’s null

1Unless some fancy behind-the-scence type conversions are done by
the language (the compiler). Perhaps print(if x then 1 else
"abc") is accepted, and the integer 1 is implicitly converted to "1".

An unrealistic dream

Spec. of the lan-
guage’s static semantic

“semantical yacc”

static semantical checker

Section
Attribute grammars

Chapter 1 “Semantic analysis”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-12

Attributes

Attribute
• a “property” or characteristic feature of something
• here: of language “constructs”. More specific in this
chapter:
• of syntactic elements, i.e., for non-terminal and terminal
nodes in syntax trees

Static vs. dynamic

• distinction between static and dynamic attributes
• association attribute ↔ element: binding
• static attributes: possible to determine at/determined

at compile time
• dynamic attributes: the others . . .

http://www.merriam-webster.com/dictionary/attribute

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-13

Examples in our context

• data type of a variable : static/dynamic
• value of an expression: dynamic (but in seldom cases
static as well)
• location of a variable in memory: typically dynamic (but
in old FORTRAN: static)
• object-code: static (but also: dynamic loading possible)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-14

Attribute grammar in a nutshell
• AG: general formalism to bind “attributes to trees”
(where trees are given by a CFG)2

• two potential ways to calculate “properties” of nodes in
a tree:

“Synthesize” properties
define/calculate prop’s
bottom-up

“Inherit” properties
define/calculate prop’s
top-down

• allows both at the same time

Attribute grammar
CFG + attributes one grammar symbols + rules specifing for
each production, how to determine attributes

• evaluation of attributes: requires some thought, more
complex if mixing bottom-up + top-down dependencies

2Attributes in AG’s: static, obviously.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-15

Example: evaluation of numerical
expressions
Expression grammar (similar as seen before)

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → (exp) | number

• goal now: evaluate a given expression, i.e., the syntax
tree of an expression, resp:

more concrete goal
Specify, in terms of the grammar, how expressions are
evaluated

• grammar: describes the “format” or “shape” of (syntax)
trees
• syntax-directedness
• value of (sub-)expressions: attribute here

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-16

Expression evaluation: how to do if on
one’s own?
• simple problem, easy solvable without having heard of
AGs
• given an expression, in the form of a syntax tree
• evaluation:

• simple bottom-up calculation of values
• the value of a compound expression (parent node)

determined by the value of its subnodes
• realizable, for example, by a simple recursive procedure

Connection to AG’s
• AGs: basically a formalism to specify things like that
• however: general AGs will allow more complex
calculations:
• not just bottom up calculations like here but also
• top-down, including both at the same time

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-17

Pseudo code for evaluation

eva l_exp (e) =
case
: : e matches PLUSnode −>

r e t u r n eva l_exp (e . l e f t) + eva l_term (e . r i g h t)
: : e matches MINUSnode −>

r e t u r n eva l_exp (e . l e f t) − eva l_term (e . r i g h t)
. . .
end case

AG for expression evaluation
productions/grammar rules semantic rules

1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val− term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val
• specific for this example is:

• only one attribute (for all nodes), in general: different
ones possible

• (related to that): only one semantic rule per production
• as mentioned: rules here define values of attributes

“bottom-up” only
• note: subscripts on the symbols for disambiguation
(where needed)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-19

Attributed parse tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-20

Possible dependencies (perhaps move)

Possible dependencies (> 1 rule per production
possible)

• parent attribute on childen attributes
• attribute in a node dependent on other attribute of the
same node
• child attribute on parent attribute
• sibling attribute on sibling attribute
• mixture of all of the above at the same time
• but: no immediate dependence across generations

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-21

Attribute dependence graph

• dependencies ultimately between attributes in a syntax
tree (instances) not between grammar symbols as such

⇒ attribute dependence graph (per syntax tree)
• complex dependencies possible:

• evaluation complex
• invalid dependencies possible, if not careful (especially

cyclic)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-22

Sample dependence graph (for later
example)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-23

Possible evaluation order

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-24

Restricting dependencies

• general GAs allow bascially any kind of dependencies3

• complex/impossible to meaningfully evaluate (or
understand)
• typically: restrictions, disallowing “mixtures” of
dependencies
• fine-grained: per attribute
• or coarse-grained: for the whole attribute grammar

Synthesized attributes
bottom-up dependencies only
(same-node dependency
allowed).

Inherited attributes
top-down dependencies only
(same-node and sibling
dependencies allowed)

3Apart from immediate cross-generation dependencies.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-25

Synthesized and inherited attributes

• terminals and non-terminals carry attributes
• attributes can be typed
• it’s “either-or” (per symbol)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-26

Semantic rules

• rules or constraints between attribute occurrences

a = f(~a)

“attribute a depends, via f , on the mentioned ai”
• 1 grammar production: potentially multiple associated
semantics rules
• intention: each attribute uniquely defined

Restiction on target a

• a synthesized ⇔ a is left-hand side (non-terminal)
symbol attribute occurrence
• a inherited ⇔ a is a right-hand side symbol attribute
occurrence

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-27

General rule format

A→ X1 . . . , X, . . . Xn

synthesized

A.s == f(A.b, X1.b1, . . . Xn.bk)

inherited

X.i == f(A.a, X1.b1, . . . , X.b, . . . Xn.bn)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-28

Further common “restriction” (Bochmann)

• additional “restriction” on source variables
• but not a real restriction
• common representation of AGs (Bochman normal form)

Restriction on sources ai

• ai synthesized ⇔ ai is a right-hand side symbol
attribute occurrence
• ai inherited ⇔ ai is a left-hand side (non-terminal)
symbol attribute occurrence

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-29

More specific rule format (Bochmann)

A→ X1 . . . , X, . . . Xn

synthesized

A.s = f(A.i1, . . . , A.im, X1.s1, . . . Xn.sk)

inherited

X.i = f(A.i′, X1.s1, . . . , X.s, . . . Xn.sn)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-30

Conventional pictorial representation

X

tree nodeinherited synthesized

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-31

Schematic

Synthesized

A

X1 X2 X3

Inherited
A

X1 X2 X3

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-32

Bochmann (schematic)

Synthesized

A

X1 X2 X3

Inherited

X2

A

X1 X3

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-33

Adding attributes to a grammar

Definition (Attribute grammar)

An attribute grammar is a triple (G, (Attr i, Attrs), R),
where G is a context-free grammar. The functions Attr i and
Attrs associate to each grammar symbol X a set Attr i(X)
of inherited attributes and Attrs(X) of synthesized
attributes, with Attr i(X) ∩Attrs(X) = ∅. The set
Attr =

⋃
Attr(X) is the overall set of attributes. The form

of the semantic rules R will be defined below.

• sets disjoint

Definition (Attribute occurence)

A production X0 → X1 . . . Xn has an attribute occurrence
Xi.a iff a ∈ Attr(Xi), for some 0 ≤ i ≤ n.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-34

Rule format (more formal)

Given a production p of the form X0 → X1, . . . Xn, then a
finite set of semantic rules Rp is associated with p, with
constraints of the form

Xi.a = f(x1, . . . , xk) (1)

where either
1. i = 0 and a ∈ Attrs(Xi)
2. for i ≥ 1 and a ∈ Attr i(Xi),

for each xj is an attribute occurrence in p. For Rp, there is
exactly one such constraint for each synthesized attribute of
X0, and exactly one such constraint for each inherited
attribute for all inherited attributes for all Xi (with
1 ≤ i ≤ n).

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-35

Common normal form (Bochmann)

Assume a semantic rule

y0 = f(y1, . . . , yk) (2)

in Rr where y0 = Xi.a for a production p of the form

X0 → X1 . . . Xn .

Each attribute occurrence yj with 1 ≤ j ≤ k is of the form
Xl.b where either
1. l = 0 and b ∈ Attr i(Xi), or
2. 1 ≤ l ≤ k and b ∈ Attrs(Xi)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-36

What about terminals?

• terminals can have attributes
• terminals only mentioned on the right-hand side of
productions
• for practical considerations: interface lexer and parser:

modern convention
attributes of terminals are synthesized (sort of)

• 6= Knuth’s classic definition

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-37

Don’t forget the purpose of the restrictions

• 2 restrictions
• first reststriction: constitutional
• the second one useful

• but they don’t guarantee an AG makes sense!
• ultimately: calculate values of the attributes
• thus: avoid cyclic dependencies
• one single synthesized attribute alone does not help
much

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-38

S-attributed grammar

• restriction on the grammar, not just 1 attribute of one
non-terminal
• simple form of grammar
• remember the expression evaluation example

S-attributed grammar:
all attributes are synthesized

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-39

Simplistic example (normally done by the
scanner)

CFG

number → numberdigit | digit
digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Attributes (just synthesized)

number val
digit val
terminals [none]

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-40

Numbers: Attribute grammar and
attributed tree

A-grammar

attributed tree

Attribute evaluation: works on trees

i.e.: works equally well for
• abstract syntax trees
• ambiguous grammars

Seriously ambiguous expression grammar

exp → exp + exp | exp − exp | exp ∗ exp | (exp) | number

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-42

Evaluation: Attribute grammar and
attributed tree

A-grammar
Attributed tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-43

Expressions: generating ASTs

Expression grammar with precedences & assoc.
exp → exp + term | exp − term | term

term → term ∗ factor | factor
factor → (exp) | number

Attributes (just synthesized)

exp, term, factor tree
number lexval

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-44

Expressions: Attribute grammar and
attributed tree

A-grammar

A-tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-45

Example: type declarations for variable lists

CFG

decl → type var-list
type → int
type → float

var-list1 → id, var-list2
var-list → id

• Goal: attribute type information to the syntax tree
• attribute: dtype (with values integer and real)
• complication: “top-down” information flow: type
declared for a list of vars ⇒ inherited to the elements of
the list

Types and variable lists: inherited attributes

grammar productions semantic rules
decl → type var-list var-list .dtype = type .dtype
type → int type .dtype = integer
type → float type .dtype = real

var-list1 → id, var-list2 id.dtype = var-list1 .dtype
var-list2 .dtype = var-list1 .dtype

var-list → id id.dtype = var-list .dtype

• inherited: attribute for id and var-list
• but also synthesized use of attribute dtype: for

type .dtype4

4Actually, it’s conceptually better not to think of it as “the attribute
dtype”, it’s better as “the attribute dtype of non-terminal type”
(written type .dtype) etc. Note further: type .dtype is not yet what we
called instance of an attribute.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-47

Types & var lists: after evaluating the
semantic rules

float id(x),id(y)

Attributed parse tree Dependence graph

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-48

Example: Based numbers (octal & decimal)
• remember: grammar for numbers (in decimal notation)
• evaluation: synthesized attributes
• now: generalization to numbers with decimal and octal
notation

Context-free grammar

based-num → num base-char
base-char → o
base-char → d

num → num digit
num → digit
digit → 0
digit → 1

. . .
digit → 7
digit → 8
digit → 9

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-49

Based numbers: attributes

Attributes
• based-num .val: synthesized
• base-char .base: synthesized
• for num:

• num .val: synthesized
• num .base: inherited

• digit .val: synthesized

• 9 is not an octal character
⇒ attribute val may get value “error”!

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-50

Based numbers: a-grammar

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-51

Based numbers: after eval of the semantic
rules
Attributed syntax tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-52

Based nums: Dependence graph & possible
evaluation order

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-53

Dependence graph & evaluation

• evaluation order must respect the edges in the
dependence graph
• cycles must be avoided!
• directed acyclic graph (DAG)
• dependence graph ∼ partial order
• topological sorting: turning a partial order to a
total/linear order (which is consistent with the PO)
• roots in the dependence graph (not the root of the

syntax tree): their values must come “from outside” (or
constant)
• often (and sometimes required): terminals in the syntax
tree:
• terminals synthesized / not inherited
⇒ terminals: roots of dependence graph
⇒ get their value from the parser (token value)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-54

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method
Linearize the given partial order into a total order
(topological sorting), and then simply evaluate the equations
following that.

• works only if all dependence graphs of the AG are
acyclic
• acyclicity of the dependence graphs?

• decidable for given AG, but computationally expensive5

• don’t use general AGs but: restrict yourself to subclasses

• disadvantage of parse tree method: also not very
efficient check per parse tree

5On the other hand: the check needs to be done only once.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-55

Observation on the example: Is evalution
(uniquely) possible?

• all attributes: either inherited or synthesized6

• all attributes: must actually be defined (by some rule)
• guaranteed in that for every production:

• all synthesized attributes (on the left) are defined
• all inherited attributes (on the right) are defined
• local loops forbidden

• since all attributes are either inherited or synthesized:
each attribute in any parse tree: defined, and defined
only one time (i.e., uniquely defined)

6base-char .base (synthesized) considered different from num .base
(inherited)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-56

Loops

• loops intolerable for evaluation
• difficult to check (exponential complexity).

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-57

Variable lists (repeated)

Attributed parse tree Dependence graph

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-58

Typing for variable lists

• code assume: tree given

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-59

L-attributed grammars
• goal: AG suitable for “on-the-fly” attribution
• all parsing works left-to-right.

Definition (L-attributed grammar)

An attribute grammar for attributes a1, . . . , ak is
L-attributed, if for each inherited attribute aj and each
grammar rule

X0 → X1X2 . . . Xn ,

the associated equations for aj are all of the form

Xi.aj = fij(X0.~a, X1.~a . . . Xi−1.~a) .

where additionally for X0.~a, only inherited attributes are
allowed.

• X.~a: short-hand for X.a1 . . . X.ak

• Note: S-attributed grammar ⇒ L-attributed grammar

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

1-60

L-attributed grammars

A

X1 X2 X3 Xn

. . .

	Semantic analysis
	Targets & Outline
	Introduction
	Attribute grammars

