
Chapter 6
Symbol tables

Course “Compiler Construction”
Martin Steffen
Spring 2021



Chapter 6
Learning Targets of Chapter “Symbol tables”.

1. symbol table data structure
2. design and implementation choices
3. how to deal with scopes
4. connection to attribute grammars



Chapter 6
Outline of Chapter “Symbol tables”.
Introduction

Symbol table design and interface

Implementing symbol tables

Block-structure, scoping, binding, name-space organiza-
tion

Symbol tables as attributes in an AG



Section
Introduction

Chapter 6 “Symbol tables”
Course “Compiler Construction”
Martin Steffen
Spring 2021



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-5

Symbol tables, in general

• central data structure
• “data base” or repository associating properties with
“names” (identifiers, symbols)1

• declarations
• constants
• type declarationss
• variable declarations
• procedure declarations
• class declarations
• . . .

• declaring occurrences vs. use occurrences of names
(e.g. variables)

1Remember the (general) notion of “attribute”.



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-6

• goal: associate attributes (properties) to syntactic
elements (names/symbols)

• storing once calculated: (costs memory) ↔
recalculating on demand (costs time)

• most often: storing preferred

• but: can’t I store it in the nodes of the AST?

• remember: attribute grammar

• however, fancy attribute grammars with many rules and
complex synthesized/inherited attribute (whose
evaluation traverses up and down and across the tree):

• might be intransparent

• storing info in the tree: might not be efficient

⇒ central repository (= symbol table) better



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-6

So: do I need a symbol table?

In theory, alternatives exists; in practice, yes, symbol tables
is the way to go; most compilers do use symbol tables.



Section
Symbol table design and interface

Chapter 6 “Symbol tables”
Course “Compiler Construction”
Martin Steffen
Spring 2021



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-8

Symbol table as abstract data type
• separate interface from implementation
• ST: “nothing else” than a lookup-table or dictionary
• associating “keys” with “values”
• here: keys = names (id’s, symbols), values the
attribute(s)

Schematic interface: two core functions (+ more)

• insert: add new binding
• lookup: retrieve

besides the core functionality:
• structure of (different?) name spaces in the
implemented language, scoping rules
• typically: not one single “flat” namespace ⇒ typically
not one big flat look-up table

⇒ influence on the design/interface of the ST (and
indirectly the choice of implementation)
• necessary to “delete” or “hide” information (delete)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-9

Two main philosophies

traditional table(s)

• central repository,
separate from AST
• interface

• lookup(name),
• insert(name, decl),
• delete(name)

• last 2: update ST for
declarations and when
entering/exiting blocks

decls. in the AST nodes
• do look-up ⇒ tree-search
• insert/delete: implicit,

depending on relative
positioning in the tree

• look-up:
• efficiency?
• however:

optimizations exist,
e.g. “redundant” extra
table (similar to the
traditional ST)

Here, for concreteness, declarations are the attributes stored
in the ST. In general, it is not the only possible stored
attribute. Also, there may be more than one ST.



Section
Implementing symbol tables

Chapter 6 “Symbol tables”
Course “Compiler Construction”
Martin Steffen
Spring 2021



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-11

Data structures to implement a symbol
table

• different ways to implement dictionaries (or look-up
tables etc.)
• simple (association) lists
• trees

• balanced (AVL, B, red-black, binary-search trees)
• hash tables, often method of choice
• functional vs. imperative implementation

• careful choice influences efficiency
• influenced also by the language being implemented
• in particular, by its scoping rules (or the structure of the
name space in general) etc.2

2Also the language used for implementation (and the availability of
libraries therein) may play a role



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-12

Nested block / lexical scope

for instance: C
{ i n t i ; . . . ; double d ;

vo id p ( . . . ) ;
{

i n t i ;
. . .

}
i n t j ;
. . .

more later



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-13

Blocks in other languages

TEX

\ def \x{a}
{

\ def \x{b}
\x

}
\x
\bye

LATEX

\ documentc l a s s { a r t i c l e }
\newcommand{\ x }{a}
\ beg in {document}
\x
{\renewcommand{\ x }{b}

\x
}
\x
\end{document}

But remember: static vs. dynamic binding (see later)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-14

Hash tables

• classical and common implementation for STs
• “hash table”:

• generic term itself, different general forms of HTs exists
• e.g. separate chaining vs. open addressing

Separate chaining

Code snippet

{
i n t temp ;
i n t j ;
r e a l i ;
vo id s i z e ( . . . . ) {

{
. . . .

}
}

}



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-15

Block structures in programming languages

• almost no language has one global namespace (at least
not for variables)
• pretty old concept, seriously started with ALGOL60

Block
• “region” in the program code
• delimited often by { and } or BEGIN and END or

similar
• organizes the scope of declarations (i.e., the name
space)
• can be nested



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-16

Block-structured scopes (in C)

i n t i , j ;

i n t f ( i n t s i z e )
{ char i , temp ;

. . .
{ double j ;

. .
}
. . .
{ char ∗ j ;

. . .
}

}



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-17

Nested procedures in Pascal
program Ex ;
var i , j : i n t ege r

funct ion f ( s i z e : i n t ege r ) : i n t ege r ;
var i , temp : char ;

procedure g ;
var j : r e a l ;
begin

. . .
end ;
procedure h ;
var j : ^char ;
begin

. . .
end ;

begin (∗ f ' s body ∗)
. . .

end ;
begin (∗ main program ∗)

. . .
end .



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-18

Block-strucured via stack-organized
separate chaining

C code snippet

i n t i , j ;

i n t f ( i n t s i z e )
{ char i , temp ;

. . .
{ double j ;

. .
}
. . .
{ char ∗ j ;

. . .
}

}

“Evolution” of the hash table



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-19

Using the syntax tree for lookup following
(static links)

l ookup ( s t r i n g n ) {
k = c u r r e n t , s u r r o u n d i n g b l o c k
do // s e a r c h f o r n i n d e c l f o r b l o c k k ;

k = k . s l // one n e s t i n g l e v e l up
u n t i l found or k == none

}



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-20

Alternative representation:

• arrangement different from 1 table with stack-organized
external chaining
• each block with its own hash table.
• standard hashing within each block
• static links to link the block levels
⇒ “tree-of-hashtables”
• AKA: sheaf-of-tables or chained symbol tables
representation



Section
Block-structure, scoping, binding,
name-space organization

Chapter 6 “Symbol tables”
Course “Compiler Construction”
Martin Steffen
Spring 2021



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-22

Block-structured scoping with chained
symbol tables

• remember the interface
• look-up: following the static link (as seen)3

• Enter a block
• create new (empty) symbol table
• set static link from there to the “old” (= previously

current) one
• set the current block to the newly created one

• at exit
• move the current block one level up
• note: no deletion of bindings, just made inaccessible

3The notion of static links will be encountered later again when
dealing with run-time environments (and for analogous purposes:
identfying scopes in “block-stuctured” languages).



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-23

Lexical scoping & beyond
• block-structured lexical scoping: central in
programming languages (ever since ALGOL60 . . . )
• but: other scoping mechanism exists (and exist
side-by-side)
• example: C++

• member functions declared inside a class
• defined outside

• still: method supposed to be able to access names
defined in the scope of the class definition (i.e., other
members, e.g. using this)

C++ class and member function

c l a s s A {
. . . i n t f ( ) ; . . . // member f u n c t i o n

}

A : : f ( ) {}
// d e f . o f f `` i n ' ' A

Java analogon

c l a s s A {
i n t f ( ) { . . . } ;
boolean b ;
vo id h ( ) { . . . } ;

}



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-24

Scope resolution in C++

• class name introduces a name for the scope4 (not only
in C++)
• scope resolution operator ::
• allows to explicitly refer to a “scope”’
• to implement

• such flexibility,
• also for remote access like a.f()

• declarations are kept separately for each block (e.g. one
hash table per class, record, etc., appropriately chained
up)

4Besides that, class names themselves are subject to scoping
themselves, of course . . .



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-25

Same-level declarations

Same level

typede f i n t i
i n t i ;

• often forbidden (e.g. in C)
• insert: requires check (= lookup) first

Sequential vs. “collateral” declarations

i n t i = 1 ;
vo id f ( vo id )

{ i n t i = 2 , j = i +1,
. . .

}

l e t i = 1 ; ;
l e t i = 2 and y = i +1; ;

p r i n t _ i n t ( y ) ; ;



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-26

Recursive declarations/definitions

• for instance for functions/procedures
• also classes and their members

Direct recursion

i n t gcd ( i n t n , i n t m) {
i f (m == 0) r e t u r n n ;
e l s e r e tu rn gcd (m, n % m) ;

}

Indirect recursion/mutual
recursive def’s

vo id f ( vo id ) {
. . . g ( ) . . . }

vo id g ( vo id ) {
. . . f ( ) . . . }



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-27

Mutual recursive definitions

vo id g ( vo id ) ; /∗ f u n c t i o n p r o t o t y p e d e c l . ∗/

vo id f ( vo id ) {
. . . g ( ) . . . }

vo id g ( vo id ) {
. . . f ( ) . . . }

• different solutions possible
• Pascal: forward declarations
• or: treat all function definitions (within a block or
similar) as mutually recursive
• or: special grouping syntax



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-28

Example syntax-es for mutual recursion

ocaml

l e t r ec f ( x : i n t ) : i n t =
g ( x+1)

and g ( x : i n t ) : i n t =
f ( x +1) ; ;

Go

func f ( x i n t ) ( i n t ) {
r e t u r n g ( x ) +1

}

func g ( x i n t ) ( i n t ) {
r e t u r n f ( x ) −1

}



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-29

Static vs dynamic scope

• concentration so far on:
• lexical scoping/block structure, static binding
• some minor complications/adaptations (recursion,

duplicate declarations, . . . )
• big variation: dynamic binding / dynamic scope
• for variables: static binding/ lexical scoping the norm
• however: cf. late-bound methods in OO



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-30

Static scoping in C

Code snippet

#inc l u d e <s t d i o . h>

i n t i = 1 ;
vo id f ( vo id ) {

p r i n t f ( "%d\n" , i ) ;
}

vo id main ( vo id ) {
i n t i = 2 ;
f ( ) ;
r e t u r n 0 ;

}

which value of i is printed then?



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-31

Dynamic binding example

1 vo id Y ( ) {
2 i n t i ;
3 vo id P( ) {
4 i n t i ;
5 . . . ;
6 Q( ) ;
7 }
8 vo id Q(){
9 . . . ;

10 i = 5 ; // which i i s meant?
11 }
12 . . . ;
13
14 P ( ) ;
15 . . . ;
16 }



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-31

Dynamic binding example

1 vo id Y ( ) {
2 i n t i ;
3 vo id P( ) {
4 i n t i ;
5 . . . ;
6 Q( ) ;
7 }
8 vo id Q(){
9 . . . ;

10 i = 5 ; // which i i s meant?
11 }
12 . . . ;
13
14 P ( ) ;
15 . . . ;
16 }

for dynamic binding: the one from line 4



Static or dynamic?

TEX

\ def \ a s t r i n g {a1}
\ def \x {\ a s t r i n g }
\x
{

\ def \ a s t r i n g {a2}
\x

}
\x
\bye

LATEX

\ documentc l a s s { a r t i c l e }
\newcommand{\ a s t r i n g }{ a1}
\newcommand{\ x }{\ a s t r i n g }
\ beg in {document}
\x
{

\renewcommand{\ a s t r i n g }{ a2}
\x

}
\x
\end{document}

emacs lisp (not Scheme)

( s e t q a s t r i n g " a1 " ) ; ; `` ass ignment ' '
( defun x ( ) a s t r i n g ) ; ; d e f i n e `` v a r i a b l e x ' '
( x ) ; ; r ead v a l u e
( l e t ( ( a s t r i n g " a2 " ) )

( x ) )



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-33

package main
import ( " fmt " )

var f = func ( ) {
var x = 0
var g = func ( ) { fmt . P r i n t f ( " x = %v " , x )}
x = x + 1

{
var x = 40 // l o c a l v a r i a b l e
g ( )
fmt . P r i n t f ( " x = %v " , x )}

}
func main ( ) {

f ( )
}



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-34

Static binding is not about “value”
• the “static” in static binding is about

• binding to the declaration / memory location,
• not about the value

• nested functions used in the example (Go)
• g declared inside f

package main
import ( " fmt " )

var f = func ( ) {
var x = 0
var g = func ( ) { fmt . P r i n t f ( " x = %v " , x )}
x = x + 1

{
var x = 40 // l o c a l v a r i a b l e
g ( )
fmt . P r i n t f ( " x = %v " , x )}

}
func main ( ) {

f ( )
}



Static binding can become tricky

package main
import ( " fmt " )

var f = func ( ) ( func ( i n t ) i n t ) {
var x = 40 // l o c a l v a r i a b l e
var g = func ( y i n t ) i n t { // n e s t e d f u n c t i o n

r e t u r n x + 1
}
x = x+1 // update x
r e t u r n g // f u n c t i o n as r e t u r n v a l u e

}

func main ( ) {
var x = 0
var h = f ( )
fmt . P r i n t l n ( x )
var r = h (1 )
fmt . P r i n t f ( " r = %v " , r )

}

• example uses higher-order functions



Section
Symbol tables as attributes in an AG

Chapter 6 “Symbol tables”
Course “Compiler Construction”
Martin Steffen
Spring 2021



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-37

Nested lets in ocaml

l e t x = 2 and y = 3 i n
( l e t x = x+2 and y =

( l e t z = 4 i n x+y+z )
i n p r i n t _ i n t ( x+y ) )



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-37

• simple grammar (using , for “collateral” = simultaneous
declarations)

S → exp
exp → ( exp ) | exp + exp | id | num | let dec - list in exp

dec - list → dec - list , decl | decl
decl → id = exp

1. no identical names in the same let-block
2. used names must be declared
3. most-closely nested binding counts
4. sequential (non-simultaneous) declaration (6=

ocaml/ML/Haskell . . . )

l e t x = 2 , x = 3 i n x + 1 (∗ no , d u p l i c a t e ∗)

l e t x = 2 i n x+y (∗ no , y unbound ∗)

l e t x = 2 i n ( l e t x = 3 i n x ) (∗ d e c l . w i th 3 count s ∗)

l e t x = 2 , y = x+1 (∗ one a f t e r the o t h e r ∗)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-38

i n ( l e t x = x+y ,
y = x+y

i n y )



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-38

Goal

Design an attribute grammar (using a symbol table)
specifying those rules. Focus on: error attribute.



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-39

Attributes and ST interface

symbol attributes kind
exp symtab inherited

nestlevel inherited
err synthesis

dec - list, decl intab inherited
outtab synthesized
nestlevel inherited

id name injected by scanner

Symbol table functions

• insert(tab,name,lev): returns a new table
• isin(tab,name): boolean check
• lookup(tab,name): gives back level
• emptytable: you have to start somewhere
• errtab: error from declaration (but not stored as
attribute)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-40

Attribute grammar (1): expressions

• note: expressions in let’s can introduce scopes
themselves!
• interpretation of nesting level: expressions vs.
declarations5

5I would not have recommended doing it like that (though it works)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-41

Attribute grammar (2): declarations



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-42

Final remarks concerning symbol tables

• strings as symbols i.e., as keys in the ST: might be
improved
• name spaces can get complex in modern languages,
• more than one “hierarchy”

• lexical blocks
• inheritance or similar
• (nested) modules

• not all bindings (of course) can be solved at compile
time: dynamic binding
• can e.g. variables and types have same name (and still
be distinguished)
• overloading (see next slide)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-43

Final remarks: name resolution via
overloading

• corresponds to “in abuse of notation” in textbooks
• disambiguation not by name, but differently especially
by “argument types” etc.
• variants :

• method or function overloading
• operator overloading
• user defined?

i + j // i n t e g e r a d d i t i o n
r + s // r e a l −a d d i t i o n

vo id f ( i n t i )
vo id f ( i n t i , i n t j )
vo id f ( double r )



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Symbol table
design and
interface

Implementing
symbol tables

Block-structure,
scoping, binding,
name-space
organization

Symbol tables as
attributes in an
AG

6-44

References I


	Symbol tables
	Targets & Outline
	Introduction
	Symbol table design and interface
	Implementing symbol tables
	Block-structure, scoping, binding, name-space organization
	Symbol tables as attributes in an AG


