
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2021

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

7 Types and type checking 1
7.1 Introduction . 1
7.2 Various types and their representation . 5
7.3 Equality of types . 31
7.4 Type checking . 39

7 Types and type checking 1

7
Types and type checking
Chapter

What
is it

about?
Learning Targets of this Chapter
1. the concept of types
2. specific common types
3. type safety
4. type checking
5. polymorphism, subtyping and other

complications

Contents

7.1 Introduction 1
7.2 Various types and their rep-

resentation 5
7.3 Equality of types 31
7.4 Type checking 39

7.1 Introduction

This chapter deals with “types”. Since the material is presented as part of the static
analysis (or semantic analysis) phase of the compiler, we are dealing mostly with static
aspects of types (i.e., static typing).

The notion of “type” is very broad and has many different aspects. The study of “types”
is a research field in itself (“type theory”). In some way, types and type checking is the
very essence of semantic analysis, insofar that types can be very “expressive” and can be
used to represent vastly many different aspects of the behavior of a program. By “more
expressive” I mean types that express much more complex properties or attributes than the
ones standard programmers are familiar with: booleans, integers, structured types, etc.
When increasing the “expressivity”, types might not only capture more complex situations
(like types for higher-order functions), but also aspects, not normally connected with types,
like for instance: bounds on memory usage, guarantees of termination, assertions about
secure information flow (like no information leakage), and many more. The chapter here
focuses on the bread-and-butter types, like the ones for instance supported by the compila
language from the oblig.

This year (2021) like in last time, there seems to a group doing the oblig in Haskell.
Haskell’s type system is rather expressive even in its core version. Language extensions
allow to do serious steps in the direction of what is called type-level programming and
programming with dependent types. This leads to systems where type inference and other
questions become undecidable and the type system starts resembling a specification of
the program behavior (expessing non-trivial invariants, etc). Indeed, a type system fully
embracing dependent types is a form of combining computation for programming and logic
(for specification) in a common framework.

https://en.wikipedia.org/wiki/Type_theory

2 7 Types and type checking
7.1 Introduction

As a final random example: a language like Rust is known for its non-standard form of
memory management based on the notion of ownership to a piece of data. Ownership tells
who, i.e., which piece of code, has the right to access the data when and how, and that’s
important to know as simultaneous write access leads to trouble. Regulating ownership
can and has been formulated by corresponding “ownership type systems” where the type
expresses properties concerning ownership.

That should give a feeling that, with the notion of types such general, the situation is a
bit as with “attributes” and attribute grammars: “everything” may be an attribute since
an attribute is nothing else than a “property”. The same holds for types. With a loose
interpretation like that, types may represent basically all kinds of concepts: like, when
interested in property “A”, let’s intoduce the notion of “A”-types (with “A” standing
for memory consumption, ownership, and what not). But still: studying type systems
and their expressivity and application to programming languages seems a much broader
and deeper (and more practical) field than the study of attribute grammars. By more
practical, I mean: while attribute grammars certainly have useful applications, stretching
them to new “non-standard” applications may be possible, but it’s, well, stretching it.1
Type systems, on the other hand, span more easily form very simple and practical usages
to very expressive and foundational logical system.

In this lecture, we keep it more grounded and mostly deal with concrete, standard (i.e.,
not very esoteric) types. Simple or “complicated” types, there are at least two aspects of a
type. One is, what a user or programmer sees or is exposed to. The second one is the inside
view of the compiler writer. The user may be informed that it’s allowed to write x + y
where x and y are both integers (carrying the type int), or both strings, in which case +
represents string addition. Or perhaps the language even allows that one variable contains
a string and the other an integer, in which case the + is still string concatenation, where
the integer valued operand has to be converted to its string representation. The compiler
writer needs then to find representations in memory for those data types (ultimately in
binary form) that actually realize the operations described above on an abstract level.
That means choosing an appropriate encoding, choosing the right amount of memory
(long ints need more space than short ints, etc., perhaps even depending on the platform),
and making sure that needed conversions (like the one from integers to strings) actually are
done in the compiled code (most likely arranged statically). Of course, the programmer
does not want to know those details, the code typically could not care less, for instance,
whether the machine architecture is “little-endian” or “big-endian” (see https://en.
wikipedia.org/wiki/Endianness). But the compiler writer will have to care when
writing the compiler itself to represent or encode what the programmer calls “an integer”
or “a string”. So, it’s fair to say the most fundamental role of types is that of abstraction:
to shield the programmer from the dirty details of the actual representation.

Types are a central abstraction for programmers.

Abstraction in the sense of hiding underlying representional details.2

1That’s at least my slightly biased opinion.
2Beside that practical representational aspect, types are also an abstraction in the sense that they can
be viewed as the “set” of all the values of that given type. Like int represents the set of all integers.
Both views are consistent as all members of the “set” int are consistently represented in memory and
consistently treated by functions operating on them. That “consistency” allows us as programmers

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

7 Types and type checking
7.1 Introduction 3

The lecture will have some look at both aspects of type systems. One is the representa-
tional aspect. That one is more felt in languages like C, which is closer to the operating
system and to memory in hardware than languages that came later. Besides that, we will
also more look at type system as specification of what is allowed at the programmer’s level
(“is it allowed to do a + on an a value of integer type and of string type?”), i.e., how
to specify a type system in a programming language independent from the question how
to choose proper lower-level encodings that the abstraction specified in the type system.

7.1.1 General remarks and overview

• Goal here:
– what are types?
– static vs. dynamic typing
– how to describe types syntactically?
– how to represent and use types in a compiler?

• coverage of various types
– basic types (often predefined/built-in)
– type constructors
– values of a type
– type operators
– representation at run-time
– run-time tests and special problems (array, union, record, pointers)

• specification and implementation of type systems/type checkers
• advanced concepts

7.1.2 Why types?

• crucial, user-visible abstraction describing program behavior
• one view: type describes a set of (mostly related) values
• static typing: checking/enforcing a type discipline at compile time
• dynamic typing: same at run-time, mixtures possible
• completely untyped languages: very rare to non-existant, types were part of PLs

from the start.

Milner’s dictum (“type safety”)

Well-typed programs cannot go wrong!

• strong typing:3 rigorously prevent “misuse” of data
• types useful for later phases and optimizations
• documentation and partial specification

to think of them as integers, and forget about details of their representation, and it’s the task of
the compiler writer, to reconcile those two views: the low-level encoding must maintain the high-level
abstraction.

3Terminology rather fuzzy, and perhaps changed a bit over time.

4 7 Types and type checking
7.1 Introduction

What does it mean when reading that a language has a “strong” type system, is strongly
typed, or is type safe? The latter, type safety, is more clearly defined. It’s also connected to
Milner’s dictum. It is meant to be a statement about static typing and static type system.
Types, as mentioned, can be understood as abstractions. As far as static type systems
are concerned, these abstractions are also predictions of what will happen at run-time.
The predictions are not exact, it’s approximative. For example, typically the type system
cannot determine, which concrete integer will be given back as a result of a function, but it
can determine that the result will be an integer, it’s just unclear at compile time which it
will be. That hangs together with fundamental limitations of what can be algorithmically
determined (Halting problem, Rice theorem). But beside those fundamental limination,
there is another obvious reason. Let’s stick with example of determining what value a
function will return. A function will have an input, otherwise, what’s the point of having
a function or procedure, and typically the behavior of the function, in particular the
resulting value of the function will depend on the input (otherwise again, what would be
the point of having a function with an input that does not influence the outcome). Not
knowing which concrete input to except statically, implies not knowing what outcome
to expect. One can be no more specific than saying that, for instance, the input is a
integer and the output is an integer again. So, in this case, one is dealing with a function
from integers to integers. And that’s information enough for the compiler, to prepare for
enough memory, since no matter what integer it will be called with, they all are represented
uniformely.

When claiming that “one cannot be more specific”, then that’s not actually true: with
standard typesystem, one cannot be more specific. Of course, if one assumes that the
function receives an arbitrary integer as argument, then, to stick with the example, one
cannot know what particular integer is returned in most cases. If one hand a function
like add (x: int) = x+1, one knows that if the input is an odd integer, the result is
even, and vice versa. Unless perhaps a MAXINT overflow exception is raised, which might
be also something that the type system can specify. The Java type system for instance
allows to specify what potential exceptions could occur.

But let’s leave the exception-discussion aside, and focus on the even and odd situation.
Normally, type systems support integer as types, but not the type of even integers or the
odd ones. Or mechanisms for the programmer to define such things like the type of all
even numbers when wished. In the extreme a type system could allow to capture on the
type level, what specific outcome to expect for specific input. That would lead to what
is known as dependent types and is beyond this lecture (and the vast majority of current
type system for general purpose languages).

In contrast to (standard) types: many other abstractions in static analysis (like the control-
flow graph or data-flow analysis and others) are not directly visible in the source code.
We called types a important abstraction for programmers. Data flow information and
other such representations used in semantic analysis are like-wise abstractions and equally
important. Though one could say those are not abstraction for the programmer, those are
abstraction completely inside the compiler and this more for the compiler writer. Many
types, in contrast are visible to the programmer.

However, in the light of the introductory remarks that “types” can capture a very broad
spektrum of semantic properties of a language if one just makes the notion of type general

7 Types and type checking
7.2 Various types and their representation 5

enough (“ownership”, “memory consumption”), it should come as no surprise that one can
capture data flow in appropriately complex type systems, as well. . .

Besides that: there are no really any truly untyped languages around, there is always
some discipline (beyond syntax) on what a programmer is allowed to do and what not.
Probably the anarchistic recipe of “anything (syntactically correct) goes” tends to lead
to disaster anyway. Note that “dynamically typed” or “weakly typed” is not the same as
“untyped”.

7.1.3 Types: in first approximation

Conceptually

• semantic view: set of values plus a set of corresponding operations
• syntactic view: notation to construct basic elements of the type (its values) plus

“procedures” operating on them
• compiler implementor’s view: data of the same type have same underlying memory

representation

further classification:

• built-in/predefined vs. user-defined types
• basic/base/elementary/primitive types vs. compound types
• type constructors: building more compex types from simpler ones
• reference vs. value types

7.2 Various types and their representation

This section shows a parade of different types, which can be found across many languages
(variations apply), Most should be familiar in one form or the other.

7.2.1 Some typical basic types

Let’s not define exactly what is or is not an basic types; there is not much insight to
gain from that. Let us just discuss aspects of types which we reasonably call basic or
elementary and show show common examples.

One aspect is that basic types have no sub-parts in the sense that they are composed of
other more primitive types. For instance the type for pairs of integers, perhaps written
int × int, is not basic, it’s composite or compound. That is often hand in hand with the
fact that the values belonging to the type in question are structured or not. For instance, a
pair (1, 2) consists of the integer 1 in the first position and 2 in the second, and the language
will offer possibilities to access those two elements. So, for compount values (which are not
elements of basic types), there are ways to deconstruct them. Deconstructing a composite
data item means accessing its constituents or sub-parts. The opposite of deconstructing
values is, of course, constructing them. In the pair example, there is special syntax (_,_)

6 7 Types and type checking
7.2 Various types and their representation

to construct a pair. It’s characteristic for non-basic to have possibilities to construct values
and to decompose them again. For basic types, that’s mostly lacking.

There are corner cases, depending on particular languages. For instance, string may
feel like a quite basic type, but actually, for instance C considers strings as compound.
C, which takes a quite implementation-centric view on types (at least seen from today’s
perspective), explains strings as

one-dimensional array of characters terminated by a null character ’\0’

Of course, there is special syntax to build values of type string, writing "abc" as opposed
to string-cons(’a, string_cons(’b, ...)) or similar. . . This smooth support
of working with strings may make them feel as if being primitive.

Basic types are predefined by the language resp. the compiler. Often, a fair selection
of those is provided by the language, like the ones in Table 7.1 (and partly mapped to
representations with HW support on a platform). Often they are lexically represented by
using reserved keywords, i.e., it’s typically not allowed to redefine a type like bool to rep-
resent something else, even if one believes one can come up with a better implementation
of booleans than the one provided (which is highly unlikely anyway. . .).

Note, being built-in is not the same as basic or elementary. For instance, List may be a
built-in keyword in the language used in connection with the types of lists. List values like
[1;2;3] are certainly composite (just the empty list [] cannot be called “composite” in
a meaningful way). By what about List referring to types? List as keyword may be
predefined, as said, but it’s best not be seen as type. How come, does that not represents
lists as members? Not really, at least when thinking about it not sloppyly there is no type
containing lists in general, there are only lists of integers, of type List of int, lists of
booleans, of type List of bool, list of lists of pairs of string of type List of (List
of (string * string). But isn’t List of Object not a type containing lists in
general (for instance in Java or similar languages)? That’s true, but that’s not List, and
the fact that List of Object is a type for (basically) all kind of lists has to do with a
further property of type system, subtype polymorphism (later) and the fact that Object
may be the super-type of (almost) all types. The point here is: List per se is not a type,
basic or otherwise, neither is * (describing pairs, written also × in non-ascii), those are
examples of type constructors. A bit more later.

base types
int 0, 1, . . . +,−, ∗, / integers
real 5.05E4 . . . +,-,* real numbers
bool true, false and or (|) . . . booleans
char ’a’ characters
...

Table 7.1: Basic types

What basic types conceptually are what hopefully clear enough, let’s comment on some
of the basic types from Table 7.1. All languages will offer various numeric types, like int

7 Types and type checking
7.2 Various types and their representation 7

and real or float. Those can often rely on some form of HW support. It should be
clear, that elements from types like int or real are not exactly mathematical integers
or reals from R. The computer-versions all suffer from a limited precision. (There is
also something called infinite or arbitrary precision arithmetic, but let’s not go there).
Languages also offered variations of fixed precision, like int32 and int64.

When dealing with different numbers of different precision, they are conceptually all
machine-representation of numbers. On the bit-level representations, numerical opera-
tions on, say, int32 and int64 work analougsly, but not identical in the sense that one
can use exactly the same steps, or at least one has to be careful. The representations
may often be “consistent” to some extent. For instance, an int32 number padded with
leading 32 bits of 0’s may be an int64 representation of the “same” number. Still, it’s
not the same representation, one uses 64 bits and one 32.

On the level of abstraction of programing source code, one would like to do the normal
numerical operations like addition, substraction, etc. consistently. Often the design of
the language will use the same (special) syntax for operations on different numberical
types. Like "+" in infix notation is a good choice for adding two numbers. On the level of
representation, the +-operator is implemented differently on int32 and on int64. The
fact that some syntactic construct, like the operator +, is implemented differently when
operating on different types is known as overloading. In this particular case of operator
overloading. Often, operators like + cannot only used on two int32 numbers or else
on two int64 numbers (or else on two strings, in which case it’s interpreted as string
concatenation, perhaps). Of course, one may also support mixed-type arguments, like
using + on one int32 and one int64 argument. That would involve some conversion,
like turning the 32-bit integer representation into a 64-bit one (like padding it with leading
0’s in this case, which would in plausible representations of those two numerical data).
That conversion might be done implicitly, behind the scenes. That compiler in this case is
responsible to generate appropriate conversion code, and it will consult type information
to chose the appropriate conversions. Both overloading and conversions are two forms of
type polymorphism. A bit more later.

7.2.2 Some compound types

Table 7.2 contains a few common compound types, available in most languages. Especially,
when built-in into the language core, as opposed to be available as library functionality,
the most common ones are often supported by special syntax. For instance, accessing the
7th slot of an one dimensional array a is typically written as a[6] (with a[0] being the
first slot), as opposed to array_access(a,6). Some such data structure may come in
a built-in version and in a library version. For instance, there may be a built-in fixed-size
standard array data type and a dynamically-sized version with further bells and whistles
from the library.

Compound types (of ocmpound data structures), resp. their types, like the ones from Table
7.2, are often reference types. What what means is that a variable of the corresponding
type, for instance, a variable a of type array[0,..,9] of real does not “contain”
the array, the variable contains a reference to the place where the array is stored. That

https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

8 7 Types and type checking
7.2 Various types and their representation

compound types
array[0..9] of real a[i+1]
list [], [1;2;3] concat
string "text" concat . . .
struct / record r.x
. . .

Table 7.2: Compound types

fact is often supressed in the syntax. I.e., the type of the mentioned variable is not ref
(array[0,..,9]) which would make that fact explicit in the type. Still, the compiler
writer must keep that in mind, and likewise the user of the language. The fact that some
data structures are implicitly handled via references makes a difference if the data is shared
and modified. That may happen when using the data as argument in function calls. We
will discuss the related issue of parameter passing in a later chapter.

7.2.3 Abstract data types

Let’s discuss the notion of abstract data types on a conceptual level at least. Again,we
don’t attempt to define what an abstract data type precisely is and what not. One can
find many different standpoints or opinions on that, partly contradicting. One finds that
classes are (a form of) abstract data types, and one finds that classes are categorically
different from ADTs. One finds that ADT are nothing else than modules (if that explains
something), one finds that ADTs are multisorted algebras (if that explains something)
etc. One encounters such terminological fuzzyness not just with the concept of ADTs, it
also can be found for other programming language concepts. That’s partly due to the
fact that sometimes the realization in one or two languages are confused with a general
concept. For instance, a language or other may support a keyword module or class for
the concept of modules or classes, and the manual of that language descibes in detail what
that is and what not, and how to use it when programming in that language etc. But
that is sometimes just one partcular angle or interpretation of a more general concept,
leaving out aspects resp, throwing in additional ones in a particular language. And then,
programmer used to that language, may contribute to discussions with statements like
“Do I know what a module is? Good lord, I have programmed ADA for 30s years, you
can trust me that I know I what I am talking about and your definition is plain wrong”.
On the other hand, trying to find out exactly (accross all languages) what a concept like
ADTs is, is also futile. Therefore we don’t attempt that.

So much as philosophical disclaimer before discussing ADTs (and actually a disclaimer
for a number of others concepts covered in the lecture).

But let’s mention a few aspects often cited in connection with abstract data types. Let’s
also not bother to distinguish in detail between the type aspect of an ADT, resp. the
implementation thereof. So the word, abstract data type is often used not just for the

http://pages.cs.wisc.edu/~hasti/cs367-1/readings/Introduction/

7 Types and type checking
7.2 Various types and their representation 9

type level information (like the signature) but also for it’s implementation, like “this stack
is an example for an ADT”.

Anyway, what are then ingredients or characteristics of ADTs? One is the typing aspect,
and one is abstraction, hence the name. Another one is that they bundling up a data
structures together with code operating on the data

In the light of what we have said about what types are (“central user-level abstractions”),
in some sense, all types are kind iof “abstract data types”. They provide abstractios on
the underlying representation. Addionally, all meaningful data comes with operations and
functions to work with them, Data without operators on it useless. It’s not for nothing that
lecture IN2010 (formerly INF2020) is not just called Datastrukturer but Algorithmer og
datastrukturer : discussing data structure without algorithms that do something interesting
on them makes no sense. Also the basic, primitive types like int32 or int64 we discussed
earlier come with operations on them (like +). And those operations hide type the internals
of the representation, they provide an abstraction. In that sense, one might call already
that an “abstract data type”, a very primitive though.

One will seldomly hear that a built-in type like int32 is an ADT, though. One reason
for that is because another important aspect is missing. When saying a language supports
ADTs one means, the language supports a mechanism for the programmer to introduce
new, custom-made ADTs. So, int32 is not user-defined, but built it, so that does not
qualify. . .

To allow to introduce ADTs as a “bundle” consisting of data + operations on it, langueages
then support corresponding syntax (of various sorts). Like (in ad hoc syntax):

adt X
begin

....
end

Languages may use module as keyword. Indeed, classes also bundle up data (the instance
variables) with “operations” (the methods), which is why some people claim, classes are
like object-oriented ADTs. Some will protest, though, finding differrences between classes
and ADTs more important. In partular, one can defend to see static classes as in Java to
be a from of ADT. Typically, what is lacking in ADTs is the notion of instantiation, and
same for static classes.

Proving (user-define) abstraction to the user of an ADT means also, when using an ADT,
one has not to bother about the internals, actually, one has no access to the internal rep-
resentation of the ADT. That’s also known as encapsulation: an ADT not just bundles
up data an operations, but it encapsulates and protects the internal representation from
access other than via the offered interface.

We stated that classes bundle up data and methods as well, with instance variables playing
the role of the internal data. The problem is, Java classes don’t enforce encapsulation.
One can partly achieve that in declaring instance variables as private. That provides
some encapsulation (but not 100%, private fields of instances from other instances of
the same class, which breaks encapsulation). Encapsulation (or hiding of internals or

https://www.uio.no/studier/emner/matnat/ifi/IN2010/

10 7 Types and type checking
7.2 Various types and their representation

abstraction, whatever it is called) can in Java also achieved by using Java interfaces as
types, not the class names themselves as types (“programming against interfaces” is the
slogan). Indeed, the concept of interface demarcating the separation between inside and
outside of the abstract data type is central. Also Java knows supports interfaces (with the
keyword interface); some other languages could use the name signature for interfaces of
modules or ADTS. Modula, a language promoting the idea of modules as a form of ADTs
differentiates between DEFINITION MODULE’s and IMPLEMENTATION MODULE’s, the
former the interface or signature for the latter (the implementation).
ADT begin

integer i ;
real x ;
int proc t o t a l (int a) {

return i ∗ x + a // or : `` t o t a l = i ∗ x + a ' '
}

end

If one still wants to know, what REALLY is the difference between ADTS, modules, and
classes, a reasonable standpoint (if one wants to differentiate) in my eyes can be found
at http://www.cs.man.ac.uk/~pjj/cs2111/ho/node18.html. It roughly says,
modules have a (mutable) state, ADT have not.

With ADTs being “stateless” (in that view), the behavior of the extenally offered function-
ality can be captured declaratively, so the interface is functional (rather than an imperative
interface as would be characteristic for modules). One may find it a clear distinction (or
not). At any rate, a functional interface would allow to specify the outside behavior by
equations. The latter point is the reason why some say, ADTs are an implementation of
algebraic data types (algbras are some equational formalism).

Finally classes: they typically have a state (resp. instances of a class have a state),
but there are much more complications mechanisms on top: inheritance, overriding, late
binding and what not.

7.2.4 Type constructors: building new types

A language with only basic types (see Section 7.2.1), would have only a finite number
of types, built in to the language. So, languages offer a mechanisms to introduce new
types, typically compound types like the ones mentioned in Section 7.2.2. In that way,
the language supports an unbounded number of types. Building new types from old ones
is done by so-called type constructors. We have mentioned a few before, like the one for
lists and for pairs or tuples. Those are all examples of compound types. There is another
mechanism to introduce “new” types, not connected to the question of whether the type
is composed or not. That is to give (new) names to a type. For instance, calling a tuple
real×real under the name complex. Introducing a new name for some type may not be
seen as introducing a new type. But it may be that the type system insists that pairs of
type real × real cannot be use when values of complex are needed. If that is the case,
complex is in a way a new type and different from real × real. Questions like that, is
complex the same as real×real or not will be discussed in Section 7.3; different languages
can take different choices about which types to treat as equal and which not. The current

http://www.cs.man.ac.uk/~pjj/cs2111/ho/node18.html

7 Types and type checking
7.2 Various types and their representation 11

section here is not much concerned with naming of types, it’s about the constructions
themselves.

Central type constructors are built-in to a language and are written in “special” syntax.
An example is the cosntructor × in infix notation for tuple types as in int × int. We
will see some examples for that.

Generally a type consists of members or elements of that type, the data values of that
type. So, it’s not enough to be able to define new type and perhaps declare variables to
be of that type. One needs a way to construct values of the introduced type. For pairs, we
have seen the syntax already, writing for instance (1, 2) to construct a pair, here of type
int × int. Constructing values is one thing, there needs also a way of deconstructing
them, i.e., way to access the indivual parts, in our example the first element 1 and the
second one 2. All type constructions in the following will have these three ingredients: 1)
forming new types via type constructors, 2) contructing and 3) deconstructing values of
the introduced type.

In the following we will have a look at a few of composed types in programming languages.
The Compila language of this year’s oblig supports records but also “names” of records.
We will also discuss the issue of “types as such” vs. “names of types” later (for instance in
connection with the question how to compare types: when are they equal or compatible,
what about subytping? etc.).

7.2.5 Arrays

Array types may be notational represented as in Listing 7.1 or similar. Note that in the
code snippet, the array type is unnamed or anonymous. Many language would allow to
declare array types only together with giving a name, but this section here focuses on the
types themselves without much emphasis of how to give names to them.

array [< indextype >] of <component type>

Listing 7.1: Conventional syntax for array types

Conceptually, arrays, i.e., values of array types, are finite functions from the index-type
to the component type. Often, there are restrictions on what can be used as index type.
First of all, the index domain has to be finite. Perhaps a finite range of non-negative
(unsigned) integers. For instance, using syntax like from ... to Other types
make also be allowed, like enumerated types, characters, etc.

In their basic variant, arrays are fixed size data structures. Still, the language may be
more or less restrictive there. Restrictive (and easiest to realize) would be that the size
of the array is statically known at compile time. More liberal would be to allow that
the dimension of the array, while still fixed, is known only at run-time, like that the size
depends on the content of a variable.

Either way, for most arrays one faces the problem that, at run-time the array may be
accessed outside its bounds. That danger does not exist for all arrays. For arrays allowing
indexes ranging over all characters or by some from some fixed enumeration of elements

12 7 Types and type checking
7.2 Various types and their representation

(i.e., values from an enumeration type), a halfway decent types system can statically assure
that no out-of-bounds errors occur.

By half-way decent I mean the following, in the context of enumeration types. Assume an
enumarate type like (using ad-hoc syntax and giving the enumeration a useful name):

type Weekday = enum {Monday , Tuesday , Wednsday , Thursday , Friday , Saturday , Sunday}

Such an enumeration will, in all likelyhood, will be represented in the compiler by (short,
unsigned) integers, ranging from 0 to 6, and probably in the order as listed in source code.
Integers can be handled efficiently, in particular when used as indexes for array access.
A safe type system would make sure that the array can be indexed only by the official
entries in the enumeration. An ansafe one would “allow” the user to exploint the knowlege
that Monday corresponds to 0 or whatever the scheme is. The programmer would have
not advantages of that exploit, at least not in terms of execution speed, since, as said, the
compiler will translate the enumeration anyway to numbers. The only thing one could
gain is that one could do in an unsafe type system is things like
var x : Weekday := Monday ;
. . . .
x:=x+1;

where one “calculates” with the weekdays (mis-)using integer operations. Of course, if
careless, one may end up doing Sunday + 1, and there is the out-of-bound error. If that
is possible is an example of an unsafe type system, and it is an example where the type
system, here the enumeration, does not provide proper abstraction. It looks like weekdays,
but still one can do integer-related things on it, exploiting knowledge of the underlying
representation.

In general, there is not much the compiler can do to prevent out-of-bounds situation (being
an undecidable proglem in general). One thing to make sure that at least at run-time,
array-bound checks are done. If the check fails, it has the positive effect of raising an
error at run-time, if the check fails, and crashing the program (if the error is not handled.
That’s a good thing to do, compared to the alternative of not raising the error. The
alternative allows read and write access to memory parts that are not meant accessed, at
leat not this way. And that’s much worse (for security and otherwise).

There also exist dynamic arrays, which are extensible at run-time, but let’s leave those
out from the discussion.

Integer-indexed arrays are typically a very efficient data structure, as they mirror the
layout of standard random access memory and customary hardware.4 Indeed, contiguous
random-access memory can be seen as one big array of “cells” or “words” and standard
hardware supports fast access to to those cells by indirect addressing modes (like making
use of an off-set from a base address, even offset multiplied by a factor (which represents
the size of the entries). In the later chapters about code generation, we will look a bit into
different addressing modes of machine instructions.

4There exists unconventional hardware memory architectures which are not accessed via addresses, like
content-addressable memory (CAM). Those don’t resemble “arrays”. They are a specialist niche, but
have applications.

https://www.pagiamtzis.com/cam/camintro/

7 Types and type checking
7.2 Various types and their representation 13

There are also multi-dimensional arrays, not just one-dimensional. One can see it as
“array of arrays” (Java). Often there is specific syntax also for that, not just defining an
array of array, like

array [1 . . 4] of array [1 . . 3] of real
array [1 . . 4 , 1 . . 3] of real

As mentioned, one dimensional, i.e., linear, arrays can be mapped straightforwardly onto
standard memory. Also two-dimensional arrays or higher-dimensional ones need to be
mapped to a linear layout/ in memory, the way that’s done may vary and is language
dependent (row-by-row or column-by-column etc.)

A last work: Array types are typically reference types, as many compound types.

7.2.6 Record (“structs”)

For clarity, one should distinguish between record types and records as values of record
types. For even more clarity, one should separate also between the record type and the
name of the record type (same as will array types). Often that precision is loosend a but
one one just says “this is a record” or “this is a struct” for the name, for the record type and
for the record value all the same. “Struct” is a different name for record (types), coming
from the C-keyword for records. Java does not support structs, but of course classes and
objects can be used as if one had structs. If one ignores inheritance and methods, the
analogy is really close.

A struct type could be declared as follows:
struct {

r e a l r ;
int i ;

}

Listing 7.2: Record type (“struct”)

The values of a recurd types, i.e., records are “labelled tuples”. In this example, elements
roughly corresponding to real× int. Typically, when using the labels explicitly, the order
of occurrence, whether one mentions the real before the integer component is irrelevant
on source code level. That’s of course different for tuples, the position there matters.

Besides forming new types, one needs a way to construct elements of that type, and also
to deconstruct those elements; we mentioned that in the introductory remarks.

Unlike the record type from Listing 7.2 which was anonymous, the one introduced in
Listing 7.3 is given a name. The special syntax to define a record in the example is {300,
42} and the value is stored in variable pt. Of course, since the value is constructed
without mentioning the fields, resp. mentioning them only in when introducing the type
point, the order of the two values matter.

Languages may (additionally) allow do define the record value writing {x=300, y=42}
or {y=42, x=300}. To deconstruct a value one uses the well-known dot-notation, like

14 7 Types and type checking
7.2 Various types and their representation

pt.x. Again the analogy to objects (and field access) is very close. The dot-notation can
be used for read and write access to the record value.
struct point { int x ; int y ; } ; // d e f i n i n g a record type (and

// g i v e i t a name .
struct point pt = { 300 , 42 } ; // c o n s t r u c t i n g a record va lue
int z = pt . x ; ; // f i e l d access

Listing 7.3: Constructing and deconstructing records

As far as the implementation of such records is concered. They are arranged in a linear
memory layout with slots whose size is given by the (types of the) attributes or fields. The
fields are accessible by statically fixed offsets which allows fast access.

Structs in C, some finer points The following remarks are not important, just some side
remarks on esoteric, i.e., weird, aspects of structs in C: The definition, declaration etc. of
struct types and structs in C is slightly confusing. It does not matter for the lecture (and
thus is not pensum).

struct f oo { // foo i s c a l l e d a `` tag ' '
r e a l r ;
int i

The foo is called (in C) a tag, which is almost like a (name of a) type, but not quite, at
least as far as C is concerned. The definition of C distinguishes tags and types but it is
not so clear why. Technically, for instance, the name space for tags is different from that
for types. Ignoring details, one can make use of the tag almost as if it were a type, for
instance,
struct f oo b

declares the structure b to adhere to the struct type tagged by foo. Since foo is not
a proper type, what is illegal is a declaration such as foo b. In general the question
whether one should use typedef in commbination with struct tags (or only typedef,
leaving out the tag), seems a matter of debate (one finds different opinions on the internet).
In general, the separation between tags and types (resp. type names) is messy and probbly
ill-considered. One should do better these days.

7.2.7 Tuple or product types

Tuples are pairs of values, written for instance (1,2). One can pair up values of different
types, for instance (1, "text"). Typical syntax for tuple types, also called product
types is int * string (in ascii, for the second sample tuple) or T1×T2 in math notation,
with T1 and T2 are arbitrary types. Languages may also support be n-tuples, like (1, 2, 4),
a “triple”, or (1, ”a”, true, ”b”, 7), a “quintuple”.

Notationally, the syntax to form a n-tuple value here resembles syntax to form a list (or is
identical to list forming syntax in some languages). Even if notationally similar, there are
differences between n-tuples and lists, Mainly in what one can "do" with the corresponding

7 Types and type checking
7.2 Various types and their representation 15

elements, the ways of “deconstructing” them. Often, in statically typed languages, lists
have to be of uniformely-typed elements.

Table 7.3 shows the different types of a triple and of a tuple containing another tuple. In
principle, both values are “the same”. Indeed, both values may actually be implemented
identical, as a pair of a value followed by a second pair. Still, at the user level, the two
values may (or may not) be treated differently. To access the “last element” true, the
triple may have a syntax to access the 3rd element directly, for the second value one may
need to access the second element of the second element.

The table shows that the two values also carry different types. However, the language
may treat the two values as different notations for the same “triple” value. If so, and in
line with that, it makes no sense to distinguish the two types as different. In other words,
the type system would treat the tuple type constructor × as assocciative, and the two
types as the “same”, or equivalent. That would be an example of an issue we discuss a bit
later, namely when are two types equivalent; different approaches for various types exist
and other aspects than associativity-or-not factor in as well, in particular names of types.
The tuples here is a small illustration as preview for the fact that a type system is not
just about values and their types, it’s also about relations between types (are two types
equal? is one type a subtype of another?).

value type
(1, "text", true) int * string * bool
(1, ("text", true)) int * (string * bool)

Table 7.3: tuples of tuples and triple

Tuples and tuple types are common in functional languages, less so in other languages.
For example, Java (like C etc.) does not support it. Of course, one can simulate them. If
one feels the need to return a pair of values, one can return a object containing the pair
of values stored in two instance variables.

One could remark that in a way languages like Java support tuples in their special role
as arguments to methods or functions. It’s often no presented like that, i.e., it’s not
said “n-tuples are limited in their use as method arguments-, it’s rather often said that
methods or functions take “lists of arguments” as input (lists in an informal manner, not
lists as instance of the Java collection type(-constructor) List). Java syntax would use a
notation as illustrated in Listing 7.4 on a simple example.

public int add (int a , int b) { return a + b ; }

Listing 7.4: Simple method in Java

A method definition like that mixes up declaration aspects, specifying input and output
types, with definitorial aspects, provinding the code for the method body. Isolating the
type, one could write (in this example)

add :int × int→int (7.1)
where the type specifies methods (or functions) which take a 2-tuple or pair of integers
(or a list of integers of length 2) and returns another integer.

16 7 Types and type checking
7.2 Various types and their representation

Aside: Interface for methods in Java Above, in connnection with the method definition
in Listing 7.4, we mentioned that this code snipped mixes declarational and definitorial
aspects when coding a method, whereas equation (7.1) focuses on the type in isolation.
In Java (and other such languages), there is the notion of interface, not just conceptually,
but as language construct with the keyword interface (in Java). So let’s revisit the
add method in a larger context shown in Listing 7.5.
interface Iadd {

int add (int x , int y) ;
}

class Add implements Iadd {
public int add (int a , int b) { return a + b ; }

} ;

Listing 7.5: Simple method and corresponding interface in Java

The information concerning add now corresponds to the one from equation (7.1), with
one extra piece of information, namely the names of the variables.

As the example also shows, however, that the names x and y as given in the inferface play
no role. The method can be defined using other variables instead. The variables in the
interface are not completely random. The cannot be left out, and it’s not allowed to use
the same variable twice. But the type system does not check if the corresponding method
follows the choice of names. As far as type checking is concerned, the signature in the
interface is treated as if it were int add(int,int) (and information given back from
the type checker in case of a mismatch between the interface and the class also does not
mention which variable names are used, because it is of no concern to the type system).

Why does Java insist on mentioning the names in the interface if it obviously plays no
role? I don’t know what the designers factually had in mind (or maybe they just followed
earlier languages). One motivation is probably documentation. Interfaces show important
information about public methods, how to use them in a type-correct way. The input
and output types already give some information based on which one can guess what the
method is intended for. In the same way, that a well-chosen method name can give usefull
information indicating what a method is for, the same holds for well-chosen names for the
arguments.

The two “triples” and their types touches upon an issue discussed later, namely when are
two types equal (and related to that, whether or not the corresponding values (here the
“triples”) are equal.

Union types, sum types, and inductive data types

In this section we discuss the related concepts of union and sum types. They both realize
conceptually situation where a value belongs to one of different alternative types. Like a
value which is an integer or a boolean.

It should be stressed that it’s supposed to be a real alternative, it’s either an integer
or else a boolean. In that sense, the word “union” is a bit ill-chosen. If one sees types
as sets of their values, it’s not really the union of two sets (which would allow overlap).

7 Types and type checking
7.2 Various types and their representation 17

The concepts correspond more precisely to a disjoint unions. Later we discuss inductive
data types, which add a dimension independent from offering a form of disjoint union
types, and the extra dimension is recursively defined types. That dimension is ultimately
independent from the sum-type construction, but both can work very well together and
give expressive mechanisms to build types for unbounded structures.

7.2.8 Union types (C-style)

Listing 7.6 show notion fro union types in C. The member of the union type (as they are
called) are disciminated, in this example, by r vs. i. We could leave it at that, like: that’s
the way in C, “alternatives” are captured. However, we discuss a bit how (values of) union
types are represented and in which way the union types as in C have serious weaknesses.
We discuss that in the context of type safety, and the weakness is, that union types may
be useful, but definitely not type safe. We will later see, how to do better.

union {
r e a l r ;
int i

}

Listing 7.6: Union type in C

Unlike the previous discussion about types and tags in connection with record types or
structs, which is an irrelevant internal quirk in C, union types are more well-known. It’s
C’s way to represent the mentioned concept for types, that of “alternatives” or disjoint
union, in the example from Listing 7.6, the members of that type are either reals or
integers.

What makes the situation in C not ideal (in some respect) is that union types there are not
explained conceptually, but in an implementation-centric way. One can find definitions of
union types like this:

A union is a special data type available in C that allows to store different data
types in the same memory location.

The weakness of union types comes from that fact, that this is all they do: they allow the
programmer to use the memory in a particular way. How it’s done is clear, if one builds
a union type from integers and reals, a value is stored at a place whose size corresponds
to reals, since the representation of reals requires more space than that of integers.

That makes sure, when storing a value, no matter if a real or an int, there’s enough space
to store it. That’s welcome, of course, and it avoids overwriting inadvertendly neighboring
data, thereby corrupting the program.

So storing a value in a union type is fine, it won’t corrupt other data. The trouble may
start when reading back the stored value. The access in C is done for unions as for records
or structs with a dot notation (like u.i, when u is a (variable contanining a reference to)
value of the above union type.

The problem there is: there is no mechanism, when reading a value of union type to figure
out which it is, integer or real in the example. Neither the static type system has that

https://www.tutorialspoint.com/cprogramming/c_unions.htm
https://www.tutorialspoint.com/cprogramming/c_unions.htm

18 7 Types and type checking
7.2 Various types and their representation

information, nor is it possible for the programmer to insert a check at run-time, which it
is, integer or real. I.e., the notation u.i is does actually not mean “give me the integer
stored there”, it is more wishful thinking: “give me the value stored there, I think it’s an
integer, fetch the value as that”..

That being so, it should be clear that the treatment of union types is definitely not type
safe. It’s nothing much more than a directive to allocate enough memory to hold largest
member of the union. As can be seen also on the quoted “definition” of union types in C,
the type is treated clearly with an implementor’s (= low level) focus and and wrt. memory
allocation needs, not with a “proper usage focus” or assuring strong typing. Thus, it might
be seen as a bad example of modern use of types and better (type-safe) ways of realizing
the notion of “alternatives” are known since. Next, we discuss a (small) improvement,
namely variant records, also calld tagged unions or discriminated union, before we have a
short look at inductive data types.

Variant records from Pascal

The union type from before is basically nothing else than a piece of space big enough
to store each possible alternative, but contains no information about which it actually
is. To improve that slightly, one can simply store additionally information about which
alternative is meant. The corresponding data type is known as variant record type, or also
tagged union type or discriminated union type. Listing 7.7 shows an example in Pascal,
again describing the alternative between reals and integers, as before.
record case i s R e a l : boolean of

true : (r : real) ;
fa l se : (i : integer) ;

Listing 7.7: Variant record (Pascal)

The memory layout, i.e., the representation of value in memory, is different than for
C union types. The layout for that is non-overlapping.5 The disadvantage is that the
implementation uses space for all potential alternatives (plus information about the “tag’)
even if only exactly one alternative is the actual one. The representation reesembles
therefore closely record or struct, namely a record where only one field is meant “for real”,
the others are “empty” in the sense of containing bit patterns without any meaning, so
better not touch them. . .

Now, is that wasteful memory usage worth it? Well, the programmer is responsible to set
and check the “discriminator”. The type system does not give assistance there. So, the
improvement is the following instead of remembering what kind of variant is meant, an
integer or a real for instance, the data structure carries the information. That’s actually
something of quite some use. The code can use that information to make case distinctions,
to discriminate the between the case of integers vs. reals in the example. That’s of course
very useful. Without that, it’s hard to work meaningfully with elements of union type. If
given a value that is, say a string or a bool or an object of some sort without being told

5Again, that’s an implementor-centric view, not a user-centric one.

7 Types and type checking
7.2 Various types and their representation 19

what it is, what can one do with that piece of data without. In particular, one cannot
make a case distinction based on what actually it is. The possiblity of making case
distinctions on alternative data is essential for types intended to represent alternative
data. One can go so far to state that the ability to make case distinctions is the very
essence of something like union type (when done properly). The C union types not only
lack type safety guarantees, they also don’t offer that case distincting feature. The latter
one is what is added to variant record, and that’s very useful.

But how do variant records improve on the type safety front? Alas, type-safety-wise, they
are not really an improvement. The problem is, that the user can profit from the extra
information, the “tag”. However, to make proper use of that is the responsibility of the
programmer, type system does not check it or enforce it. The careless programmer can
thus confuse up things, read a bit-pattern that represents a value of some specific type
as if it were of a different one by confusing up the alternatives and that can mess up
everything. This has been discussed as “Pascal’s type hole” (at the time when Pascal was
hot) with examples that show how to trick Pascal to do pointer arithmetic, (mis-)using
variant records. Of course, one can do the same with C, though no one ever mentioned the
type hole of C’s union type. The reason is that no one claimed C being type safe in the
first place, union types or otherwise. Pascal on the other had came with a very restrictive
(and unflexible) type system. The loss of flexibility might be justified by increased safety.
At any rate, especially disciples of C would not tire to point out the gaping type hole
in Pascal: “their type system is like a straightjacket, it’s almost impossible to do real
programming, and what for? Safety? My ass, look at this example, with their union
types, I can trick their oh-so-strong type system into doing pointer arithmetic just like in
C”.

A word on terminology The types in the previous discussion about type safety contrasted
the plain union types as in C and their improvement in the form of variant records types.
The latter ones got their name probably because they are represented in memory very
similar than records (as mentioned).

Still, I don’t consider the name too well-chosen. Considering types as a central user-level
abstraction on data, the fact how (commonly) a particular type is layed out in memory
is not relevant and should actually not be relevant: the type is supposed to provide an
abstraction from the layout.

And on the user level, records and variant records (or members of tagged union type)
are very different. Records are like n-tuples or members of product types (more precisely
labelled product types. And actually, as concept, union types are the opposite of product
types. That’s why they are also called sum types (with “sum” and “product” denoting
duals). There are good, mathematical reasons that make sum types (for alternatives) and
product types (for tuples) the exact opposites or duals of each other, but let’s leave those
out from the discussion.

At any rate, calling two very different concepts (records and variant records) by quite simi-
lar names is unfortunate in my eyes. Likewise it’s probably not ideal, that the “desctructor
syntax” in both cases is often similar. Both records and elements of a discriminated union
are accessed via the same dot-notation.

20 7 Types and type checking
7.2 Various types and their representation

7.2.9 Recursive and inductive types

Inductive types in ML and similar

Next we discuss what is known as inductive types or inductive data types. One way of
seeing them is basically: (disjoint) union types done right plus the possibility of “recursion”.
Recursion is a concept orthogonal from that of describing alternative, so we could do a
discussion focusing solely on sum types. But their combination is so common and useful,
that we use examples makeing use of recursion as well.

Inductive data types are very common in (statically-typed) functional languages, but
appear in other languages as well. We will use ML or ocaml in the code examples, but
many functional languages use quite similar syntax (many are quite influenced by ML
anyway).

Listing 7.8 shows a corresponding notation for the integer-or-real example. The vertical
bar | denotes the alternative. The syntactic ingredients isReal and isInteger are
called the constructors for elements of that type. In the code snippet of Listing 7.8,
the type is anonymous, i.e., no name is given to type. That limits the usefulness of the
example, but of course one can easily give it a name, like writing type intorreal =
IsReal of real | IsInteger of int.

I sRea l of r e a l | I s I n t e g e r of i n t

Listing 7.8: Alternative (inductive data type without recursion)

In ML-like languages, this form of sum-types is type safe. Elements from the types are
constructed by, well, using the constructors of the sum type, that’s why constructors are
called like that. IsReal 4.5 or IsInteger 5.

As stressed throughout, one needs not only a way of constructing elements of a compound
data type, one needs also ways of destructing them, i.e. pull composed data apart. Like
accessing the components of a record, slots in an array etc. Elements of a sum-type,
which is a compound or composed type, are not really “composed”. It makes no sense
to talk about the real part of the value isInteger 5, it’s of course only an integer.
Deconstructing values is not so much understood as access parts (which is not a useful
pucture at least here), but as being the opposite of constructing or building values. The
opposite of creating a value is using a value. As mentioned, the very essence of how
to make use of a value intorreal is to do a case distinction, here covering the two
cases.

That is done by so-called pattern matching (in combination with a case construct (in the
code here with the keyword match):
type i n t o r f l o a t = I s F l o a t of f l o a t | I s I n t e g e r of i n t ; ;

let d i s c r i m i n a t e (n : i n t o r f l o a t) : un i t =
match n with

I s F l o a t f −> p r i n t _ f l o a t f
| I s I n t e g e r i −> pr int_int i

; ;

Listing 7.9: Alternative and pattern matching

7 Types and type checking
7.2 Various types and their representation 21

Pattern matching in this style us type-wise also advantagous. Often the language provides
checks whether the match is exhausitive, i.e., no alternative is forgotten, and whether no
alternative is covered more than once. In the simplest case, the case construct could
have one constructore mentioned more than one, but matches can allow more complex
“matchings” where the user more easily looses the overview. In a duplicate match situa-
tion, typically the first match is the relevant one, the second one is “dead code”, which is
presumably unintended. The type system may still accept the code, but will at least issue
warnings about unmatched cases or unused cases. That is very helpful.

Listing 7.10 shows how one can combine the idea of sum-types with recursive definition.
It encodes directly the idea that a tree is either a leaf or else a node that carries an integer
and two trees, the subtrees. The example could be improve (the language ML or ocaml
and many others) would allow that). A better binary tree would not fix that the values
stored are fixed integer, but that type would be treated as parameter. But discussing also
that would take us too far from the issue at hand.

type i n t_b int r ee =
Node of i n t ∗ i n t_b int r ee ∗ i n t_b int r ee

| Ni l

Listing 7.10: Inductive data type (binary tree)

We have in the compiler lecture seen many examples of concepts (and will see more) that
can be represented by inductive data types. Listing 7.11 shows how one can represent
expressions of some form.

type exp =
Plus of exp ∗ exp

| Minus of exp ∗ exp
| Number of i n t
| Var of s t r i n g

Listing 7.11: Expressions as inductive data type

Recursive data types in C

Of course, one can define tree data structures also on languages like C, and have them
reflected to some extent in the type system. This paragraph is no so much concerned
with sum-types, but more with the “recusion” aspect of inductive data types. Listing 7.12
shows an attempt to recusively define trees analogous to way using inductive data types
from before.
struct intBST {

int va l ;
struct intBST l e f t , r i g h t ;

}

Listing 7.12: Recursive record type for binary trees (does not work in C)

Conceptually there is nothing wrong defining a recursive record type like that, only that
C does not allow it. Shortly we see how it’s done properly. The code from Listing 7.12,
of course, also covers only one of the two alternative cases of (the type for) binary trees,

22 7 Types and type checking
7.2 Various types and their representation

the one for proper nodes, which is represented as a record or struct with three members.
That is in contrast to the situation in Listing 7.10, which lists both alternatives (leaf or
else inner node).

Leaves are “represented” by null-pointers. Record types are, as mentioned, reference types,
and references may be “undefined”, i.e., null. So the case distrinction between being a
proper node or a leaf, somehing that is done in ML or similar by pattern matching, has
to be done here by checking for null-ness.

Back to the question how to achieve something like recursive (record) types, since the
notation from Listing 7.12 is not allowed. One can do it by using pointer or reference,
resp. explicit reference types as shown in Listing 7.13. Why this is allowed and the other
is not has more to do with design decisions of how (early) C-compilers worked and is not
so interesting for us.

s t r u c t intBST {
int va l ;
s t r u c t intBST ∗ l e f t , ∗ r i g h t ;

} ;

Listing 7.13: Recursive types for binary trees in C (indirect)

Let’s have also a look at Java (Listing 7.14). Java does not force the user to mention
references in the definition (Java does feature an explicit notation for reference types
anyway).

class BSTnode {
int va l ;
BSTnode l e f t , r i g h t ;

Listing 7.14: Binary trees in Java

Note that also in ML, ocaml etc., the implementation of trees and other such structures
uses “pointers”, but they are hidden from the user. Note further, there are no null-pointers
in ML, and the NIL we used for leaves is not a null-pointer but a cosntructor of a sum data
type. Probably a better name in that definition would have been Leaf, but we wanted to
draw a parallel to the situation in C and Java. Which is not really a parallel, since NIL
as said, is not a way of introducing null-pointer in ML.

Pattern matching in Java You will know that there is no such thing as pattern matching
in Java. Still, we have seen (on other parts of the lecture) how to implement inductive
data structure like for expressions, similar to the ones from Listing 7.11. We discussed
one “recipe” how to implement ASTs (using abstract superclasses and multiple concrete
sub-classes).

The list of subclasses correspond to the list of alternatives of a sum-type. In the expression
example of Listing 7.11, there would be one abstract superclass (say Exp), and 4 concrete
subclassses, say Plus, Minus, Number, and Var). Only there’s no pattern matching over
those.

7 Types and type checking
7.2 Various types and their representation 23

The job achieved by pattern matching is done differently in Java. If you followed the
recipe in your oblig, you will have done it, for instance for the type checker and for the
code generator and the pretty printer.

Remember the purpose of pattern matching. It’s to discriminate between the different
cases of expressions, name whether the expression is constructure via Plus, Minus,
Number, and Var. A printing procedure would handle these 4 cases differently. In Java,
one has to implement the print procedure differently for the 4 classes, same for type check-
ing etc. But the effect is comparable. Depending on which expession object one invokes
the method, a different reaction is done.

7.2.10 Pointer and reference types

Many data structures make use of pointer one way or the others. In many languages,
many more complex data types are reference types, as mentioned.

Languages, however, may, more or less hide the use of pointers from plain sight to some
degree or more or less completely. So, the use should be aware that, for instance, the array
type is a reference type, because not knowing that and changing a shared array may lead
to trouble. But the fact that one is dealing with references is neither visible in the type
nor when accessing the data structure itself.

We are here talking about pointer and references. On some level, it’s the same concept.
A distinction done by many is that, when having pointer, one can “calculate” with them,
doing pointer arithmetic, like obtaiting a pointer or address and then accessing “the next
slot afterwards”. Reference are tamed pointers and mostly implict. One cannot calculate
with them, cannot determine the address of a thing, and dereferencing is done implicitly.
Java, in that terminology, uses references, but C uses pointers.

Pointer types (as in C)

C is explicit about its use of pointer including that there is a special type for it, resp. a
type cosntructor. For instance, the type of a pointer to a integer valie is int*, wher “ *
” in postfix notation can be seen as type cosntructor.

int ∗ p ;

Listing 7.15: Variable of pointer type

Not only C, which allows pointer arithmetic, knows such types. The corresponding type is
written, for instance ^integer in Pascal and int ref in ML. The value of such types
is an address of (or reference or pointer to) a value of the underlying type. Operations on
such references are dereferencing, i.e., “following” the reference to access the underlying
value. There is in C also an operation that determining the address of an data item,
written &x (“address of x”). Remember: C allows pointer arithmetic. Listing 7.16 show
some operatins involving pointer (in Pascal).

24 7 Types and type checking
7.2 Various types and their representation

var a : ^ integer (∗ p o i n t e r to an i n t e g e r ∗)
var b : integer
. . .
a := &i (∗ i an i n t var ∗)

(∗ a := new i n t e g e r ok too ∗)
b:= ^a + b

Listing 7.16: Operations involving pointer in Pascal

Implicit dereferencing

As mentioned, many languages more or less hide the existence of pointers. Still, they may
distinguish between reference vs. value types, it’s only not visible in the types, and with
such a design choice, the language will often do automatic, implicit dereferencing. Class
types in Java is an example of reference types.

C r ;
C r = new C() ;
r . f i e l d

Listing 7.17: Objects

In the code snippet of Listing 7.17, in a sloppy manner of speaking, one could say “ r is an
object” (which is an instance of class C /which is of type C). Slightly more precise is to say
“variable r contains an object. . . ”, and even more precise “variable r contains a reference
to an object”. In Java and other languages, r.field involves an implicit dereferencing
and corresponds to something like “ (*r).field when done explicit.

Programming with pointers

Pointers or references are a “popular” source of errors. To avoid null-pointer exception,
and to program defensively, one typically has to insert tests for non-null-ness. Explicit
pointers a can lead to problems in block-structured language (when handled non-expertly).
We will mention that (again) in the chapter about run-time environments. In that chapter,
we also will discuss parameter passing, including call-by-reference, which is a mechanism
to hand over parameters from caller to callee that involves references.

Another aspect to watch out for is aliasing. That’s when two variables contain a reference
to a shared piece of data. This is troublesome if also mutation enters the picture. In an
alias situation, changing the piece of data via one variable changes “also” the value for
the other variables. That may be intended. We will see that later for the mentioned call-
by-reference mechanism. If the alias-situation is unknown, the change may be unintended
and erroenous.

Null pointers are generally attributed (actually including self-attributed) to Tony Hoare,
famous for many landmark contributions. He himself refers to the introduction of null
pointers or null references (1965 for ALGOL-W) as his billion dollar mistake. See also
here, but the video seems no longer to work, but there is some notes or rudimentary
transscript. One can also consult Hoare’s Turing Award lecture from 1980, where he talks

https://medium.com/@hinchman_amanda/null-pointer-references-the-billion-dollar-mistake-1e616534d485
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

7 Types and type checking
7.2 Various types and their representation 25

about similar topics. Also the text of the lecture is available on the net. In the lecture, he
interestingly mentions as the first and foremost design principle for the design of ALGOL
resp. the corresponding compiler: security. So it’s not that the intention was to say “to
hell with security, speed comes first”. From the text, though, it seems that he speaks
about “security” of the compiler itself, in that it should never crash (= “. . . no core
dumps should ever be nessessary”).

Function variables

The following shows problems in situations when one can reference more “powerful” things
than “dead data”. So far, the data was all passive but, of course, also function or procedures
need to be stored somewhere, ultimately it’s also just a block of bits. Often, in traditional
layouts, one thinks of functions code residing in one portion of the memory, and data in a
another (though in a shared address space, in the traditional von Neumann architecture.
In the so-called Harvard-architecture, the separation would be stricter). Either way, there
is no principal reason why variables could not refer to functions, as well. That goes in
the direction of higher-order functions where the discinction between data and code is
completely blurred.

The example here is not based on higher-order programming, but uses just Pascal. What
one can do in Pascal (as opposed to C) is nested function declarations and “returning”
variables “containing” functions (referring to them). The problem, illustrated here (“es-
caping”), is something that one also has to deal with for higher-order function. In a way,
the lesson from this example is: Pascal had this facility, but somehow did not deal with
it properly. Dealing properly with it would have required closures, but Pascal did not do
that.

program Funcvar ;
var pv : Procedure (x : integer) ; (∗ procedur var ∗)

Procedure Q() ;
var

a : integer ;
Procedure P(i : integer) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` return ' ' P (as s i d e e f f e c t) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
begin (∗ here : f r e e Pascal ∗)

Q() ;
pv (1) ;

end .

Listing 7.18: Function variable (in Pascal)

The tricky part in the example from Listing 7.18 is the nested, lexical scope and the fact
that the nested function definition escapes the surrounding function resp. scope. The
escpape is done with the help to the assignment to the function variable. The function
variable, containing a reference to the procedure P, is used to “return” the corresponding
function.

26 7 Types and type checking
7.2 Various types and their representation

That is problematic in that the procedure P comes with its own scope and local variables.
By returing the procedure that scope outlives the surrounding scope. Pascal (like C and
Java and other languages) uses a stack to manage the memory needs of procedures at
run-time (as part of the so-called run-time environment). So, this is example cannot be
handled with a stack-based run-time environment? So what does Pascal do then? Does
the semantic analysis checks it (via an escape analysis) and issues a warning? Will the
memory for the escaping scope be stored elsewhere, not on the stack, maybe the heap?
Nothing like that, the program unceremoneously crashes. At least in the Pascal version I
used (free Pascal), there may be other versions with compilers that offer earlier warnings.
But crashing is at least better than silently accessing parts of the memory that should not
be accessed.

Functional language, which typically support higher-order functions, allow function ab-
stractions a return value. They faces the same challenge, and the solution is: since the
stack discipline does not work, the memory needs to realize the local scope are stored on
the heap (in what is called a closure. This will be picked up when talking about run-time
environments.

In C, one can return functions in the same way as in the Pascal example since C supprts
pointers to functions. C does not support closures, but it does not suffer from the “escape
problem” as discussed for Pascal. The reason is, that C does not allow nested function
definitions. It’s the combination (combined with the lack of closures) that crashes the
Pascal program.

What about (classic) Lisp. It supports higher-order functions, i.e. it allows to return
functions (taking a function as argument is less problematic), it allows nested definitions.
And, originally, it did not work with closures. But it still did not suffer from escaping
scopes in the way descibed. Simply because classic Lisp uses dynamic scopes not static
ones.

For the sake of the lecture: Let’s not distinguish conceptually between functions and
procedures. But in Pascal, a procedure does not return a value, functions do.

Function signatures

Functions of course carry types. The corresponding type cosntructor is→ (or -> in ascii).
So int→int is the type representing functions from int to int, i.e., taking an integer as
argument and return one as well. Not all languagues use explicitly the → constructor,
and different notations exist. One is shown in Listing 7.19.

Sometimes the term signature is used to when taking about type information in connection
with a function. The signature may include the name of the function, as in the example
from Listing 7.19 and 7.20

var f : procedure (integer) : integer ;

Listing 7.19: Function signature (Modula 2)

7 Types and type checking
7.2 Various types and their representation 27

int (∗ f) (int)

Listing 7.20: Function signature (C)

As mentioned before function parameters less problematic than returning them (as with
function variable), and the reason is that the stack-discipline in that case is still doable.

7.2.11 Classes and types

Let’s also talk about object-oriented languages and what role types play there. We don’t
dig deep here, we stick to vanilla, class-based, single-inheritance languages, say Java.
Basically saying a few words about wtypes for objects in such a language.

Objects are instances of classes and are type by “classes”.

Classes and subclasses

Classes are connected in a hierarchy via inheritance. In a single-inheritance setting, the
inheritance hierarchy is a tree. In Java, the root class of the tree is called Object. One
speaks also of super-classes and sub-classes, with Object being the super-class of every
other class.

Classes resemble record types to some extent, and we have also discussed (at the part
about inductive types) that subclasses can be used in ways the resemble variant types
(sum types, variant records).

There are many bells and whistles that factor in when looking at typing, even in a simple
language like Java (at least Java started out as a quite simple language). Complicating
details are questions concerning visiblity, overloading etc. We don’t go into those details
(of Java or other languages), we are interested in a few general aspects in the context of
type systems.

In particular, we focus on the central aspect of class inheritance and subclassing. Note
that I have not called it subtyping (yet), but subclassing. In general, for the sake clarity,
it’s better to distinguish different roles of class names. Listing 7.21 defines three classes A,
B, and C, the latter two, unrelated between themselves, are direct subclasses of A. So far
so well-known. A, B and C are also (names of) types. Also in their roles as type names, the
three identifiers are related, and the relationship is called subtyping. Isn’t that then not
the same? Well, Java is carefully designed (to assure that the type system is type-safe) and
designed in such a way that inheritance between classes implies that the corresponding
types (or the class names in their role as types, if you prefer) are in subtype relation. As
a consequence of this fact (in Java), one finds categorical statements like inheritance is
subtyping here and there, and I have talked to people that who instisted stronlgy that
types and classes are the same thing and likewise inheritance and subtyping is the same
thing, denying that obvious thing is just delusional. . .

Of course, when programing with the classes of Listing 7.21, for instance doing B x =
new B(), it’s definitely fine to say x is of type B and the object created and stored in x is

28 7 Types and type checking
7.2 Various types and their representation

of type B as well. Still, using words cafully when the situation requires it can’t hurt, and
when writing a type checker or compilar is a situation, that requires careful attention to
details. One see that the the roles of A, B, and C as classes and as types cannot be 100%
the same by considering that x is an instance of class B and is of type B and of type A,
with A being the supertype of B. Typically, one does not consider x to be an instance of
A, though inheritance between the two classes leads to the situation that things defined
in A are relevant for x (either via late-bound methods or via instance variables that are
taken from the super-class).

The fact that x is both of type B and of type A (and also of type Object by default), i.e.,
that there can be code pieces that have more than one type, is known as polymorphism.
The form here is called, subtype polymorphism (or subtyping for short). Java (and other
languages) support often different forms of polymorphism, at least for some aspects of the
languge.

Actually, class names like B play 3 different roles not just 2, in languages like Java, we will
pick up on that a bit later in Section 7.3 when discussing equality between types.

class A {
int i ;
void f () { . . . }

}

class B extends A {
int i
void f () { . . . }

}

class C extends A {
int i
void f () { . . . }

}

Listing 7.21: Class inheritance resp. subclassing

The three classes from above illustrate subclassing (and in many object-oriented languages,
connected to that, subtyping). Note that the classes are also names of types. What is also
is illustrated is overriding as far as f is concerned. Inheritance is actually not illustrated,
insofar that f as only method involved is overridden, not inherited both in B and C.
The methods f and the instance variables i are treated differently as far as binding is
concerned. That will be discussed next. In the slides we use rA to refer to a variable of
static type/class A.

Access to object members: late binding

Instance variables and methods of a object are accessed (in many languages) via the dot-
notion, similar to field access in records. An central aspect when calling a method is late
binding also called dynamic binding, virtual access, dynamic dispatch, all mean roughly
the same. We discuss a few issues around that also later, in the context of run-time
environments

7 Types and type checking
7.2 Various types and their representation 29

When invoking rA.f(), what is meant is the “deepest” f in the run-time class of the
object, rA points to. It’s not determined by the static type of rA. Only for static
methods (in Java terminology), the static type determines which code is executed

This can be compared (and contrasted) to the way in nested, lexical scopes: when accessing
a variable, it’s the “most-closely nested” declaration is is meant. A difference is, of course,
that in lexical scopes, it’s about

public class Shadow {
public stat ic void main (S t r i n g [] a rgs){

C2 c2 = new C2 () ;
c2 . n () ;

}
}

class C1 {
S t r i n g s = "C1" ;
void m () {System . out . p r i n t (this . s) ; }

}

class C2 extends C1 {
S t r i n g s = "C2" ;
void n () { this .m() ; }

}

Listing 7.22: Fields vs. methods (“shadowing”)

The code illustrates the difference in the treatment of fields and methods, as far as binding
is concerned. While the mechanism for methods (which are late or dynamically bound)
is called overriding, the similar (but of course not same) situation for fields (which are
statically bound) is called shadowing. One may also see it like that: fields are treated as
if they were static methods.

7.2.12 Polymorphism

Let’s round off this section by shortly introducing the concept of polymorphism. It’s a
general property of type systems. Some type systems are monomorphic and some are
polymorphic. As a matter of fact, truly monomorphic type systems are really rare in
programming languages (I could not name any). Basically all realistic type system offer
some form of polymorphism or more than one form.

Polymorphism is the opposite of monomorphism. A type system is monomorphic, if all
syntactic entities have at most one type. I.e., it’s either ill-typed, or, when well-typed it
has exactly one type. A type system is polymorphic if that’s not the case.

Of course a type system can contain both aspects. At some corners or aspects of the lan-
guage, constructs are handled monomorphically, whereas in others, there is more flexibility,
due to polymorphism.

According to a classical categorization (by Cardelli and Wegner) one can broadly distin-
guish between ad-hoc polymorphism and non-ad-hoc polymorphism (in the paper called

30 7 Types and type checking
7.2 Various types and their representation

polymorphism

ad-hoc universal

overloading coercion parametric inclusion

Figure 7.1: Classification of polymorphism

universal polymorphism). See Figure 7.1. What is called inclusion polymorphism is also
called subtype polymorphism or subtyping for short.

Ad hoc polymorphism

In contrast to universal polymorphism, the ad-hoc form of polymorphism represents resp.
treats different situations differently. Overloading is a well-known form, we have mentioned
it elsewhere and it is also called “abuse-of-notation”. Languages can use overloading for
different (classes of) language constructs. Very typical is overloading of (built-in) operators
(operator overloading). For instance, the binary infix operator + is such a nice and familiar
operator (and there are not so many symbols in ascii) that it would be a shame to use it
for one single use. Thus it’s overloaded to operate on pairs of integers, pairs of floats, and
pairs of strings. The code that implements the different operations is unrelated (though
of course one can make the argument the addition on representations of integers and on
operations on floats have some conceptual connection. But there is no “shared” code).

Coercion (or conversion) is slightly different. It refers to situation, where implicitly an
internal representation is converted to a different one before used. The + operation is a
good illustration. Many languages allow using + on mixed arguments, like an addition of
an integer and a float. In this is allowed, the integer will be converted to a float, and the
operation for pair of floats is applied (and a float is returned).

So, on the surface, overloading and coarcion look rather similar, like that + works on all
combinations of integers and floats and in that sense overloaded in multiple ways. There
are, however, only two implentations of + (leaving strings out of the picture now), the one
on integers and the one on floats. Depending on the situation, one of the two is “chosen”
in that the compiler uses the corresponding instructions. That’s the overloading part.
Overloading is resolved with the help of the type system in that, before code generation, the
overloaded + at user level is disambiguated by mentioning “syntactically one of two routines
add_float or add_in, for instance in an processed AST. There is no (additional) code
responsible for adapting one or more of the arguments (and/or the result as well). That’s
the coercion-part of the ad-hoc polymorphism.

Most languages use overloading at least for some built-in routines (and coercsions). They
may alo allow the programmer to make use of overloading. Typical, and as known from
Java, is method overloading and, a special form of that, constructor overloading. Other
languages offer advanced user-defined capacities for overloading in the form of type classes
(not part of the pensum).

7 Types and type checking
7.3 Equality of types 31

Overloading is a convenient concept but should be supported in moderation, i.e., there
can be too much of a good thing. One should keep in mind that it’s not just how far
one can push the overloading of concepts and the support of the type system for it.
Typically, overloading is not the hardest problem in a typical static type system: the
different interpretations are disambiguated early on (like + being replaced by add_float
and add_int), and from the the semantic analysis and code generation starts for real.
Being “too overloaded”, where the type system makes it’s choices on fine-tuned situational
criteria may obscure to the user what actually is going on. Especially, if overloading is
implemented in combination with subtype of polymorphism or taking into account more
or less complex rules when types are equal. In that case, the type system has too much
“ad-hoc-ness”, and that’s not positive.

Universal polymorphism

Let’s cover the last two forms of polymorphism, without going into details. One is generic
polymorphism. It’s characteristic for many functional languages. It’s about functions (or
procedures or methods) that identical for all situations. For instance, swapping to integers
in a pair works identical to swapping two booleans (at least identical as far as the swapping
is concerned). So instead of having functions swap_int: (int * int) -> (int *
int) and swap_bool: (bool * bool) -> (bool * bool) and infinitely many
others for all things that could potentially be swapped, a generically polymorphic function
would be of type swap: (’a * ’a) -> (’a * ’a) with identifiers like ’a represent-
ing type variable (in some languages).

The other form of universal polymorphism is subtype polymorphism or subtyping. It’s
supported by many object-oriented languages (as in Java). There, the key is that elements
of a subtype can be used without problems at places where elements of a supertype are
expected reso. that elements of a subtype are also at the same time an element of each
supertype. That requirement is known as subsumption.

Subtyping is a relationship between type, like T1 ≤ T2, with often at least some minimal
requirements like being reflexive and transitive. Subtyping can become complex, but we
leave it at that mostly. We will have a look at another relationship on types in Section
7.3, namely equality

7.3 Equality of types

In this section discuss issues in connection with the question: when are two types equal.
Different languages give different answers to that questions (sometimes also differently for
various types). We also discuss naming for types in this section, since the names of types
is an important criterion one can use for equality types.

It should go without saying that given a program fragment of a type T1 which is equal or
equivalent to type T2, then the program fragment is also of T2. One could in that case
prone to say that this is an instance of polymorphism. Sure, one could say so, after all,
the program fragment has more than one type, namely T1 and T2. Normally, though, one

32 7 Types and type checking
7.3 Equality of types

would not count that as polymorphism. After all, T1 and T2 are the “same” type, in the
sense of type equality or type equivalence (if one prefers that word).

So, when are 2 types equal? There are surprisingy many different answer possible. At
any rate, it’s the type system’s resp. the type checker’s task to implement the correspond-
ing answer, i.e. it includes routines that check equivalence of types. Those checks may be
very simple, or also not.

One (no-)answer to the equivalence question is that two types are equal if they are repre-
sented equally. In such a view, for instance, type int and short are equal, since the are
both (two different ways to refer to) 2 bytes on some platform. That approach, however, is
at odds with the modern role of types as abstraction. So let’s look at other approaches.

Listing 7.23 works with pairs of integers, a compound type. Not only that, it gives it a
specific name, namely pairs_of_ints, and declares a variable to be of that type.

type pai r_of_ints = i n t ∗ i n t ; ;
let x : pa i r_of_ints = (1 , 4) ; ;

Listing 7.23: Pairs of integers

Now, is “the” type of (values of) x pair_of_ints, or the product type int * int , or
both, as they are considered equal. In the latter case pair_of_int is an abbreviation of
the product type. One speaks of pairs_of_int to be a type synonym for int * int.
For the particular language (ocaml), the piece of code is correct: the pair (1,4) is of type
int * int and of type pair_of_ints.

The example involves two aspects, the fact that the type is compound not basic, and
the fact that it’s given a name. The fundamental decision a type system has to make
concerning type equivalence is, which one counts (or counts more): the name or the
structure of the types. This is the difference between

structural vs. nominal equivalence of types.

Let’s have a look at Listing 7.24, which introduces a few record types and some variables
for those.

var a , b : r ecord
int i ;
double d

end

var c : r ecord
int i ;
double d

end

typedef idRecord : r ecord
int i ;
double d

end

typedef idRecord : r ecord
int i ;
double d

end

var d : idRecord ;
var e : idRecord ; ;

7 Types and type checking
7.3 Equality of types 33

Listing 7.24: A few structs

Altogether 5 variables, a to e, all of them contraining records of the same shape or
structure, i.e., with members of the same name and of the same type (in this case, identical
types, not just equivalent types).

Now, the question is , which ones of the various (=? different) record types are treated
equivalent? Or, to say same differently, which one of the following assignment are accepted
by a type checker, on the ground that the types of the involved variables are equivalent.
Of course, the values of the “different” record types and all represented the same way. For
that (implementation-centric) view, all assignments should be unproblematic.

a := c ;
a := d ;

a := b ;
d := e ;

Every language will treat a and b to be of the same type. They are declared at the
same time with the same (anonymous) record type. Not even allowing a:=b would be
meaningless. Whether the types for a and c are treated equal is different issue. The
are declared separately, with two record types (again anonymous). Both record types are
structurally equal, but a type system based on nominal (name-based) principle could treat
them as different.

The typedef definition introduces the name idRecord for the record type, and the last
two variables are introduced in two separate declarations. Now, in this case, the only
plausible behavior of a type system is to treat d and e as of the same type, namely of the
type called idRecord. Otherwise, what would be the use of having the same name. A
matter of choice might be whether a and d are of the same type, and that’s may (or not)
be the treated the same as whether a and d have the same type.

The 2 most plausible or consisten interpretations would be the following. In a nominal
treatment, a and b would carry the same type as well as d and e, but all others would
be different. I a structural type system, all types would be equivalent and all assignments
allowed.

Classes as types (in Java)

Let’s have a look at Java, and they way classes are treated, at least in their role as (names
for) types. Let’s ignore the issue of anonymous classed (classes without a name). Therefore
each class has a name which, at the same time, also the name of a type. Namely the name
of all instances of that class and of instances of all sub-classes.

It’s a decision of the designers of Java and similar languages, that class names have this
dual role, referring to the class and at at the same to the corresponding type. At the same
time, there is a third role, namely referring to the constructor method(s) of the class.
For instance, in the statement C x = new C(), the class name C on the left-hand side
used as type and on the right-hand side used as constructore (and somewhere else in the

34 7 Types and type checking
7.3 Equality of types

program there will be the class definition, which fixed the code of the constructor plus the
code for other methods and fiels. To use the same name for this different roles is not a
law of nature, it’s a design decision (and other OO languages may make different design
choices).

Java also makes use if interfaces, which (also) play the role of types. Indeed, some peoply
recommend as good programming practice, to only use interfaces as types (and not the
class names). That’s sometimes called code-against-interfaces or similar.

Whether one likes to follow the code-against-interface style of programming, Java’s type
system is nominal as far as classes and interfaces are concerned. That’s illustrated in
Listing 7.25.
interface I1 { int m (int x) ; }
interface I2 { int m (int x) ; }
class C1 implements I1 {

public int m(int y) {return y++; }
}
class C2 implements I2 {

public int m(int y) {return y++; }
}

public class Noduck1 {
public stat ic void main (S t r i n g [] arg) {

I1 x1 = new C1 () ; // I2 not p o s s i b l e
I2 x2 = new C2 () ;
x1 = x2 ; // ???

}
}

Listing 7.25: No duck typing in Java, an example with interfaces

The example works analogous when using classes in their roles as types instead of interface.
Why is the example refers to “duck typing”? Well, Java used nominal principles, not
structural. In some corners, people find the word “duck-typing” to be more clear (or
funnier) than structural typing (“if it walks like a duck, swims like a duck, quacks like
a duck, then it must be a duck” no matter how you call the bird). The duck typing
terminilogy seems popular in scripting languages (and some, not all, connect it also to
dynamic type system only). Since there is no complete agreement what duck typing
actually is (except that it sound interesting), the traditional distinction between nominal
and structural typing seem preferable.

We discussed the issue in the context of when two types are equal. It applies also to
subtyping, which is a more complex relation than equivalence. But we leave it out form
the discussion here.

Types in the AST

Shortly, we sketch in code how recursive routines could look like that check the equality of
two types, one for structural equivalence and one for nominal equivalence. The routines
work recursively over pairs of ASTs for the two types ot be compared. Before we do that
we have a few words on ASTs for types.

7 Types and type checking
7.3 Equality of types 35

But actually, there as no many breathtaking insights to be gained here. We have seen a few
types and some typical syntax for them. ASTs, as we know, is a tree-like representation
for syntax, and compared to concrete syntax tree, often pruned and cleaned up a bit.
Furthermore, there is no such thing as the AST for a given concrete syntax, there is quite
some amount of freedom how to design a AST and how to realize in the the language
in which the compiler is written. That’s generally the case, and that’s still the case for
syntax that represents the types. Of course, basic, non-compound types do not correspond
to trees, they typically just leaves in an AST, and covered by keywords on the language
(like int and bool). Only non.trivial compound types, which may be composed to
complex types like List of (Int * (Array of struct {....} from 1..10))
correspond to trees.

So the following (sketches of) AST are just some impressionistic illustration of how such
trees could look like. Listing 7.26 show some record type and Listing 7.27 some syntax for
procedure headers. Figures 7.2 and 7.3 illustrate possible trees.

r ecord
x : p o i n t e r to real ;
y : array [1 0] of int

end

Listing 7.26: Sample record type containing an array type

Figure 7.2: Sample AST for a record type containing an array type

proc (bool ,
union a : real ; b : char end ,
int) : void

end

Listing 7.27: Sample procedure header

36 7 Types and type checking
7.3 Equality of types

Figure 7.3: Sample AST for a procedure header

var-decls → var-decls ; var-decl | var-decl
var-decl → id : type-exp
type-exp → simple-type | structured-type

simple-type → int | bool | real | char | void
structured-type → array [num] : type-exp

| record var-decls end
| union var-decls end
| pointerto type-exp
| proc (type-exps) type-exp

type-exps → type-exps , type-exp | type-exp

Table 7.4: Type syntax intended for structural equality

Structural equality

The pictorial sketches of AST maybe too sketchy when taking about a equality checking
as part of a type checker. Table 7.4 shows a grammar for (abstract) syntax for types which
is intended for checking structural equality. Afterwards, we will deal with syntax used for
nominal equality (Table 7.5). The two versions of the syntax are pretty similar. In the
first version, structured types are “anonymous”, in the second version not. Of course, one
can have a type system using structural equality which also allows to give names to types
(or not). The tuple types in Listing 7.23 showed an example: the product type as such is
anonymous, but there is a construct that allows to give it a name too.

In the presentation here, the two syntaxes are either anonymous, or force the programmer
that uses records or similar to give it a name.
function typeEqual (t1 , t2 : TypeExp) : Boolean ;
var temp : Boolean ;

p1 , p2 : TypeExp ;
begin

i f t1 and t2 are of s imple type
then return t1 = t2
else i f t1 . kind = array and t2 . kind = array
then return t1 . s i z e = t2 . s i z e and typeEqual (t1 . ch i ld , t2 . c h i l d)
else i f t1 . kind = record and t2 . kind = record

or t1 . kind = union and t2 . kind = union
then begin

p1 := t1 . c h i l d ;
p2 := t2 . c h i l d ;
temp := true ;

7 Types and type checking
7.3 Equality of types 37

while temp and p1 6= ni l and p2 6= ni l
do

i f p1 . name 6= p2 . name
then temp := fa l se
else
begin

p1 := p1 . s i b l i n g ;
p2 := p2 . s i b l i n g ;

end ;
return temp and p1 = ni l and p2 = ni l ;

else i f t1 . kind = p o i n t e r and t2 . kind = p o i n t e r
then return typeEqual (t1 . ch i ld , t2 . c h i l d)
else i f t1 . kind = proc and t2 . kind = proc
then begin

p1 := t1 . c h i l d ;
p2 := t2 . c h i l d ;
temp := true ;
while temp and p1 6= ni l and p2 6= ni l
do

i f not typeEqual (p1 . ch i ld , p2 . c h i l d)
then temp := fa l se
else

begin
p1 := p1 . s i b l i n g ;
p2 := p2 . s i b l i n g ;

end ;
return temp and p1 = ni l and p2 = ni l

and typeEqual (t1 . ch i ld , t2 . c h i l d=
end

else i f t1 and t2 are type names (∗ i f a l s o names are checked ∗)
then return typeEqual (getTypeExp (t1) , getTypeExp (t2)
else return fa l se

end ; (∗ typeEqual)

Listing 7.28: Checking for structural equality

We see how the recursive procedure descends the two trees, as long as they are of the
same “shape”. If there is some deviation, the traversal of the two trees stops and reported
that the trees are not equal. The pseudo code resembles a bit how it could be done in C.
In particular, care has to be taken of the nil-pointer. Not only that there should be no
nil-pointer exceptions. Also the case where one tree is fininished (a nil-case) but the other
is not has to be counted as that the two types are not equal.

Nominal equality

Let’s do the same for nominal equality and for the variation of the syntax from Table
7.5.

It should be obvious that checking for nominal equality is simpler than to check for struc-
tural equality, actually pretty much so, it’s quite trivial (see Listing 7.29).
function typeEqual (t1 , t2 : TypeExp) : Boolean ;
var temp : boolean

p1 , p2 : TypeExp ;
begin

i f t1 and t2 are of s imple type
then return t1 = t2
else i f t1 and t2 are type names
then return t1 = t2
else return fa l se ;

38 7 Types and type checking
7.3 Equality of types

var-decls → var-decls ; var-decl | var-decl
var-decl → id : simple-type-exp

type-decls → type-decls ; type-decl | type-decl
type-decl → id = type-exp
type-exp → simple-type-exp | structured-type

simple-type-exp → simple-type | id identifiers
simple-type → int | bool | real | char | void

structured-type → array [num] : simple-type-exp
| record var-decls end
| union var-decls end
| pointerto simple-type-exp
| proc (type-exps) simple-type-exp

type-exps → type-exps , simple-type-exp
| simple-type-exp

Table 7.5: Type syntax intended for nominal equality

end

Listing 7.29: Checking for nominal equality

Of course in a practical language, complications may enter. For instance the names of
types may occur in scopes, and that has to be taken into account.

7.3.1 Type aliases or synonyms

We have meantions the concept already earlier, to give (alternative) names to a type. In
the example from Listing 7.23, the type for pair of integersa was named pair_of_ints,
so that is a type synonym for int * int. If one has a mechanism to give names to types,
one can also do multiple synonyms for the same type. In that case, the different names
would be called type aliases. So basically it refers to the same mechanism. Of course
and as hinted at. To be known under different names is not counted typically as a form
of polymorphism. Many languages offer type synonyms, including C, Pascal, ML,. . . For
a programmer, it’s a very convenient mechanism tho work with abbreviations (like type
Coordinate = float * float), and it’s a rather light-weight mechanism.

In Listing 7.30, type t1 is made known also under the name t2.
t2 = t1 // t2 i s the ``same type ' ' .

Listing 7.30: Two type names

All that seems straightforward, but what type aliasing implies for type equality for different
classes of types may differ. In that sense, it can be more confusing than it looks at first
sight.

Let’s compare the situations inListing 7.31 and in Listing 7.32. The first example intro-
duces two synonyms of the basic type of integers.

7 Types and type checking
7.4 Type checking 39

t1 = int ;
t2 = int ;

Listing 7.31: Type alias for simple types

In this situation, t1 and t2 are often treated to be the “same” type. That may be
different when deadling with compound types.

t1 = array [1 0] o f int ;
t2 = array [1 0] o f int ;
t3 = t2

Listing 7.32: Type alias for structured types

In the second example, it’s often that t3 6= t1 6= t2 (but t2 and t3 are the same).

The upshot is: even within one language, it may be that different rules apply when it
comes to different kinds of types. Perhaps for synonyms of basic types (like integers), the
equality “carries over” but for more complex one (like arrays in the illustration), it may
not.

7.4 Type checking

Finally, we have to discuss how to realize a type checker. A bit of it we have seen when
talking about type equality in Section 7.3.

The task of static type checking resp. the static type checker is to determine whether
at given program is well-typed, i.e., adheres the type discipline for a given language, or
ill-typed. In the latter case, the compilation process stops and hopefully the type checker
generates a meaninful error message.

Actually, the type checker does not only give this binary decision, well-typed vs. ill-
typed, it checks for well-typedness of a program including all substructures (expressions,
statements, procedures . . .) and give back the type (when well-typed). That means type
checking is not really the problem of checking whether a program has an (expected) type,
it’s to determine the type if any.

The type checker operates on the AST and it should not come as a surprise that it’s a
recursive procedure with the AST as input (and additionally the symbol table that may
to be consulted and updated during the run of the type checker).

Part of the type checker, as subroutine, is typically the check for type equivalence. For
example, if a procedure is called with an argument, the type checker determines the type
of the argument, it determines which type the procedure expects, and compares them,
checking whether they are equivalent. If one had a more flexible type system that allowed
subtype polymorphism, instead of checking for equality, a subroutine for subtype checking
would be used (but we don’t really cover that).

Type checking, as said involves traversing the AST and that typically involves top-down
and bottom-up parts; in the terminology of attribute grammars, it involves both inherited
and synthesized parts.

40 7 Types and type checking
7.4 Type checking

7.4.1 General remarks about a type checker

Before we look concretely at a simple type system for a fragment of a simple language
involving expressions and statements.

Type system vs. type checker

The (static) type checker is the part of the cmpiler that decides which syntactically cor-
rect program is well-typed and what not (and when doing so determines the types of the
syntactic construct). That the type checker determines well-typedness is almost a tautol-
ogy. It’s equally not too insightful to say: a program is well-typed if survives the type
checker.

There is of course the issue of type safety which we discussed (“well-typed programs cannot
go wrong”). So it’s a requirement (in a type-safe language) that the type system prevents
certain errors. That’s a correctness criterion that the type checker should satisfy.

It is, in my eyes, useful to distinguish between between a type system and a type checker.
Why is that? The language’s type discipline, the regiment that says what is allowed, type-
wise and what not, needs not only to be implemented, it needs also to be communicated
to the programmer.

The obove viewpoint that a program is well-typed if it survives the type checker is not
only tautological, it’s also not very helpful.

One can of course describe the type discipline in English text and perhaps using illustrative
example; we did that in the oblig. Additionally one can design a bunch of specific small
programs, that cover different aspects including corner cases and ill-typed programs. Also
those examples can be informative, resp. can be used to test a given type checker. Also
that we did in the second oblig. This form of “description” of the type checker is, of course,
more for the compiler writer, resp. the one implementing the type checker, not so much
the user of the language (who expects a working type checker. . .)

What’s then a type checker vs. a type system. A useful distinction is the following: The
type system is the specification of the rules or regiment governing the use of types in
a language, a specification of type discipline, and also the specification what the type
checker has to realize. The type checker has to be algorithmic, i.e., correspond to an
algorithm, traversing the AST in one way or the other and determining types).

Note that I have not said the type checker is the actually implementation. Ultimately the
corresponding part of an compiler implementation is of course a type checker which hope-
filly realizes the type system as specification. It’s the difference between a (description)
of an algorithm and it’s programmatic realization or implementation in a programming
language.

Doesn’t that mean, in a way, one has 2 specificiations of the implementation, the type
system and the algorithmic version, the type checker? Yes, indeed. The question is,
however, why does one need or wants sometimes two specifications so to say? In our
lecture, we don’t actually see much of a need for that. The type system we will look at
later is quite simplistic. The same holds for the type system of the oblig. That means,

7 Types and type checking
7.4 Type checking 41

specifying a type system (like with a set of rules or with an attribute grammar) gives
enough information and guidance to straightforwardly implement it. In the oblig, we even
just described the type discipline in English.

Modern programming languages, however, can have very complex and intricate type disci-
plines. Often, it’s simpler to describe a type discipline without first focusing on algorithmic
aspects. That makes a formal description simpler, and when investigating novel and com-
plex aspects of a newly invented type investigating, a English text may not cut it any
longer. Especially not, if one needs to investigate whether the newfangled discipline is
type safe or has other desired or undesired properties.

In simple situations, the type system directly corresponds to an algorithmic type checking
specification. In more advanced systems, that’s seldomly the case. There is work to be
done to massage the specification into a algorithm, and sometimes it’s not even possible.
With advanced feature like complex forms of polymorphism and type constructor, it’s
easy to specify a (meaningul and even type safe) type discipline, only that, with the type
system as specification, the problem is undecidable.

For instance, C++ has an undecidable type system. One may see that as problem,
or maybe not insofar in practice it works. There are no naturally occuring programs
whose correct type checking simulates the solution of the halting problem for Turing ma-
chines. . . .

In Sections 7.4.2 and 7.4.3 we provide two ways how one can specify a type system, one
with attribute grammars, one with derivation rules. Both specifications describe the same
simple type discipline covering expression and statements. The corresponding grammar
is given in Table 7.6. Since the type discipline is so simple (in particular there is no
polymorphism), there rules of the type system more or less directly correspond to an
algorithic solution.

Polymorphism

Mentioning polymorphism, we could make some very high-level remarks there, without
going in any form of details. As indicate, polymorphism or other advanced features like
type infernce can complicate type systems and corresponding algorithmic problems con-
siderably. In connection with polymorphism, I like point out only one thing, more like food
for thought and not providing concrete solutions for concrete forms of polymorphism.

The thing is the following. We mentioned that the task of a type checker is to check well-
typedness, of course, but, when well-type, also give back the type of a construct. Now, in
a polymorphic setting, a construct can have multiple types, that’s by definition of being
polymorphic. Now that leads to the question: what should a type checker do then? For
type system, the specification, it’s not a big issue. One can specify a type system loosely
in a way, that allows to derive for construct multiple types, depending on how one do the
derivation steps. The different possible types are thus represented in the type system by
the fact that the system incorporates some non-determinism.

NB: for attribute grammars, non-determinism is not forseen. In their standard form as
covered by the lecture, solving an dependency graph means finding the unique solution.
Attribute grammars must be formulated in such a way that dependency graphs a acyclic for

42 7 Types and type checking
7.4 Type checking

instance, to make sure that this unique solution exists. In other words, attribute grammars
are ill-equipped to specify with polymorphism. In our simple illustration in Section 7.4.2,
it’s not much of an issue (and it’s connected to the fact that there is not much difference
here between the type sysem (the specification which can be non-deterministic) and the
algo (which typically is not). That’s also the reason, why AG may not be the formalism
of choice when specifying type system (and type checking algorithm). Therefore we look
afterwards in Section 7.4.3 to a formulation based on derivation rule. Of course, in a way,
it’s just a different representation of the same thing. However, the derivation rule based
representation is more flexible in more complex situation. This is the reason, why it’s
preferred often and nowadays when studying type system.

That’s good to hear, but we have actually not addressed the question from the beginning:
in a polymorphic discipline, what should the type checker return, if the type system non-
detrministically allows many types?

Without going into details: the type checker need to give back deterministicallly one type,
not many, it needs to be deterministic. A non-option is to give back literally all possible
types. It’s a non-option because there can be infinitely many (or at least very many) and
it’s not practical anyway. A non-option is to just give back an arbitrary type, for instance
the first one found that is among the allowed one. That does not really work, since the
“first type found” may turn out the not be compatible with the rest of the program, and
then one may be forced to backtrack, and try if another type can be found the work
better. While possible, it’s unpractical as well, leading to a combinatorial search of all
combinations of types here and there, until one may find a combination that works for the
whole program.

But what options remain then? Th trick typically is that the type system is designed in
a favorable way so that one can derive “the best type” at each given point. For instance
for subtype polymorphism, it would correspond to the most specific (or minimal) type.
Intuitively that makes sense. For instance, one one type checks the instance of a class C
(in Java), that instance can be typed by Object, and one could continue with the rest
of the program with that type. That’s obviously stupid to do, one will in all probability
encounter a situation where one does something specific for objects from C. There is not
much one can do with instances from Object, perhaps cloning, printing, and comparing
for identity, but that’s it. Using C as the most specific type is obviosly the right thing to
do.

At any rate, if a polymorphic type system is designed in this way, namely that it can
operate always with a “best” type (minimal in the setting of subtyping), then there is a
good chance that one can turn the speficication into a more or less efficient algorithm. If
no such “best” type exists, the system is probably ill-designed. It might still be possible
to solve type checking it algorithmically (probably resorting to combinatorial search and
backtracking), which would make type checking of very hight computational complexity.
That would mostly be unacceptable, maybe not even mainly because of the complexity,
but because it’s difficult to explain what the the type systems does to the user: it gives
back some type, but there could also be others unrelated, neither better nor worse. It
would be like given back some random type. For the subtyping the message is pretty
clear: the type system gives back the best, the minimal type of an expression, and there

7 Types and type checking
7.4 Type checking 43

is one best type, and all other types of that expression are supertypes of that. That’s how
it’s supposed to be and the key for a type checking algorithm.

7.4.2 Attribute grammar specification

Let’s start with a representation of type checking with attribute grammars. The syntax
for which we want to do type checking is shown in Table 7.6

program → var-decls ; stmts
var-decls → var-decls ; var-decl | var-decl
var-decl → id : type-exp
type-exp → int | bool | array [num] : type-exp

stmts → stmts ; stmt | stmt
stmt → if exp then stmt | id := exp
exp → exp + exp | exp or exp | exp [exp]

Table 7.6: Grammar for statements and expressions

When drawing the parallel that type checking is a buttom-up (“synthesized”) task, that
is only half of the picture. The presentation focuses in a large part on type checking of
expressions (and statements). When it comes to declarations (i.e., declaring a type for a
variable, for instance), that part corresponds to “inherited” attributes. Remember that
one standard way of implementing the association of variables (“symbols”) with (here)
types (which can be seen as an “attribute”) are symbol tables.

The attribute grammar from Table 7.7 are pretty straightforward. Actually, the attribute
grammar deviates from the purist view we sometimes used earlier. In particular, the rules
make use for some exception mechanism (type-error(exp) or similar). That would not
officially be possible in an attribute grammar, and in earlier examples, we used attributes
to mimick expceptional behavior. That cluttered the semantic rules with additional checks,
namely whether or not an error had occured. This is not needed if one assumes exceptions
and the specification become more readable. We also see that the type equality procedure
typeEqual from earlier is used in a couple of place as subroutine.

Coming back to the issue of exceptions. Exceptions are raised when a type error is detected.
Most productions, in particular those for compound expressions, contain a positive case,
when the types “fit” and a negative one, when that’s not the case and a type error is
raised.

The derivation-rule-based presentation in Section 7.4.3 does an even more “economic”
representation. It focuses solely on the positive cases, i.e. which conditions need to be
met to be well-typed. The negative cases, which here raise an error (and in the mentioned
purist attribute grammars resulted in that an error-attribute was set to true) are simply
not covered by rules. It’s not that it it is impossible, one could early either do rules with
an if..then-else construct or basically duplicate the rules. Assume the rule that
requires for of a sum expression e1 + e2, that both e1 and e2 are of integer type (and then

44 7 Types and type checking
7.4 Type checking

concluding that sum is of interger type as well). This could be accompagnied by a second
rule for the negative case, stating that, should e1 or e2 or both be not of type integer, then
that’s a type error.

As said, that’s easy to do. And in an implementation, one need to cover the negative
cases as well. Still, in may specifications of type systems one focuses on the positive cases,
simply not mentioning the negative ones. This allows to focus on the core of the type
system (knowing of course, that type errors need proper handling in an implementation
as well).

We will say a few more words comparing the attribute grammar presentation with the
rule-based representation one we have seen it in Section 7.4.3.

Table 7.7: Type system as attribute grammar

7.4.3 Type system given by derivation rules

The following formalizes basically the same type system as the one before with attribute
grammars. It uses a style of representation, which borrows from “logics”, capturing the
type system as a set of derivation rules. It’s a form of presentation often employed spec-
ifying type system of a complex nature. It’s not a coincidence that such presentations
resemble logical derivations. There are deep connections between (mostly intuitionstic or
constructive) logics and type systems, but that goes beyond this lecture.

7 Types and type checking
7.4 Type checking 45

We know that type checking makes used of a symbol table. That was also visible in the
attribute grammar and the semantic rules of Table 7.7. The symbol table is not actually
mentioned in the attribute grammar, but the procedures lookup and enter operate on
a symbol table data structure left unmentioned otherwise.

We need a symbol table also here. Conventionally, one uses a greek letter for that, most
commonly Γ. In presentations like the one here, Γ is mostly not called symbol table but
context (or environment). That’s probably also the reason for choosing Γ (being the greek
letter for “C” as in context). A symbol table (or context etc) is a data structure to store
associations of types with variables or identifiers, and we need to be able to add a new
binding and to look up the type associated with a variable (and also we need to refer to
the empty symbol table; at the beginning the table is empty). As for notation, we use
Γ(x) for the type associated with x. That corresponds to the lookup function. In this
notation, Γ is simply seen as a finite function: applying it to x gives back the type, if
defined. If not defined, an error would be raised, but as discussed earlier, we focus on
the positive cases. . . The notation Γ, x : T represents the context that works like Γ but
extended by a new binding, namely associating type T to variable x.

Now to the derivation rules, split into two parts in Table 7.8 and Table 7.9.

The rules are to be read as follows: There are premises (above the horizonal line) and
one conclusion (below the horizonal line). The derivable “assertions” are of the following
form:

Γ ` p : T (7.2)

Those as are also called judgements sometimes, in particular typing judgments. A judge-
ment of the one from Equation (7.2) is to be read as follows:

given the context Γ then progam p is of type T .

The context Γ, as said correspond to the symbol table. One find also the terminology that
Γ is called assumption or hypothesis. That terminology also make sense, as in “assuming
that both x and y are integers, then the expression x + y is an integer as well. Also
the terminogy context is not bad. It reminds us that type checking is a context-sensitive
analysis. The syntax of programs, in our case of expressions, statements etc from Table
7.6 is context-free, i.e., without context. Type checking (as most semantic analysis) fall in
the broad category of being context-sensitive (and no longer context-free). And Γ is just
the context, resp. the particular form of context needed to do the particular problem of
type checking.

What is written as p in equation (7.2) is generically meant as “program piece”, concretely
the type rules with work with expressions, statements etc.

So the rules specify how one can derive such judgements from other judgements. That
may directly be translated into a algorithm, or may not be used as algorithm directly,
depending on the way the rules are formulated. In our simple case, the rules directly
correspond to an algorithm.

46 7 Types and type checking
7.4 Type checking

Γ(x) = T
TE-Id

Γ ` x : T

TE-True
Γ ` true : bool

T-False
Γ ` false : bool

TE-Num
Γ ` n : int

Γ ` exp2 : array_of T Γ ` exp3 : int
TE-Array

Γ ` exp2 [exp3] : T

Γ ` exp1 : bool Γ ` exp2 : bool
Te-Or

Γ ` exp1 or exp2 : bool

Γ ` exp1 : int Γ ` exp2 : int
TE-Plus

Γ ` exp1 + exp2 : int

Table 7.8: Type system (expressions)

Typically, when the language and the type system is complex, one may specify well-
typedness in such a manner, without the rules immediatedly translatable to a type checker,
or maybe not at all, insofar one may have specified an undecidable typing relation. A major
complicating factor maybe polymorphism, as mentioned, but we don’t have that here.

A derivation system simply says, p is of a type T if, with the given rules, one can derive
the corresponding judgment, i.e., if there exists a derivation. It does not per se require,
that the deriviation is unique, or that p may not have other types (in which case the type
system is polymorphic). But that’s fine. In such more complex situations, the rules would
not directly an algorithm, it may be seen as a specification of a type discipline.

Note; the way we presented the attribute grammars, we can’t allow ourselves such a
relaxed attitude, being happy if there is one solution among different possible ones. At-
tribute grammars require one definite solution, no non-determinism or cycles or undefined
situations allowed. That (among other reasons) makes it often less straightforward to use
for specifying a type system. One aspect where it’s also visible is: in the attribute gram-
mar, we explictly had to specify (in a not too elegant way) error-situations. The rules
here don’t do that. For instance, in the treatment of the conditionals, it’s required that
the expression is a boolean. If it should be the case that it’s not a boolean, there is no
rule that covers that situation, which means, the well-typedness judgment for a program
containing such a situation is not derivable. Which means, it’s not well-typed and contains
thereby a type error.

A concrete type checker would have to produce a meaningful type error message in that
alternative scenario, but that’s supressed. There core of the type system is focusing on
the positive cases, leaving the type errors implicit and leaving it up to the implementor
to figure out how to deal with uncovered situations. Similar relaxedness applies to rules
that would include non-determinism: the implementar has to figure out how to deal with
it, i.e., how to turn the specification in an algorithm. The concrete type system here is so
simple (monomorphic) that the rules are basically an algorithm already.

There is another reason why the rule based specification is preferable over an attribute

7 Types and type checking
7.4 Type checking 47

Γ, x :int ` rest : ok
TD-Int

Γ ` x : int; rest : ok

Γ, x : bool ` rest : ok
TD-Bool

Γ ` x : bool; rest : ok

Γ ` num :int Γ(type-exp) = T

Γ, x : array num of T ` rest : ok
TD-Array

Γ ` x : array [num] : type-exp ; rest : ok

Γ ` x : T Γ ` exp : T
TS-Assign

Γ ` x := exp : ok

Γ ` exp : bool Γ ` stmt : ok
TS-If

Γ ` if exp then stmt : ok

Γ ` stmt1 : ok Γ ` stmt2 : ok
TS-Seq

Γ ` stmt1 ; stmt2 : ok

Table 7.9: Type system (statements and declarations)

grammar variant (at least in my eyes). Perhaps as a personal opinion, it seems clearer
(to me). As illustration. One property of a static discipline is: to be well-typed all parts
of the program code needs to be well-type. Even if there is dead code, i.e., code that will
never be executed, it still need to be type-correct, and the type system checks everything
(well, technically it could stop checking if the first type error is encountered, raising an
exception, but dead code will be checked).

That principle is clearly visible in the rule-based formulation. In the attribute grammar
of Table 7.7, for instance in the case of if exp then stmt, the corresponding semantic
rule requires that exp is of boolean type (same as rule TS-IF). However, nothing seems
to be required for stmt. That makes the impression that a conditional is well-typed if the
expression is of boolean type and that’s all. But that’s not the case. Depending on what
case of a statement it is, the corresponding check is specified in connection with other
productions.

One can probably reformulate the attribute grammar. For instance, in the attribute
grammar, stmt does not have a type, i.e., there is no attribute for that. To be more in
line with the treatment using rules, one should have added a type (perhaps void) to
convey information that a stmt nodes is well-typed. Instead of void one could have used
ok indicating well-typedness, as it’s done in the rules of Table 7.9, same thing. That
could have been used to make more clear that stmt nodes also need to be type checked,
something that is not so transparent in the given attribute grammar. For the derivation
rules, it’s obvious that all parts of a syntax tree are traversed and checked.

A final remark. I mentioned that the type system or type checker relies on equality
checking as subroutine. The routine is explicitly invoked in the semantic rules of the
attribute grammar. But what about here? It’s a bit suppressed. One could have been
more explicit. For instance, instead of the shown rule TE-Plus, one might formulate it
equivalently as follows.

48 7 Types and type checking
7.4 Type checking

Γ ` exp1 : T1 Γ ` exp2 : T2 T1 =?int T2 =?int
TE-Plus′

Γ ` exp1 + exp2 : int

For clarity I used =? to denote the type equality check, where TE-Plus simply wrote “=”
(why bother to write =?, the equal sign is clear enough, even if equality may be not so
trivial, as discussed).

Anyway, the more verbose version from TE-Plus′ is perhaps also more clearly in the
spirit of an algorithm. Like

Assume the type checker wants to determine the type (if any) of exp1 + exp2 in
a given context Γ: let’s write Γ ` exp1 + exp2 : ? for the problem of having the
type checker determine the type of the sum (actually if the sum is well-typed
at all, it must be int in our simple type system). To figure it out, the type
checker is recursively invoked on the subexpression exp1, still with context Γ,
let’s write Γ ` exp1 : ? for it. That gives back, when successful, some type T1.
That’s the premise Γ ` exp1 : T1. Do the same for the other subexpression exp2,
corresponding to the call Γ ` exp2 : ? resp. the premise Γ ` exp2 : T2. Then
check that both T1 and T2 are (equivalent to) int, and if so, report back int for
the sum-expression. That corresponds to the conclusion Γ ` exp1 + exp2 : int.

Anyway,especially in more simple type systems, most are happy enough with a formulation
like TE-Plus, suppressing all unnecessary side issues (type equality, error situations) and
focus on the core.

Index
Index 49

Index

aliasing, 24
array, 12
array type, 10, 11

basic type, 3, 5

CAM, 12
compound type, 7
content-addressable memory, 12
cosntructor, 20

data-flow analysis, 4
dependent type, 1
dereference, 23
dynamic typing, 3

function
higher-order, 26

function type, 10
function variable, 25

higher-order function, 26

inductive data type, 20
int32, 7
int64, 7

Milner’s dictum, 3, 4
ML, 20

null pointer, 24

overloading, 7
ownership, 1

Pascal, 18
pattern matching, 20
pointer

dereference, 23
pointer arithmetic, 23
pointer type, 10, 23
product type, 14

record type, 10, 13
reference type, 5, 7
run-time type, 3
Rust, 1

signature, 10
static typing, 1, 3
struct

tag, 14
subtyping, 11, 39

tag (in C), 14
tuple type, 10, 14
type, 1, 3

array, 10
basic, 3
dependent, 1

type checking, 1
type constructor, 3, 10
type safety, 3
type theory, 1

union type, 10

value type, 5
variant record, 18

	Contents
	Types and type checking
	Introduction
	Various types and their representation
	Equality of types
	Type checking

