
Chapter 7
Types and type checking

Course “Compiler Construction”
Martin Steffen
Spring 2021

Section
Introduction

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-3

General remarks and overview

• Goal here:
• what are types?
• static vs. dynamic typing
• how to describe types syntactically?
• how to represent and use types in a compiler?

• coverage of various types
• basic types (often predefined/built-in)
• type constructors
• values of a type
• type operators
• representation at run-time
• run-time tests and special problems (array, union,

record, pointers)
• specification and implementation of type systems/type

checkers
• advanced concepts

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-4

Why types?
• crucial, user-visible abstraction describing program
behavior
• one view: type describes a set of (mostly related) values
• static typing: checking/enforcing a type discipline at
compile time
• dynamic typing: same at run-time, mixtures possible
• completely untyped languages: very rare to
non-existant, types were part of PLs from the start.

Milner’s dictum (“type safety”)

Well-typed programs cannot go wrong!

• strong typing:1 rigorously prevent “misuse” of data
• types useful for later phases and optimizations
• documentation and partial specification
1Terminology rather fuzzy, and perhaps changed a bit over time.

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-5

Types: in first approximation
Conceptually

• semantic view: set of values plus a set of corresponding
operations
• syntactic view: notation to construct basic elements of
the type (its values) plus “procedures” operating on
them
• compiler implementor’s view: data of the same type
have same underlying memory representation

further classification:
• built-in/predefined vs. user-defined types
• basic/base/elementary/primitive types vs. compound
types
• type constructors: building more compex types from
simpler ones
• reference vs. value types

Section
Various types and their representa-
tion

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-7

Some typical base types

base types
int 0, 1, . . . +,−, ∗, / integers
real 5.05E4 . . . +,-,* real numbers
bool true, false and or (|) . . . booleans
char ’a’ characters
...
• often HW support for some of those (including some of
the op’s)
• mostly: elements of int are not exactly mathematical

integers, same for real
• often variations offered: int32, int64
• often implicit conversions and relations between basic

types
• which the type system has to specify/check for legality
• which the compiler has to implement

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-8

Some compound types

compound types
array[0..9] of real a[i+1]
list [], [1;2;3] concat
string "text" concat . . .
struct / record r.x
. . .
• mostly reference types
• when built in, special “easy syntax” (same for basic
built-in types)
• 4 + 5 as opposed to plus(4,5)
• a[6] as opposed to array_access(a, 6) . . .

• parser/lexer aware of built-in types/operators (special
precedences, associativity, etc.)

• cf. functionality “built-in/predefined” via libraries

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-9

Abstract data types

• unit of data together with
functions/procedures/operations . . . operating on them
• encapsulation + interface
• often: separation between exported and internal
operations
• for instance public, private . . .
• or via separate interfaces

• (static) classes in Java: may be used/seen as ADTs,
methods are then the “operations”

ADT beg in
i n t e g e r i ;
r e a l x ;
i n t proc t o t a l (i n t a) {

r e t u r n i ∗ x + a // or : `` t o t a l = i ∗ x + a ' '
}

end

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-10

Type constructors: building new types

• array type
• record type (also known as struct-types)
• union type
• pair/tuple type
• pointer type

• explict as in C
• implict distinction between reference and value types,

hidden from programmers (e.g. Java)
• signatures (specifying methods / procedures /

subroutines / functions) as type
• function type constructor, incl. higher-order types (in
functional languages)
• (names of) classes and subclasses
• . . .

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-11

Arrays

Array type

a r r a y [< index type >] of <component type>

• elements (arrays) = (finite) functions from index-type
to component type
• allowed index-types:

• non-negative (unsigned) integers?, from ... to
...?

• other types?: enumerated types, characters
• things to keep in mind:

• indexing outside the array bounds?
• are the array bounds (statically) known to the compiler?
• dynamic arrays (extensible at run-time)?

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-12

One and more-dimensional arrays

• one-dimensional: efficiently implementable in standard
hardware (relative memory addressing, known offset)
• two or more dimensions

a r r a y [1 . . 4] of a r r a y [1 . . 3] of r e a l
a r r a y [1 . . 4 , 1 . . 3] of r e a l

• one can see it as “array of arrays” (Java), an array is
typically a reference type
• conceptually “two-dimensional”- linear layout in
memory (language dependent)

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-13

Records (“structs”)

s t r u c t {
r e a l r ;
i n t i ;

}

• values: “labelled tuples” (real× int)
• constructing elements, e.g.

s t r u c t p o i n t { i n t x ; i n t y ; } ;
s t r u c t p o i n t pt = { 300 , 42 } ;

struct point
• access (read or update): dot-notation x.i
• implementation: linear memory layout given by the
(types of the) attributes
• attributes accessible by statically fixed offsets
• fast access
• cf. objects as in Java

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-14

Tuple/product types
• T1 × T2 (or in ascii T_1 * T_2)
• elements are tuples: for instance: (1, "text") is

element of int * string

• generalization to n-tuples:

value type
(1, "text", true) int * string * bool
(1, ("text", true)) int * (string * bool)

• structs can be seen as “labeled tuples”, resp. tuples as
“anonymous structs”
• tuple types: common in functional languages,
• in C/Java-like languages: n-ary tuple types often only

implicit as input types for procedures/methods (part of
the “signature”)

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-15

Union types (C-style again)

union {
r e a l r ;
i n t i

}

• related to sum types (outside C)
• (more or less) represents disjoint union of values of

“participating” types
• access in C (confusingly enough): dot-notation u.i

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-16

Union types in C and type safety
• union types is C: bad example for (safe) type disciplines,
as it’s simply type-unsafe, basically an unsafe hack . . .

Union type (in C):

• nothing much more than a directive to allocate enough
memory to hold largest member of the union.
• in the example: real takes more space than int

Explanation

• implementor’s (= low level) focus and memory
allocation, not “proper usage focus” or assuring strong
typing

⇒ bad example of modern use of types
• better (type-safe) implementations known since
⇒ variant record (“tagged”/“discriminated” union) or

even inductive data types

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-17

Variant records from Pascal

r eco rd case i s R e a l : boolean of
t rue : (r : r e a l) ;
f a l s e : (i : i n t e g e r) ;

• “variant record”
• non-overlapping memory layout2

• programmer responsible to set and check the
“discriminator” self
• enforcing type-safety-wise: not really an improvement
:-(

2Again, that’s an implementor-centric view, not a user-centric one.

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-18

Inductive types in ML and similar
• type-safe and powerful
• allows pattern matching

I s R e a l of r e a l | I s I n t e g e r of i n t

• allows recursive definitions ⇒ inductive data types:

type i n t _ b i n t r e e =
Node of i n t ∗ i n t _ b i n t r e e ∗ b i n t r e e

| N i l

• Node, Leaf, IsReal: constructors (cf. languages like
Java)
• constructors used as discriminators in “union” types

type exp =
Plus of exp ∗ exp

| Minus of exp ∗ exp
| Number of i n t
| Var of s t r i n g

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-19

Recursive data types in C
does not work

s t r u c t intBST {
i n t v a l ;
i n t i s N u l l ;
s t r u c t intBST l e f t , r i g h t ;

}

“indirect” recursion

s t r u c t intBST {
i n t v a l ;
s t r u c t intBST ∗ l e f t , ∗ r i g h t ;

} ;

In Java: references implicit

c l a s s BSTnode {
i n t v a l ;
BSTnode l e f t , r i g h t ;

• note: implementation in ML: also uses “pointers” (but
hidden from the user)
• no nil-pointers in ML (and NIL is not a nil-pointer, it’s
a constructor)

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-20

Pointer types
• pointer type: notation in C: int*
• “ * ”: can be seen as type constructor

i n t ∗ p ;

• random other languages: ^integer in Pascal, int
ref in ML
• value: address of (or reference/pointer to) values of the
underlying type
• operations: dereferencing and determining the address
of an data item (and C allows “ pointer arithmetic ”)

var a : ^ i n t e g e r (∗ p o i n t e r to an i n t e g e r ∗)
var b : i n t e g e r
. . .
a := &i (∗ i an i n t va r ∗)

(∗ a := new i n t e g e r ok too ∗)
b:= ^a + b

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-21

Implicit dereferencing

• many languages: more or less hide existence of pointers
• cf. reference vs. value types often: automatic/implicit
dereferencing

C r ;
C r = new C () ;

• “sloppy” speaking: “ r is an object (which is an
instance of class C /which is of type C)”,
• slightly more precise: variable “ r contains an object. . .

”
• precise: “variable r will contain a reference to an
object”
• r.field corresponds to something like “
(*r).field, similar in Simula

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-22

Programming with pointers

• “popular” source of errors
• test for non-null-ness often required
• explicit pointers: can lead to problems in
block-structured language (when handled non-expertly)
• watch out for parameter passing
• aliasing
• null-pointers: “the billion-dollar-mistake”
• take care of concurrency

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-23

Function variables

program Funcvar ;
var pv : Procedure (x : i n t e g e r) ; (∗ p rocedu r va r ∗)

Procedure Q() ;
var

a : i n t e g e r ;
Procedure P(i : i n t e g e r) ;
beg in

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

beg in
pv := @P; (∗ `` r e t u r n ' ' P (as s i d e e f f e c t) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
beg in (∗ he r e : f r e e P a s c a l ∗)

Q() ;
pv (1) ;

end .

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-24

Function variables and nested scopes

• tricky part here: nested scope + function definition
escaping surrounding function/scope.
• here: inner procedure “returned” via assignment to
function variable
• stack discipline of dynamic memory management?
• related also: functions allowed as return value?

• Pascal: not directly possible (unless one “returns” them
via function-typed reference variables like here)

• C: possible, but nested function definitions not allowed
• combination of nested function definitions and functions
as official return values (and arguments): higher-order
functions
• Note: functions as arguments less problematic than as
return values.

Function signatures

• define the “header” (also “signature”) of a function3

• in the discussion: we don’t distinguish mostly:
functions, procedures, methods, subroutines.
• functional type (independent of the name f): int→int

Modula-2

var f : procedure (i n t e g e r) : i n t e g e r ;

C

i n t (∗ f) (i n t)

• values: all functions (procedures . . .) with the given
signature
• problems with block structure and free use of procedure
variables.

3Actually, an identfier of the function is mentioned as well.

Escaping
1 program Funcvar ;
2 var pv : Procedure (x : i n t e g e r) ; (∗ p rocedu r va r ∗)
3
4 Procedure Q() ;
5 var
6 a : i n t e g e r ;
7 Procedure P(i : i n t e g e r) ;
8 beg in
9 a:= a+i ; (∗ a def ' ed o u t s i d e ∗)

10 end ;
11 beg in
12 pv := @P; (∗ `` r e t u r n ' ' P (as s i d e e f f e c t) ∗)
13 end ; (∗ "@" dependent on d i a l e c t ∗)
14 beg in (∗ he r e : f r e e P a s c a l ∗)
15 Q() ;
16 pv (1) ;
17 end .

• at the end of line 15: variable a no longer exists
• possible safe usage: only assign to such variables (here
pv) a new value (= function) at the same blocklevel
the variable is declared

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-27

Classes and subclasses

Parent class

c l a s s A {
i n t i ;
vo id f () { . . . }

}

Subclass B

c l a s s B extends A {
i n t i
vo id f () { . . . }

}

Subclass C

c l a s s C extends A {
i n t i
vo id f () { . . . }

}

• classes resemble records, and subclasses variant types,
but additionally
• visibility: local methods possible (besides fields)
• subclasses
• objects mostly created dynamically, no references into

the stack
• subtyping and polymorphism (subtype polymorphism):

a reference typed by A can also point to B or C objects

• special problems: not really many, nil-pointer still
possible

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-28

Access to object members: late binding

• notation rA.i or rA.f()
• dynamic binding, late-binding, virtual access, dynamic
dispatch . . . : all mean roughly the same
• central mechanism in many OO language, in connection
with inheritance

Virtual access rA.f() (methods)

“deepest” f in the run-time class of the object, rA points to

• remember: “most-closely nested” access of variables in
nested lexical block
• Java:

• methods “in” objects are only dynamically bound (but
there are class methods too)

• instance variables not, neither static methods “in”
classes.

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-29

Example: fields and methods

pub l i c c l a s s Shadow {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s){

C2 c2 = new C2 () ;
c2 . n () ;

}
}

c l a s s C1 {
S t r i n g s = "C1" ;
vo id m () { System . out . p r i n t (t h i s . s) ; }

}

c l a s s C2 extends C1 {
S t r i n g s = "C2" ;
vo id n () { t h i s .m() ; }

}

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-30

Diverse notions

• Overloading
• common for (at least) standard, built-in operations
• also possible for user defined functions/methods . . .
• disambiguation via (static) types of arguments
• “ad-hoc” polymorphism
• implementation:

• put types of parameters as “part” of the name
• look-up gives back a set of alternatives

• type-conversions: can be problematic in connection with
overloading

• (generic) polymporphism
swap(var x,y: anytype)

Section
Equality of types

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-32

Classes as types

• classes = types? Not so fast
• more precise view:

• design decision in Java and similar languages (but not
all/even not all class-based OOLs): that class names are
used in the role of (names of) types.

• other roles of classes (in class-based OOLs)
• generator of objects (via constructor, again with the

same name)4

• containing code that implements the instances
C x = new C()

4Not for Java’s static classes etc, obviously.

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-33

Example with interfaces

i n t e r f a c e I 1 { i n t m (i n t x) ; }
i n t e r f a c e I 2 { i n t m (i n t x) ; }
c l a s s C1 implements I 1 {

pub l i c i n t m(i n t y) { r e t u r n y++; }
}
c l a s s C2 implements I 2 {

pub l i c i n t m(i n t y) { r e t u r n y++; }
}

pub l i c c l a s s Noduck1 {
pub l i c s t a t i c vo id main (S t r i n g [] a rg) {

I 1 x1 = new C1 () ; // I 2 not p o s s i b l e
I 2 x2 = new C2 () ;
x1 = x2 ; // ???

}
}

Analogous when using classes in their roles as types

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-34

When are 2 types “equal”?
• type equivalence
• surprisingly many different answers possible
• implementor’s focus (deprecated): type int and
short are equal, because they “are” both 2 byte
• type checker must often decide such equivalences
• related to a more fundamental question: what’s a type?

Example: pairs of integers

type p a i r _ o f _ i n t s = i n t ∗ i n t ; ;
l e t x : p a i r _ o f _ i n t s = (1 , 4) ; ;

Questions

• Is “the” type of (values of) x pair_of_ints, or
• the product type int * int , or
• both, as they are equal, i.e., pair_of_int is an
abbreviation of the product type (type synonym)?

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-35

Structural vs. nominal equality

a, b

va r a , b : r e c o r d
i n t i ;
double d

end

c

va r c : r e c o r d
i n t i ;
double d

end

typedef

typede f i dReco rd : r e c o r d
i n t i ;
double d

end

va r d : i dReco rd ;
va r e : i dReco rd ; ;

what’s possible?

a := c ;
a := d ;

a := b ;
d := e ;

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-36

Types in the AST
• types are part of the syntax, as well
• represent: either in a separate symbol table, or part of
the AST

Record type

r e c o r d
x : p o i n t e r to r e a l ;
y : a r r a y [1 0] of i n t

end

Procedure header

proc (bool ,
union a : r e a l ; b : cha r end ,
i n t) : vo id

end

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-37

Structured types without names

var-decls → var-decls ; var-decl | var-decl
var-decl → id : type-exp
type-exp → simple-type | structured-type

simple-type → int | bool | real | char | void
structured-type → array [num] : type-exp

| record var-decls end
| union var-decls end
| pointerto type-exp
| proc (type-exps) type-exp

type-exps → type-exps , type-exp | type-exp

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-38

Structural equality

Types with names

var-decls → var-decls ; var-decl | var-decl
var-decl → id : simple-type-exp

type-decls → type-decls ; type-decl | type-decl
type-decl → id = type-exp
type-exp → simple-type-exp | structured-type

simple-type-exp → simple-type | id identifiers
simple-type → int | bool | real | char | void

structured-type → array [num] : simple-type-exp
| record var-decls end
| union var-decls end
| pointerto simple-type-exp
| proc (type-exps) simple-type-exp

type-exps → type-exps , simple-type-exp
| simple-type-exp

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-40

Name equality

• all types have “names”, and two types are equal iff their
names are equal
• type equality checking: obviously simpler
• of course: type names may have scopes. . . .

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-41

Type aliases

• languages with type aliases (type synonyms): C, Pascal,
ML
• often very convenient (type Coordinate = float

* float)
• light-weight mechanism

type alias; make t1 known also under name t2

t2 = t1 // t2 i s the ``same type ' ' .

• also here: different choices wrt. type equality

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-42

Type aliases: different choices

Alias, for simple types

t1 = i n t ;
t2 = i n t ;

• often: t1 and t2 are the
“same” type

Alias of structured types

t1 = a r r a y [1 0] o f i n t ;
t2 = a r r a y [1 0] o f i n t ;
t3 = t2

• mostly t3 6= t1 6= t2

Section
Type checking

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-44

Type checking of expressions (and
statements)
• types of subexpressions must “fit” to the expected types
the contructs can operate on
• type checking: top-down and bottom-up task
⇒ synthesized attributes, when using AGs
• Here: using an attribute grammar specification of the
type checker
• type checking conceptually done while parsing (as

actions of the parser)
• more common: type checker operates on the AST after

the parser has done its job
• type system vs. type checker

• type system: specification of the rules governing the use
of types in a language, type discipline

• type checker: algorithmic formulation of the type
system (resp. implementation thereof)

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-45

Grammar for statements and expressions

program → var-decls ; stmts
var-decls → var-decls ; var-decl | var-decl
var-decl → id : type-exp
type-exp → int | bool | array [num] : type-exp

stmts → stmts ; stmt | stmt
stmt → if exp then stmt | id := exp
exp → exp + exp | exp or exp | exp [exp]

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-46

Type checking as semantic rules

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-47

More “modern” presentation

• representation as derivation rules
• Γ: notation for symbol table

• Γ(x): look-up
• Γ, x : T : insert

• more compact representation
• one reason: “errors” left implicit.

Type checking (expressions)

Γ(x) = T
TE-Id

Γ ` x : T

TE-True
Γ ` true : bool

T-False
Γ ` false : bool

TE-Num
Γ ` n : int

Γ ` exp2 : array_of T Γ ` exp3 : int
TE-Array

Γ ` exp2 [exp3] : T

Γ ` exp1 : bool Γ ` exp2 : bool
Te-Or

Γ ` exp1 or exp2 : bool

Γ ` exp1 : int Γ ` exp2 : int
TE-Plus

Γ ` exp1 + exp2 : int

Declarations and statements

Γ, x :int ` rest : ok
TD-Int

Γ ` x : int; rest : ok

Γ, x : bool ` rest : ok
TD-Bool

Γ ` x : bool; rest : ok

Γ ` num :int Γ(type-exp) = T

Γ, x : array num of T ` rest : ok
TD-Array

Γ ` x : array [num] : type-exp ; rest : ok

Γ ` x : T Γ ` exp : T
TS-Assign

Γ ` x := exp : ok

Γ ` exp : bool Γ ` stmt : ok
TS-If

Γ ` if exp then stmt : ok

Γ ` stmt1 : ok Γ ` stmt2 : ok
TS-Seq

Γ ` stmt1 ; stmt2 : ok

INF5110 –
Compiler

Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-50

References I

Bibliography

	Types and type checking
	Introduction
	Various types and their representation
	Equality of types
	Type checking

