Chapter 7
Types and type checking

Course “Compiler Construction”
Martin Steffen
Spring 2021

Section

Introduction

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen

Spring 2021

General remarks and overview

® Goal here:

what are types?

static vs. dynamic typing

how to describe types syntactically?

how to represent and use types in a compiler?

® coverage of various types

* specification and implementation of type systems/type

basic types (often predefined/built-in)

type constructors

values of a type

type operators

representation at run-time

run-time tests and special problems (array, union,
record, pointers)

checkers

® advanced concepts

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-3

Why types?
® crucial, user-visible abstraction describing program
behavior
® one view: type describes a set of (mostly related) values

* static typing: checking/enforcing a type discipline at
compile time

® dynamic typing: same at run-time, mixtures possible

® completely untyped languages: very rare to
non-existant, types were part of PLs from the start.

Milner’s dictum (“type safety”)

Well-typed programs cannot go wrong!

* strong typing:! rigorously prevent “misuse” of data
® types useful for later phases and optimizations

¢ documentation and partial specification

!Terminology rather fuzzy, and perhaps changed a bit over time.

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-4

Types: in first approximation
Conceptually

® semantic view: set of values plus a set of corresponding
operations

® syntactic view: notation to construct basic elements of
the type (its values) plus “procedures” operating on
them

® compiler implementor’s view: data of the same type
have same underlying memory representation

further classification:
* built-in/predefined vs. user-defined types
* basic/base/elementary/primitive types vs. compound
types
® type constructors: building more compex types from
simpler ones
e reference vs. value types

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-5

Section

Various types and their representa-
tion

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen

Spring 2021

Some typical base types

base types
int O, 1, e +, - *,/ integers Compiler
Construction
real 5.05E4 ... +,—, % real numbers
bool true, false andor (|)... booleans .
Introduction
char 'a’ characters

® often HW support for some of those (including some of
the op's)

® mostly: elements of int are not exactly mathematical
integers, same for real

® often variations offered: int32, int64

® often implicit conversions and relations between basic
types

® which the type system has to specify/check for legality
® which the compiler has to implement

Various types and
their
representation

Equality of types

Type checking

7-7

Some compound types

INF5110 -

Compiler

Compound types Construction

array[0..9] of real al[i+1]

list [] ' [l; 2; 3] concat Introduction

String "text" concat ... Various types and
their

struct / record r.x TR

Equality of types
® mostly reference types Type checking
¢ when built in, special “easy syntax” (same for basic

built-in types)
® 4 + 5 as opposed to plus (4, 5)
® a[6] as opposed to array_access (a, 6) ...
® parser/lexer aware of built-in types/operators (special
precedences, associativity, etc.)

e cf. functionality "built-in/predefined” via libraries
7-8

Abstract data types

ADT

end

unit of data together with
functions/procedures/operations ... operating on them

encapsulation + interface
often: separation between exported and internal
operations

® for instance public, private ...

® or via separate interfaces
(static) classes in Java: may be used/seen as ADTs,
methods are then the “operations”

begin
integer i;
real x;
int proc total(int a) {
return i * x + a // or: ““total =i x x + a''

}

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

Type constructors: building new types

array type
record type (also known as struct-types)
union type
pair/tuple type
pointer type
® explict asin C

® implict distinction between reference and value types,

hidden from programmers (e.g. Java)

signatures (specifying methods / procedures /
subroutines / functions) as type

function type constructor, incl. higher-order types (in
functional languages)

(names of) classes and subclasses

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-10

Arrays

Array type

array [<indextype >] of <component type>

* elements (arrays) = (finite) functions from index-type
to component type
¢ allowed index-types:

® non-negative (unsigned) integers?, from ... to
?

® other types?: enumerated types, characters
® things to keep in mind:
® indexing outside the array bounds?

® are the array bounds (statically) known to the compiler?

® dynamic arrays (extensible at run-time)?

INF5110 —
Compiler
Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-11

One and more-dimensional arrays

INF5110 -

Compiler

® one-dimensional: efficiently implementable in standard Construction
hardware (relative memory addressing, known offset)

. . Introduction

® two or more dimensions

Various types and

their

array [1..4] of array [1..3] of real TR
array [1..4, 1..3] of real .

i Equality of types

Type checking
® one can see it as “array of arrays” (Java), an array is
typically a reference type

® conceptually “two-dimensional”- linear layout in
memory (language dependent)

7-12

Records (“structs”)

struct {
real r;
int i;
}

® values: “labelled tuples” (realx int)
* constructing elements, e.g.

struct point {int x; int y;};
struct point pt = { 300, 42 };

struct point

® access (read or update): dot-notation x. i
® implementation: linear memory layout given by the

(types of the) attributes

fast access

cf. objects as in Java

attributes accessible by statically fixed offsets

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-13

Tuple/product types

o Ty xTy (orinascii T_1 » T_2)

® elements are tuples: for instance: (1, "text") is 'Q(fﬁ}pl”"c;
element of int = String Construction

® generalization to n-tuples:

Introduction

Various types and
their

VaIUe type representation

(1, "text", true) int * string x bool Equality of types
(1, ("text", true)) int = (string * bool) Type checking

® structs can be seen as “labeled tuples”, resp. tuples as
“anonymous structs”

® tuple types: common in functional languages,

® in C/Java-like languages: n-ary tuple types often only
implicit as input types for procedures/methods (part of

the “signature”)
7-14

Union types (C-style again)

INF5110 —
Compiler
Construction

union { Introduction
real r;
R . Various types and
int 1 their

} representation

Equality of types
* related to sum types (outside C) Type checking
® (more or less) represents disjoint union of values of

“participating” types
® access in C (confusingly enough): dot-notation u. i

Union types in C and type safety

* union types is C: bad example for (safe) type disciplines,
as it's simply type-unsafe, basically an unsafe hack ...

INF5110 -

Compiler

UrliOl'I type (in C): Construction

® nothing much more than a directive to allocate enough
memory to hold largest member of the union.

Introduction

Various types and
their
representation

® in the example: real takes more space than int
Equality of types
EXpIanat'on Type checking

¢ implementor’s (= low level) focus and memory
allocation, not “proper usage focus” or assuring strong
typing
= bad example of modern use of types

® better (type-safe) implementations known since

(3

variant record (“tagged” /“discriminated” union) or
even inductive data types 7-16

Variant records from Pascal

record case isReal: boolean of
true: (r:real);
false: (i:integer);

® ‘“variant record”
* non-overlapping memory layout?

® programmer responsible to set and check the
“discriminator” self

¢ enforcing type-safety-wise: not really an improvement

N

2Again, that's an implementor-centric view, not a user-centric one.

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

Inductive types in ML and similar

® type-safe and powerful
¢ allows pattern matching

IsReal of real | Islnteger of int

¢ allows recursive definitions = inductive data types:

type int_bintree =
Node of int * int_bintree *x bintree
| Nil
|

® Node, Leaf, IsReal: constructors (cf. languages like
Java)
® constructors used as discriminators in “union” types

type exp =
Plus of exp * exp
| Minus of exp * exp
| Number of int
| Var of string

INF5110 —
Compiler
Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

Recursive data types in C

does not work

“indirect” recursion

g INF5110 —
SErmEt intBST { struct intBST { Sl
int val ; Tt wal Construction
int isNull; !
. ' . struct intBST =xleft, *right;
struct intBST left, right;) r n re
} I } ’ Introduction
Various types and
their
representation
In Java: references implicit Equality of types

Type checking
class BSTnode {
int val;
BSTnode left , right;

® note: implementation in ML: also uses “pointers” (but
hidden from the user)
® no nil-pointers in ML (and NIL is not a nil-pointer, it's
a constructor) 719

Pointer types

® pointer type: notation in C: int

® “ x " can be seen as type constructor

intx p;

® random other languages: “integer in Pascal, int
ref in ML

® value: address of (or reference/pointer to) values of the
underlying type

® operations: dereferencing and determining the address
of an data item (and C allows * pointer arithmetic ")

var a: “integer (% pointer to an integer *)

var b: integer

a = &i (* i an int var *)
(» a := new integer ok too %)

b:= "a + b

INF5110 —
Compiler
Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

7-20

Implicit dereferencing

® many languages: more or less hide existence of pointers

INF5110 —
Compiler
Construction

e cf. reference vs. value types often: automatic/implicit
dereferencing

Introduction

Cr;

C r = new C(), Various types and
their
representation

® “sloppy"” speaking: “ r is an object (which is an Equality of types

instance of class C /which is of type C)", Type checking

® slightly more precise: variable “ r contains an object. ..

® precise: “variable r will contain a reference to an
object”

® r.field corresponds to something like “
(xr) .field, similar in Simula

7-21

Programming with pointers

“ "
® “popular” source of errors
® test for non-null-ness often required

o explicit pointers: can lead to problems in
block-structured language (when handled non-expertly)

® watch out for parameter passing
® aliasing
¢ null-pointers: “the billion-dollar-mistake”

® take care of concurrency

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-22

Function variables

program Funcvar;
var pv : Procedure (x: integer); (* procedur var
Procedure Q();
var
a : integer;
Procedure P(i : integer);
begin
a:= a+ti; (* a def'ed outside
end;
begin
pv = OP; (* “‘return'' P (as side effect)
end; (* "@" dependent on dialect
begin (* here: free Pascal
Q();
pv (1);
end.

*)
*)

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-23

Function variables and nested scopes

® tricky part here: nested scope + function definition
escaping surrounding function /scope.

® here: inner procedure “returned” via assignment to
function variable
® stack discipline of dynamic memory management?
® related also: functions allowed as return value?
® Pascal: not directly possible (unless one “returns” them
via function-typed reference variables like here)
® C: possible, but nested function definitions not allowed
® combination of nested function definitions and functions
as official return values (and arguments): higher-order
functions

® Note: functions as arguments less problematic than as
return values.

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-24

Function signatures

* define the “header” (also “signature”) of a function3

® in the discussion: we don’t distinguish mostly:
functions, procedures, methods, subroutines.

e functional type (independent of the name f): int—int

Modula-2 C

var f: procedure (integer): integer; int (*f) (int)
|

* values: all functions (procedures ...) with the given
signature

® problems with block structure and free use of procedure
variables.

3Actually, an identfier of the function is mentioned as well.

N o WNE O L oNO O R WN -

Escaping

program Funcvar;
var pv : Procedure (x: integer); (% procedur var

Procedure Q();

var
a : integer;
Procedure P(i : integer);
begin
a:= a+ti; (* a def'ed outside
end;
begin
pv = OP; (* “‘return'' P (as side effect)
end; (¥ "@" dependent on dialect
begin (* here: free Pascal
Q();
pv(1);
end.

*)
*)

® at the end of line 15: variable a no longer exists

® possible safe usage: only assign to such variables (here

pv) a new value (= function) at the same blocklevel
the variable is declared

Classes and subclasses

Parent class Subclass B Subclass C
INF5110 —
class A { class B extends A {|| class C extends A { cﬁiﬂ’.'c'f.;n
int i; int i int i
void f() {..l} void f() {...} void f() {...}
} } } Introduction

Various types and
their
representation

® classes resemble records, and subclasses variant types,
but additionally

® visibility: local methods possible (besides fields)

® subclasses

® objects mostly created dynamically, no references into
the stack

® subtyping and polymorphism (subtype polymorphism):
a reference typed by A can also point to B or C objects

Equality of types

Type checking

® special problems: not really many, nil-pointer still

possible
7-27

Access to object members: late binding

® notation rA.i or rA.f ()

. INF5110 —
¢ dynamic binding, late-binding, virtual access, dynamic Compiler

Construction

dispatch ...: all mean roughly the same

© central mechanism in many OO language, in connection
Wlth inheritance Various types and

their
Virtual access rA. £ () (methods) representation

Equality of types
“deepest” £ in the run-time class of the object, rA points t0 Type checking

® remember: “most-closely nested” access of variables in
nested lexical block

® Java:
® methods “in" objects are only dynamically bound (but
there are class methods too)
® jnstance variables not, neither static methods “in
classes.

7-28

Example: fields and methods

public class Shadow {
public static void main(String[] args){
C2 c2 = new C2();
c2.n();

}

class C1 {
String s = "C1";
void m () {System.out.print(this.s);}

class C2 extends Cl {
String s = "C2";
void n () {this.m();}

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-29

Diverse notions

INF5110 -

Compiler

°® Over/oading Construction
® common for (at least) standard, built-in operations
¢ also possible for user defined functions/methods ...
¢ disambiguation via (static) types of arguments Various types and
® “ad-hoc” polymorphism their)
o H B representation
implementation:

Introduction

“ " Equality of types
® put types of parameters as “part” of the name e

. . Type checki
® look-up gives back a set of alternatives Ep i

® type-conversions: can be problematic in connection with
overloading

* (generic) polymporphism
swap (var x,y: anytype)

Section
Equality of types

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen

Spring 2021

Classes as types

® classes = types? Not so fast
® more precise view:
® design decision in Java and similar languages (but not
all/even not all class-based OOLs): that class names are
used in the role of (names of) types.
¢ other roles of classes (in class-based OOLs)
® generator of objects (via constructor, again with the
same name)*
® containing code that implements the instances

C x = new C{()

*Not for Java's static classes etc, obviously.

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-32

Example with interfaces

interface 11 { int m (int x); }
interface 12 { int m (int x); }
class Cl1 implements 11 {

public int m(int y) {return y++; }

class C2 implements 12 {

public int m(int y) {return y++; }
}

public class Noduckl {
public static void main(String[] arg) {

11T x1 = new C1(); // 12 not possible
12 x2 = new C2();
x1l = x2; /) 777

Analogous when using classes in their roles as types

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-33

When are 2 types “equal”?

® type equivalence

® surprisingly many different answers possible

* implementor’s focus (deprecated): type int and
short are equal, because they “are” both 2 byte

® type checker must often decide such equivalences

° related to a more fundamental question: what's a type?

Example: pairs of integers

type pair_of_ints = int % int;;
let x : pair_of_ints = (1,4);;
l

Questions

* Is “the” type of (values of) x pair_of_ints, or
® the product type int * int , or

® both, as they are equal, i.e., pair_of_int is an
abbreviation of the product type (type synonym)?

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-34

Structural vs. nominal equality

a, b

var a, b: record
int i;
double d

end

a = c;

a = d;

a := b;

d = e;

typedef
- typedef idRecord: record
int i;
var c: record double d
int i; end
double d |
end

—_— var d: idRecord;

var e: idRecord;;

what's possible?

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

Types in the AST

® types are part of the syntax, as well
® represent: either in a separate symbol table, or part of

INF5110 -

the AST Compiler

Construction

Record type

record Procedure header Introduction
X: pointer to real; :feriifu“ypesa"d
y: array [10] of int proc(bool, representation
end union a: real; b:char endE, i o
int): void quality of types

end Type checking

Structured types without names

var-decls
var-decl
type-exp
stmple-type
structured-type

type-exps

b1l

var-decls s var-decl | wvar-decl

id : type-exp

sitmple-type | structured-type

int | bool | real | char | void
array [num] : type-exp

record var-decls end

union var-decls end

pointerto type-exp

proc (type-exps) type-exp

type-exps , type-exp | type-exp

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

Structural equality

function ypekqual (11, 12 : Typebp) : Boolean;
var temp ¢ Boolean
plop2: TypeEap s

" Test av om to typer er like

if 11 and 12 are of simple type then return 1] = 12

N INF5110 —
else if 1/ kind and (2.kind = array then (Stru ktur'llkhet)

Compiler
return th.size = .size and typelqual (th.childi, e2.chitd!)

else if 1/ kind = record and 12.kind = record

ved rekursiv gjennomgang Constructon
or iL.kind = wnion and (2.kind = wnion then
begin

Introduction
e temp and p! # nil and p2 # nil do
il pil.name # p2.name then
remp 1= false

Various types and
else i not typeEqual { pl.chitd] , p2.child])
then remp := false

their
representation
else begin
pl += pl.sibling ;
2= plsibling 3
end;

Equality of types
return iemp and p! = nil and p2 = nil ;
end

Rekursive kall Type checking
else if t1.kind = pointer and 12.kind nmi(rll\(‘n/
return typeEquai (1l child! , 12 child] ')

else if 1, kind = proc and (2 kind = proc then
begin

Om ogsa navnelikhet

while temp and pJ # nil and p2 # nil do

er lov, skal dette med
if mot typeEqual (pl.child] | p2.child])
then femp := false
else begin

pl i= plsibling ;
P2 1= plaibling ;
end;
return temp and p# = nil and p2 = nil

and typeEqual (t.child? | 12.child2 }
end

else return false ;
end ; (* ypekiqual)

else if ¢/ and 12 age type names then

return rypeEqual(getTypeExp(t]), getTypeExp(r2))

7-38

Types with names

var-decls
var-decl
type-decls
type-decl
type-exp
simple-type-exp
simple-type
structured-type

type-exps

—d -1 1L L Ll

var-decls ; var-decl | wvar-decl

id : simple-type-exp

type-decls 5 type-decl | type-decl

id = type-exp

simple-type-exp | structured-type
simple-type | id identifiers
int | bool | real | char | void
array [num] : simple-type-exp
record var-decls end

union var-decls end

pointerto simple-type-exp

proc (type-exps) simple-type-exp
type-exps , simple-type-exp
stmple-type-exp

Name equality

¢ all types have “names”, and two types are equal iff their
names are equal

® type equality checking: obviously simpler

® of course: type names may have scopes. ...

function typeEqual (11,12 : TypeExp) : Boolean;
var temp : Boolean ;
pl,p2 : TypeExp ;
begin
if 11 and 12 are of simple type then
return 1/ = ¢2
else if 1/ and 12 are type names then
return ¢/ = 2
else return false ;
end;

INF5110 —
Compiler
Construction

Introduction

Various types and
their
representation

Equality of types

Type checking

Type aliases

INF5110 —
* languages with type aliases (type synonyms): C, Pascal, e
ML
e often very convenient (type Coordinate = float Introduction
* float) :/hal'-iOUS types and

* light-weight mechanism representation
Equality of types

type alias; make t1 known also under name t2 Type checking

t2 = tl // t2 is the '‘same type ''.

¢ also here: different choices wrt. type equality

7-41

Type aliases: different choices

INF5110 —
Compiler
Construction

Alias, for simple types Alias of structured types Introduction
Various types and
7 . . their
tl = !nt, tl = array [10] of int; representation
t2 = int; t2 = array [10] of int; Eqtaiity of fypes
t3 = t2

Type checking

|
® often: t1l and t2 are the
“same” type ® mostly t3 # tl # t2

7-42

Section
Type checking

Chapter 7 “Types and type checking”
Course “Compiler Construction”
Martin Steffen

Spring 2021

Type checking of expressions (and
statements)

® types of subexpressions must “fit” to the expected types
the contructs can operate on
® type checking: top-down and bottom-up task
= synthesized attributes, when using AGs
® Here: using an attribute grammar specification of the
type checker
® type checking conceptually done while parsing (as
actions of the parser)
® more common: type checker operates on the AST after
the parser has done its job
® type system vs. type checker
® type system: specification of the rules governing the use
of types in a language, type discipline
® type checker: algorithmic formulation of the type
system (resp. implementation thereof)

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-44

Grammar for statements and expressions

program
var-decls
var-decl
type-exp
stmts
stmt

exp

A

var-decls ; stmts

var-decls ; var-decl | wvar-decl

id : type-exp

int | bool | array [num] : type-exp
stmts; stmt | stmt

if exp then stmt | id:=exp

exp~+ exp | exporexp | exp[exp]

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-45

Type checking as semantic rules

Grammar Rule

Semantic Rules

var-decl — id : type-exp

insert(1d .name, type-exp.type) b

nype-exp — int

ivpe-eap.iype = inieger

npe-exp — bool

ivpe-exp.type 1= boolean

ype-exp; — array
[num] of rype-exp,

npe-exp, aype i=
makeTypeNodelarray, num . size,
type-exps .type)?

stmt — 1f exp then stmt

if not typeLgual(exp.type, boolean)
then rype-error(simr)

sttt — id 1= exp

if mot nypeEqual(lookup(id .name),
exp.type) then type-error{stmi)

CXP| = eXpa + expy

if mot (rvpeEqualiexp, .type, integer)
and npelgual(exps type, integer))

then nype-errortexp;) 5

expy ype 1= integer

€XJ7) — CXpa OF €Xp3

it not (rypeEgual(exps . ivpe, boolean)
and typeLquallexps .type, boolean))

then nype-error(exp) 5

exp| .rpe 1= boolean

expy = expy [expy]

if isArrayTvpe(exp, .rvpe)
and rypeEgueal(exps

then exp, .fype 1= exp,.

else rype-error(exp,)

'pe, integer)
e.child

exp — num

exp.type 1= integer

exp — true

exp.rype 1= boolean

exp — false

exp.type 1= hoolean

exp — id

exp.type i = lookup(id .name) -

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-46

More “modern” presentation

® representation as derivation rules
e I': notation for symbol table

® T'(x): look-up

e I x:T: insert
® more compact representation

® one reason: “errors” left implicit.

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

Type checking (expressions)

Nx)=T
TE-ID —— TE-TRUE — T-FAL
Tkax:T I' F true : bool I' I false : bool
TE-Num
I'Fn:int

' expy : array_of T ' exps @ int

TE-ARRAY
Ik expy[exps] : T
I' - exp, : bool I' F exp,y : bool
Te-OR
I' - ezp, or ezxp, : bool
' ezp, : int 'k expy: int
TE-PLus

I' - exp; + expy @ int

Declarations and statements

',z :int | rest : ok ',z : bool |- rest : ok
TD-INT TD-BooL
I'F x:int; rest : ok I' - xz:bool; rest : ok

I' - num :int I(type-exp) =T

I',z : array numof T F rest : ok

TD-ARRAY
'k z:array [num] : type-exp ; rest : ok
'Fa:T 'Fexp:T T'F exp: bool I'F stmt : ok
T'S-ASSIGN
I'kxz:=exp: ok ' if exp then stmt : ok
I'F stmiy : ok I'F stmiy : ok
TS-SEQ

' stmtq 5 stmis : ok

References |

Bibliography

INF5110 —
Compiler
Construction

Introduction
Various types and
their
representation

Equality of types

Type checking

7-50

	Types and type checking
	Introduction
	Various types and their representation
	Equality of types
	Type checking

