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Run-time environments
Chapter
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about?
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8.1 Intro

The chapter covers different aspects of the run-time environment of a language. The RTE
refers to the design, organization, and implementation of how to arrange the memory and
how to access it at run-time. One way to understand the purpose of RTEs is: they have
to maintain the abstractions offered by the implemented programming language.

More concretely: The programming language speaks about variables and scopes, but
ultimately, when running, the data is arranged in words or sequences of bits, somewhere
in the memory, and the data must be addresseed adequatly. “Abstractions” that need to
be taken care of (i.e., code must be generated for that) include variables inside scopes,
static and dynamic memory allocation, parameter passing, garbage collection. The most
important control abstraction in languages is that of a “procedure”. Connected to that is
the run-time stack.
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8.1.1 Static & dynamic memory layout at runtime

code area

global/static area

stack

free space

heap

Memory

typical memory layout: for languages (as nowadays basically all) with

• static memory
• dynamic memory:

– stack
– heap

The picture represents schematically a typical layout of the memory associated with one
(single-threaded) program under execution. At the highest level, there is a separation
between “control” and “data” of the program. The “control” of a program is program
code itself; in compiled form, of course, the machine code. The rest is the “data” the code
operates on. Often, a strict separation between the two parts is enforced, even with the
help of the hardware and/or the operating system. In principle, of course, the machine
code is ultimately also “just bits”, so conceptually the running program could modify the
code section as well, leading to “self-modifying” code. That’s seen as a no-no, and, as
said, measures are taken that this does not happen. The generated code is not only kept
immutable, it’s also treated mostly as static (for instance as indicated in the picture): the
compiler generates the code, decides on how to arrange the different parts of the code, i.e.
decides which code for which function comes where. Typically, as indicated at the picture,
all code is grouped together into one big adjacent block of memory, which is called the
code area.

The above discussion about the code area mentions that the control part of a program
is structured into procedures (or functions, methods, subroutines . . . , generally one may
use the term callable unit). That’s a reminder that perhaps the single most important
abstraction (as far as the control-flow goes) of all but the lowest level languages is function
abstraction: the ability to build “callable units” that can be reused at various points in a
program, in different contexts, and with different arguments. Of course they may be reused
not just by various points in one compiled program, but by different programs (maybe
even at the same time, in a multi-process environment). An collection of such callable
units, arranged coherently and in a proper manner (and together with corresponding data
structures) is, of course, a library.
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The static placement of callable units into the code segment is not all that needs to be
arranged. At run-time, making use of a procedure means calling it and, when the pro-
cedure’s code has executed till completion, returning from it. Returing means that that
control continues at the point where the call originated (maybe not exactly at that point,
but “immediately afterwards”). This call-and-return behavior is at the core of realizing
the procedure abstraction. Calling a procedure can be seen as a jump (JMP) and likewise
the return is nothing else than executing an according jump instruction. Executing a
jump does nothing else than setting the so-called program pointer to the address given
as argument of the instruction (which in the typical arrangement from the picture is sup-
posed to be an address in the code segment). Jumps are therefore rather simple things, in
particular, they are unaware of the intended call-return discipline. As a side remark: the
platform may offer variations of the plain jump instruction (like jump-to-subroutine
and return-from-subroutine, JTS and RTS or similar). That offers more “function-
ality” which helps realizing the call-return discipline of procedures, but ulitmately, they
are nothing else than a slightly fancier form of jumps, and the basic story remains: on top
of hardware-supported jumps, one has to arrange steps that, at run-time, realize the call
and return behavior.

That needs to involve the data area of the memory (since the code area is immutable).
To the very least: a return from a procedure needs to know where to return to (since
it’s just a jump). So, when calling a function, the run-time system must arrange to
remember where to return to (and then, when the time comes to actually return, look up
that return address and us it for the jump back). In general, in all but the simplest or
oldest languages, calls can be nested, i.e., a function being called can in turn call another
function. In that nested situation procedures are executed LIFO fashion: the procedure
called last is returned from first. That means, we need to arrange the remembered return
addresses, one for each procedure call, in the form of a stack. The run-time stack is
one key ingredients of the run-time system for many languages. It’s part of the dynamic
portion of the data memory and separate in the picture from the other dynamic memory
part, the heap, from a gulf of unused memory. In such an arrangement, the stack could
grow “from above” and the heap “from below” (other arrangements are of course possible,
for instance not having heap and stack compete for the same dynamic space, but each one
living with an upper bound of their own).

So far we have discussed only the bare bones of the run-time environment to realize the
procedure abstraction (the heap may be discussed later): in all by the very simplest
settings, we need to arrange to maintain a stack for return addresses and manipulate
the stack properly at run-time. If we had a trivial language, where function calls cannot
be nested, we could do without a stack (or have a stack of maximal length 1, which is
not much of a stack). In a setting without recursion (which we discuss also later), also
similar simplifications are possible, and one could do without a official stack (though the
call/return would still be executed under LIFO discipline, of course).

But besides those bare-bones return-address stack, the procedure abstraction has more to
offer to the programmer than arranging a call/return execution of the control. What has
been left out of the picture, which concentrated on the control so far, is the treatment
of data, in particular procedure local data, so the question is related to how to realize at
run-time the scoping rules that govern local data in the face of procedure calls. Related
to that is the issue procedure parameters and parameter passing. A procedure may have



4 8 Run-time environments
8.1 Intro

its own local data, but also receives data upon being called as arguments. Indeed, the real
power of the procedure abstraction does not just rely on code (control) being available for
repeated exection, it owes its power on equal parts that it can be executed variously on
different arguments. Just relying on global variables and the fact that calling a function in
different contexts or situations will give the procedure different states for some global val-
ues provides flexibility, but it’s an undignified attempt to achieve something like parameter
passing. All modern languages support syntax that allows the user to be explicit about
what is considered the input of a procedures, its formal parameters. And again, arrange-
ments have to be made such that, at run-time the parameter passing is done properly. We
will discuss different parameter-passing mechanisms later (the main being call-by-value,
call-by-reference, and call-by-name, as well as some bastard scheme of lesser importance).
Furthermore, when calling a procedure, the body may contain variables which are not lo-
cal, but refer to variables defined and given values outside of the procedure (and without
officially being passed as parameter). Also that needs to be arranged, and the arrangement
varies deping on the scoping rules of the language (static vs. dynamic binding).

Anyway, the upshot of all of this is: we need a stack that contains more than just the
return addresses, proper information pertaining to various aspects of data are needed as
well. As a consequence, the single slots in the run-time stack become more complex;
they are known as activation record (since the call of a procedure is also known as its
activation).

The chapter will discuss different indgredients and variations of the activation record,
depending on features of the language.

8.1.2 Translated program code

code for procedure 1 proc. 1

code for procedure 2 proc. 2

⋮
code for procedure n proc. n

Code memory

• code segment: almost always considered as statically allocated
⇒ neither moved nor changed at runtime
• compiler aware of all addresses of “chunks” of code: entry points of the procedures
• but:

– generated code often relocatable
– final, absolute adresses given by linker / loader
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The layout of the code segment here assumes that the addresses of the procedures are fixed
and arranged statically in the code segment. That’s very plausible. Note that it’s not the
same as fixing the question “procedure P occuring in the source code is located at such
and such address”. That has to do with the fact that the name P may refer to different
procedures, all under the same name. A well-known example of that is late binding or
dynamic binding of methods in object-oriented languages. Binding generally refers to the
association of names with “entities”, like values or procedures. That’s a central aspect of
run-time environments. Sometimes, the binding can be established statically, at compile
time, or dynamically, at run-time. The act of resolving the location of particular method
of function, respectively jumping to that address, is also known as dispatch. In case of
dynamically or late-bound methods, it’s called not surprisingly dynamic dispatch.

The phenomenon of static vs. dynamic binding is not restricted to method or function
names. It can apply also to variables occuring in scopes. When talking about procedures,
it’s not only methods for which dynamic binding is common. Also in languages with
function variables, the dispatch has to be dynamic. That includes languages, which can
take functions as arguments, in particular functional languages.

8.1.3 Activation records

space for arg’s (parameters)

space for bookkeeping
info, including return
address

space for local data

space for local temporaries

Schematic activation record

• schematic organization of activation records/activation block/stack frame . . .
• goal: realize

– parameter passing
– scoping rules /local variables treatment
– prepare for call/return behavior

• calling conventions on a platform

We will come back later to discuss possible designs for activation records in more detail,
in the section about stack-based run-time environments. Activiation records (also known
as stack frames) are the elementary slots of call stacks, a central way to organize the
dynamic memory for languages with (recursive) procedures. There are also limitations of
stack-based organizations, which we also touch upon.
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8.2 The procedure abstraction: different layouts

In the following, we cover different layouts focusing first on the memory need in connection
with procedures (their local memory needs and other information to be maintained at run-
time, to “make it work”). Mostly, that will be a stack-arrangement, though at the end
we will discuss limitations of a pure stack-based run-time environment design for function
calls.

8.2.1 Static layout

A full static layout of the run-time environment means, that the location of “everything”
is known and fixed at compile time. All addresses of all of the memory known to the
compiler, for the executable code, all variables, and forms all forms of auxiliary data
(for instance big constants in the program, e.g., string literals). Such a layout is schown
schematically in Figure 8.1. A fully static scheme is rarely the case for today’s languages,
but was the case for instance in old versions of Fortran (Fortran77). Nowayday, there
coud be special applications, where static layout is used, like like safety critical embedded
systems.

code for main proc.

code for proc. 1

⋮
code for proc. n

global data area

act. record of main proc.

activation record of proc. 1

⋮
activation record of proc. n

Figure 8.1: Full static layout

Let’s look at a more concrete example in some variant of Fortan in Listing 8.1.
PROGRAM TEST
COMMON MAXSIZE
INTEGER MAXSIZE
REAL TABLE( 1 0 ) ,TEMP
MAXSIZE = 10
READ ∗ , TABLE( 1 ) ,TABLE( 2 ) ,TABLE(3)
CALL QUADMEAN(TABLE, 3 ,TEMP)
PRINT ∗ ,TEMP
END
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SUBROUTINE QUADMEAN(A, SIZE ,QMEAN)
COMMON MAXSIZE
INTEGERMAXSIZE, SIZE
REAL A(SIZE) ,QMEAN, TEMP
INTEGER K
TEMP = 0.0
IF ( (SIZE .GT.MAXSIZE) .OR. ( SIZE .LT. 1 ) ) GOTO 99
DO 10 K = 1 , SIZE

TEMP = TEMP + A(K)∗A(K)
10 CONTINUE
99 QMEAN = SQRT(TEMP/SIZE)

RETURN
END

Listing 8.1: A Fortran example

The details of the syntax and the exact way the program runs are not so important. Also
the exact details of the layout from Figure 8.2 matter not too much.

MAXSIZEglobal area

TABLE (1)
(2)
. . .
(10)

TEMP

3

main’s act.
record

A

SIZE

QMEAN

return address

TEMP

K

“scratch area”

Act. record of
QUADMEAN

Figure 8.2: Static layout for the Fortran example

Important is the discinction between global variables and local ones, here for those for the
“subroutine” (procedure). The local part of the memory for the procedure is a first taste
of an activation record. Later they will be organized in a stack, and then they are also
called stack frames but it’s the same thing. It’s space that is used (at run-time) to fill
the memory needs when calling the function (which is also known as “activation” of the
function). That needed space involves slots used to pass arguments (parameter passing)
and space for local variables. Needed also is a slot where to save the return address. We
said 100% exact details don’t matter, they also may depend on the platform and the OS.
But what is often typical (and will also be typical in the lecture) is that the parameters
are stored in slots before the return address and the local variables afterwards. In a way,
it’s a design choice, not a logical necessity, but it’s common (also later in this chapter).
It’s often arranged like that, for reasons of efficiency. Later, the layout of the activation
records will need some refinement, i.e., there will be more than the mentioned information
(parameters, local variables, return address) to be stored, when we have to deal with
recursion.
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The back-arrows in the figure refer to parameter passing and the distinction between
formal and actual parameter. We come to parameter passing later.

8.3 Stack-based runtime environments

8.3.1 Stack-based runtime environments

• so far: no(!) recursion
• everything’s static, incl. placement of activation records
• ancient and restrictive arrangement of the run-time envs
• calls and returns (also without recursion) follow at runtime a LIFO (= stack-like)

discipline

Stack of activation records

• procedures as abstractions with own local data
⇒ run-time memory arrangement where procedure-local data together with other info

(arrange proper returns, parameter passing) is organized as stack.

• AKA: call stack, runtime stack
• AR: exact format depends on language and platform

8.3.2 Situation in languages without local procedures

• recursion, but all procedures are global
• C-like languages

Activation record info (besides local data, see later)

• frame pointer
• control link (or dynamic link)1

• (optional): stack pointer
• return address

Where we are dealing with languages that support recursion, but no nesting of procedure
declarations. A prominent example for that is C, therefore we say we study activation
records for C-like languages. One step further, in the following section, will be to generalize
that to languages that do support nested procedure declarations (in a setting with lexically
bound variables; Pascal being one example.) That’s more general, and that nesting will
require to introduce, besides dynamic links, also static links

The notion of static links mentioned in the footnote is basically the same we encountered
before, when discussing the design of symbol tables, in particular how to arrange them
properly for nested blocks and lexcical binding. Here (resp. shortly later down the road),

1Later, we’ll encounter also static links (aka access links).
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the static links serve the same purpose, only not linking up (parts of a ) symbol table, but
activation records.

8.3.3 Euclid’s recursive gcd algo

#include <s t d i o . h>

int x , y ;

int gcd ( int u , int v )
{ i f ( v==0) return u ;

else return gcd (v , u % v ) ;
}

int main ( )
{ s c a n f ( "%d%d " ,&x,&y ) ;

p r i n t f ( "%d\n " , gcd (x , y ) ) ;
return 0 ;

}

Not that it’s the focus of the example, but the C-code represents a simple recursive imple-
mentation for calculating the greatest common divisor of two integers (making use of some
modulo calculation in the recursive call, that’s the % operator). C is also uses call-by-value
a parameter passing mechanism. We will cover parameter passing later.

As a side remark; the GCD procedure is recursive, all right. However, it makes use of a
restricted form of recursion, namely tail recursion. In the body of gcd, in each branch,
gcd is either not called at all, or it is called at the end of the procedure body, as last thing
before returning. That’s tail recursion.

It’s a simply form of recursion, also in connection with run-time environments. The call
which pushes a new stack frame to the run-time stack, is the last thing that happens in
an activation. That means, the space of the caller’s stack frame and the local data it
contains therein, is not actually needed any longer. That means, one could arrange the
run-time environment in such a way, not to add another stack frame for the callee, but to
recycle the space of the caller’s frame. If one (resp. the run-time system) still make use
of recursion, one still need to maintain a stack of return addresses, of course. However,
a tail recursive situation can be completely be replaced by an iterative one, using a loop
instead.

At the level of the run-time system, at machine code level (and potentially intermediate
code level), there are typically no looping constructs, of course, so making use of looping
instead of recursion is more a conceptual statement. Recursion would involve jumps plus
arranging a stack with return addresses, so one jumps repeatedly to the beginning of
a body, but at the end, one jumps back (which corresponds to a return). An iterative
solution would not use a stack, and would simply loop thought the body, without need
of returning; expect of course, a return to the code calling from the outside needs to be
done, in the example the return to the main method.
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8.3.4 Stack gcd

x:15
y:10global/static area

“AR of main”

x:15
y:10

control link

return address

a-record (1st. call)

x:10
y:5

control link

return address

a-record (2nd.
call)

x:5
y:0

control link
fp

return address
sp

a-record (3rd. call)

↓

• control link
– aka: dynamic link
– refers to caller’s FP

• frame pointer FP
– points to a fixed location in the current a-record

• stack pointer (SP)
– border of current stack and unused memory

• return address: program-address of call-site

The picture illustrates the notion control links, the frame pointer and the stack pointer. It
also shows that each of the 3 activations of the gcd procedure has its own data area where
the current values of local variables are held. In this example, the only local variables of
the gcd procedure are the formal parameters u and v (In the figures, the slots are called
x and y which is correct only for the global area, for activations of gcd, it should be u
and v).

There can be more local variables: C allows to introduce local variables, besides the
formal parameters, in functions or procedures. What is not allowed is to introduce local
procedures. There is another general reason, a activation record needs memory, that’s
for holding intermediate results when dealing with compound expressions. For that, the
compiler will typically use so-called temporary variables, variables introduced in the code
generation phase for exactly that purpose: hold intermediate results. We will see examples
of that later.

The exact design of activation record may vary. The need for a concept like the control
link comes from a simple fact. [More here. . . ]

The frame pointer points to the current activation record, i.e., the top-most entry in the
stack. Note that activation records or stack frame is not of fixed size. In the example, with
only one function, of course all activation records are of the same size. What is important
that the frame pointer points to a “definite” position inside the activation record in such a
way, that the local data (variables etc) can be accessed uniformely and fast. The dynamic
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link or control link corresponds to the frame pointer. The stack-pointer is something else
(and it’s said to be optional), it simply demarkates the border between the stack-occupied
part of the memory and the free part.

8.3.5 Local and global variables and scoping

Code

int x = 2 ; /∗ g l o b . var ∗/
void g ( int ) ; /∗ pro to type ∗/

void f ( int n)
{ stat ic int x = 1 ;

g (n ) ;
x−−;

}

void g ( int m)
{ int y = m−1;

i f ( y > 0)
{ f ( y ) ;

x−−;
g ( y ) ;

}
}

int main ( )
{ g ( x ) ;

return 0 ;
}

• global variable x
• but: (different) x local to f
• remember C:

– call by value
– static lexical scoping

The code is artificial, it will later be used to illustrate the run-time stack in a simple
setting. Being called with 2 initially, there are only three activations of the 2 functions f
and g altogether.

8.3.6 Activation records and activation trees

• activation of a function: corresponds to: call of a function
• activation record

– data structure for run-time system
– holds all relevant data for a function call and control-info in “standardized” form
– control-behavior of functions: LIFO
– if data cannot outlive activation of a function

⇒ activation records can be arranged in as stack (like here)
– in this case: activation record AKA stack frame
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The two pictures illustrate the notion of activation tree (where in the gcd-case, is not
much of a tree as it’s linear. An activation of gcd calls itself at most once (actually, gcd
is tail-recursive).

8.3.7 Activation record and activation trees

GCD

main()

gcd(15,10)

gcd(10,5)

gcd(5,0)

f and g example

main

g(2)

f(1)

g(1)

g(1)

8.3.8 Variable access and design of ARs

Layout g

• fp: frame pointer
• m (in this example): parameter of g
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Possible arrangement of g’s AR

• AR’s: structurally uniform per language (or at least compiler) / platform
• different function defs, different size of AR
⇒ frames on the stack differently sized
• note: FP points

– not: “top” of the frame/stack, but
– to a well-chosen, well-defined position in the frame
– other local data (local vars) accessible relative to that

• conventions
– higher addresses “higher up”
– stack “grows” towards lower addresses

The pictures use the following concvention. They show “pointers” or arrows to point to
the “bottom” of the meant slot. For example, fp points to the control link which has
offset 0 from that pointer. The return address given the slot below has a negative offset
to that pointer. Different presentations may employ different graphical conventions. The
graphical conventions are of course to be distinguished from the “calling conventions” and
the design of the activation record. One agreement in this layout is: the fp points to
the control link, i.e., the memory (perhaps a specific register) corresponding to the frame
pointer contains the address of the control link.

8.3.9 Layout for arrays of statically known size

Code

void f ( int x , char c )
{ int a [ 1 0 ] ;

double y ;
. .

}

name offset
x +5
c +4
a -24
y -32

access of c and y

c : 4( fp )
y : −32( fp )

access for a[i]
(−24+2∗ i ) ( fp )
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Layout

The example makes some not unplausible assumptions on the size of the involved data. The
addresses count 4 words, the character 1, the integers 2 words, the double 8. Notation
like 4(fp) is meant as some ad-hoc syntax to designate the memory interpreting the
content of fp as address and add 4 words to it. We will later encounter, in the context
of (intermediate) code, different addressing modes (like indirect addresses etc). Except in
very early times, Hardware gives support for more complex ways of accessing the memory,
like support for specifying given offsets.

8.3.10 2 snapshots of the call stack

x:2
x:1 (@f)static

main

m:2

control link

return address

y:1

g

n:1

control link

return address

f

m:1

control link
fp

return address

y:0
sp

g

...
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x:1
x:0 (@f)static

main

m:2

control link

return address

y:1

g

m:1

control link
fp

return address

y:0
sp

g

...

• note: call by value, x in f static

The picture on the slide refers to the simple, artificial C example involving procedures f
and g, which was also used to illustrate the activation tree.

8.3.11 How to do the “push and pop”

• calling sequences: AKA as linking conventions or calling conventions
• for RT environments: uniform design not just of

– data structures (=ARs), but also of
– uniform actions being taken when calling/returning from a procedure

• how to do details of “push and pop” on the call-stack

E.g: Parameter passing

• not just where (in the ARs) to find value for the actual parameter needs to be defined,
but well-defined steps (ultimately code) that copies it there (and potentially reads
it from there)

• “jointly” done by compiler + OS + HW
• distribution of responsibilities between caller and callee:

– who copies the parameter to the right place
– who saves registers and restores them
– . . .

8.3.12 Steps when calling

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new activation

record of the procedure (pushing them in order onto the runtime stack will
achieve this)

2. store (push) the fp as the control link in the new activation record
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3. change the fp, so that it points to the beginning of the new activation record.
If there is an sp, copying the sp into the fp at this point will achieve this.

4. store the return address in the new activation record, if necessary
5. perform a jump to the code of the called procedure.
6. Allocate space on the stack for local var’s by appropriate adjustement of the sp

• procedure exit
1. copy the fp to the sp (inverting 3. of the entry)
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s

8.3.13 Steps when calling g

Before call

rest of stack

m:2

control link

return addr.
fp

y:1

...
sp

before call to g

Pushed m

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

...
sp

pushed param.
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Pushed fp

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

control link

...
sp

pushed fp

8.3.14 Steps when calling g (cont’d)

Return pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

. . .
sp

fp := sp,push return addr.
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local var’s pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

y:0

...
sp

alloc. local var y
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8.3.15 Treatment of auxiliary results: “temporaries”

Layout picture

rest of stack

. . .

control link

return addr.
fp

. . .

address of x[i]

result of i+j

result of i/k
sp

new AR for f
(about to be cre-
ated)

...

• calculations need memory for intermediate results.
• called temporaries in ARs.
x [ i ] = ( i + j ) ∗ ( i /k + f ( j ) ) ;

• note: x[i] represents an address or reference, i, j, k represent values
• assume a strict left-to-right evaluation (call f(j) may change values.)
• stack of temporaries.
• [NB: compilers typically use registers as much as possible, what does not fit there

goes into the AR.]

The array example uses arrays indexed by integers. Integes are good (efficient) for array-
offsets, so they act as “references”. In a way, calculations like that is a form of pointer
arithmentic. That, however, is not the message of the slide. The message of the slide
is, that the body of a procedure may involve more complex operations than elementary
additions etc. The computations in the example are not really complex from programming
perspective, but they are compound. Perhaps there may be hardware support for x + y,
x-y, x+1 etc, but compound expressions are of course not natively supported. They
have to be broken down to elementary calculations and the intermediate results need
to be stored somewhere. The memory entities for those intermediate results are called
temporaries. We will encounter them when talking about code generation (where we need
to generate code that breaks down compound expressions into indivual steps). That comes
later, for the run-time enviromenent, the design of the activation record must provide
enough space so be able to locally store those results.

The side remark says, that often, one tries to avoid putting all local temporaries inside
the activation record, as much as possible, one would like to use registers for that.



20 8 Run-time environments
8.3 Stack-based runtime environments

8.3.16 Variable-length data

Ada code

type Int_Vector i s
array (INTEGER range <>) of INTEGER;

procedure Sum( low , high : INTEGER;
A: Int_Vector ) return INTEGER

i s
i : i n t e g e r

begin
. . .

end Sum ;

• Ada example
• assume: array passed by value (“copying”)
• A[i]: calculated as @6(fp) + 2*i
• in Java and other languages: arrays passed by reference
• note: space for A (as ref) and size of A is fixed-size (as well as low and high)

Layout picture

rest of stack

low:. . .

high:. . .

A:

size of A: 10

control link

return addr.
fp

i:...

A[9]

. . .

A[0]

...
sp

AR of call to SUM

The picture and the slide simply says: if an array passed as argument is allowed to have
a non-fixed size, that’s fine. When passing the array, the size is known, just store the
size at one particular, agreed upon place in the activation record (here offset 6), and then
used the value for your calculation when accessing a slot. So, compared to the previous
handling of arrays, there is just one layer of indirection involved.
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8.3.17 Nested declarations (“compound statements”)

C Code

void p ( int x , double y )
{ char a ;

int i ;
. . . ;

A: { double x ;
int j ;
. . . ;

}
. . . ;

B: { char ∗ a ;
int k ;
. . . ;

} ;
. . . ;

}

Nested blocks layout (1)

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

x:

j:

...
sp

area for block A allocated
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Nested blocks layout (2)

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

a:

k:

...
sp

area for block B allocated

The terminology of compound statements seems not widely used, at least not in the sense
used here. The gist of the example is: if one has local scopes of that kind (here called A
and B, there is no need to allocate space for both (in that way it’s treated in the same
spirit as union types). The space for the local variables from the first scope maybe reused
for the needs of the second. There is also no need to officially “push” and “pop” activation
records following the calling conventions (though nested scopes do follow a stack-discipline
and they could be treated as “inlined” calls to anonymous, parameterless procedures).

8.4 Stack-based RTE with nested procedures

What follows in this section (illustrated with Pascal), is to relax one restriction we had so
far wrt. the nature of variables. It may not have been obvious, but it should become so
now: We were operating with a C-like language, by which one mean: lexical scoping and
non-nested functions or precedures. That means: there are only two “kinds” of variables:
global ones (which are static) and local ones (which are in the current stack frame. The
local ones can be accessed by offsets from the frame pointer.

Now, with nested procedures (and still lexical scoping) there are variables neither static
nor residing the the current stack frame. So we need a way to access those during run-time.
That will be done (in a Pascal-like language), introducing static links.
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8.4.1 Nested procedures in Pascal

The code is in some form of Pascal. The comments after the begin and end statements
indicate to which procedure that part belong. Since q is nested in p, and since p has a
local variable n in the same scope, this local variable n is accessible inside q. At run-time,
in an call to q, the corresponding activation record will reside on the run-time stack. If
the body of q makes use of n (not explicitly shown in the skeletal code), it needs a way
to locate the content. From the perspective of q, the variable is neither local to q nor
global. It’s of course local to . . .
program nonLocalRef ;
procedure p ;
var n : integer ;

procedure q ;
begin

(∗ a r e f t o n i s now
non− l o c a l , non−g l o b a l ∗)

end ; (∗ q ∗)

procedure r ( n : integer ) ;
begin

q ;
end ; (∗ r ∗)

begin (∗ p ∗)
n := 1 ;
r ( 2 ) ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

• proc. p contains q and r nested
• also “nested” (i.e., local) in p: integer n

– in scope for q and r but
– neither global nor local to q and r

8.4.2 Accessing non-local var’s

Stack layout

vars of main

control link
return addr.

n:1

p

n:2
control link
return addr.

r

control link
fp

return addr.
sp

q

...

calls m → p → r → q

• n in q: under lexical scoping: n declared in procedure p is meant
• this is not reflected in the stack (of course) as this stack represents the run-time call

stack.
• remember: static links (or access links) in connection with symbol tables



24 8 Run-time environments
8.4 Stack-based RTE with nested procedures

Symbol tables

• “name-addressable” mapping
• access at compile time
• cf. scope tree

Dynamic memory

• “adresss-adressable” mapping
• access at run time
• stack-organized, reflecting paths in call graph
• cf. activation tree

8.4.3 Access link as part of the AR

Stack layout

vars of main

(no access link)

control link

return addr.

n:1

n:2

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → r → q

• access link (or static link): part of AR (at fixed position)
• points to stack-frame representing the current AR of the statically enclosed “proce-

dural” scope

The access links, same as control links point “to” a stack frame. As explained, the point
of reference for a frame is not the start, not the end of the stack frame; the "anchor point"
of of stack frame is the where the frame point points to, when the stack frame is on top
of the frame. And that is (in the shown layout) also the slot that contains the control
links.
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8.4.4 Example with multiple levels

program chain ;

procedure p ;
var x : integer ;

procedure q ;
procedure r ;
begin

x :=2;
. . . ;
i f . . . then p ;

end ; (∗ r ∗)
begin

r ;
end ; (∗ q ∗)

begin
q ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

In the example procedure p contains procedure q and that in turn contains r. That is the
static structure, which is relevant for lexically scoped variables. At run-time, the main
procure calls p which calls q which calls r, so that order is somehow aligned with the static
nesting structure, but that’s not the point of the example. It’s not a complete coincidence,
a call chain like p calls r which calls q is of course not possible, because r is is nested
inside q.

Well, to be precise, it’s not 100% impossible (though not shown in this example). As we
have seen earlier, Pascal supports function variables. With that, it is in principle possible,
to pass a locally defined procedure outside via the variable, so that it can be accessed
that way from the “outside”. We will look at the consequences of that in the following
section, when we are discussing higher-order functions. So the current example and the
current section is not concerned with that more complex setting, it purely about nested
procedures here, not higher-order procedure and/or procedure variables.

When the inner prodecure r is called, the variable x is accessed. That is declared in the
body of procedure p, which is two static nesting-levels away from that.
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8.4.5 Access chaining

Layout

AR of main

(no access link)

control link

return addr.

x:1

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → q → r

• program chain
• access (conceptual): fp.al.al.x
• access link slot: fixed “offset” inside AR (but: AR’s differently sized)
• “distance” from current AR to place of x

– not fixed, i.e.
– statically unknown!

• However: number of access link dereferences statically known
• lexical nesting level

8.4.6 Implementing access chaining

As example:

fp.al.al.al. ... al.x

• access need to be fast => use registers
• assume, at fp in dedicated register

4( fp ) −> r eg // 1
4( reg ) −> r eg // 2
. . .
4( reg ) −> r eg // n = d i f f e r e n c e i n n e s t i n g l e v e l s
6( reg ) // a c c e s s content o f x

• often: not so many block-levels/access chains nessessary

The “machine code” plausibly uses registers to follow the change. It’s assumed that the
static link is contained in an offset of 4 in the activation record (pointed at via the frame
pointer fp, which also may be kept in a dedicated register, like typically the stack pointer).
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Variable x is assumed at an offset of 6 in the frame that corresponds to the scope where
x is defined.

Of course, following a chain of access links is costly. The slide optimistically states that
realistically, the chains are not really very long in practices. That is, I guess, plausible,
for instance for Pascal program. On the other hand, in languages where functions play a
central role (i.e., in functional languages), a programmer may well structure the code with
functions nested inside functions nested inside functions etc. Of course that depends a bit
in the problem and the personal programming style, but still, nesting of functions comes
easy in functional languages.

It should be noted that a stack-based run-time environments will no longer be doable for
fully higher-order functions; we will cover that later to some extent. However, the concept
of static links is still relevant then, even if it does not connect slots (i.e., activation records)
on a stack.

8.4.7 Calling sequence

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new activation record of the

procedure (pushing them in order onto the runtume stack will achieve this)
2. – push access link, value calculated via link chaining (“ fp.al.al.... ”)

– store (push) the fp as the control link in the new AR
3. change fp, to point to the “beginning”

of the new AR. If there is an sp, copying sp into fp at this point will achieve this.
1. store the return address in the new AR, if necessary
2. perform a jump to the code of the called procedure.
3. Allocate space on the stack for local var’s by appropriate adjustement of the sp

• procedure exit
1. copy the fp to the sp
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s and the access link
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8.4.8 Calling sequence: with access links

Layout

AR of main
(no access link)

control link
return addr.

x:...

access link
control link
return addr.
access link
control link
return addr.

no access link
control link
return addr.

x:...

access link
control link
return addr.
access link
control link

fp
return addr.

sp
...

after 2nd call to r

• main → p → q → r → p → q → r
• calling sequence: actions to do the “push & pop”
• distribution of responsibilities between caller and callee
• generate an appropriate access chain, chain-length statically determined
• actual computation (of course) done at run-time

8.5 Functions as parameters

There is more to scoping and run-time environments that nested procedure declarations. We have seen
glimpses of that before, mostly in the context of Pascal. We have seen it in the Pascal example with
procedure variables. We will revisit that example here. We also shortly mentioned in connection with
static links, without a concrete example involving procedure variables and without going into details, that
those variable complicate matter. Ultimately, making in impossible to arrange the activation records on a
stack, when dealing with full higher-order functions.

Of course, even with higher-order function, the calls and returns follow a LIFO discipline. So, there is still
a notion of call-stack. The stack in the run-time system is not just there to manage the return addressed
and to regulate thereby the proper control-flow of calls and returns in a stack-like manner. The stack also
allocates and de-allocates the memory needs of the activated functions (plus some mechanism to find the
proper lexical scope, if the language is lexically scoped; that’s the statics links).

Anyway, that stack arrangement for the data works in that, luckily, the life-time of the data for a function
activation is aligned with the life time of the activation itself: when a function returns, removing the
return address for the stack, also the local data is no longer needed. This means, one can treat the return
addresses and the data jointly on a stack the way dicussed.

For higher-order function, this alignement of the life-times of function activations and data declared in a
function is no longer given. Therefore, one need a more general form of run-time environment, putting the
activation records on the heap. The corresponding concept is typically not called activation record any
more, but it called closure.



8 Run-time environments
8.5 Functions as parameters 29

We start less ambitious, though, we don’t fully embrace higher-order functions, but look at functions as
parameters only. In that setting, the alignment of local data and function allocation still holds, though it
get’s more complex. Anyway, with this alignment one still can make a stack-based arrangment. In a way,
one has stack-arranged closures.

However, generally, when talking about full closures, they are normally heap arranged. There are not
many languages nowadays that bother to support procedure parameters without also support procedures
as return values.

Pascal does, so it’s not a higher-order, but actually since Pascal supports procedure variables, there is a
mechanism to “return” a function as side-effect. That means, Pascal stack-based run-time environment
design will run into trouble, as we will see.

8.5.1 Procedures as parameter

program c l o s u r e e x ( output ) ;

procedure p ( procedure a ) ;
begin

a ;
end ;

procedure q ;
var x : integer ;

procedure r ;
begin

writeln ( x ) ; // ``non−l o c a l ' '
end ;

begin
x := 2 ;
p ( r ) ;

end ; (∗ q ∗)

begin (∗ main ∗)
q ;

end .

8.5.2 Procedures as parameters, same example in Go

package main
import ( " fmt " )

var p = func ( a ( func ( ) ( ) ) ) { // ( u n i t −> u n i t ) −> u n i t
a ( )

}

var q = func ( ) {
var x = 0
var r = func ( ) {
fmt . P r i n t f ( " x = %v " , x )
}
x = 2
p ( r ) // r as argument

}

func main ( ) {
q ( ) ;

}

8.5.3 Procedures as parameters, same example in ocaml

l e t p ( a : u n i t −> u n i t ) : u n i t = a ( ) ; ;

l e t q ( ) =
l e t x : i n t r e f = r e f 1
in l e t r = function ( ) −> ( p r i n t _ i n t ! x ) (∗ d e r e f ∗)
in
x := 2 ; (∗ a s s i g n m e n t t o r e f −t y p e d var ∗)
p ( r ) ; ;
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q ( ) ; ; (∗ `` body o f main ' ' ∗)

8.5.4 Closures and the design of ARs

• [? ] rather “implementation centric”
• closure there:

– restricted setting
– specific way to achieve closures
– specific semantics of non-local vars (“by reference”)

• higher-order functions:
– functions as arguments and return values
– nested function declaration

• similar problems with: “function variables”
• Example shown: only procedures as parameters, not returned

8.5.5 Closures, schematically

• independent from concrete design of the RTE/ARs:
• what do we need to execute the body of a procedure?

Closure (abstractly)

A closure is a function body2 together with the values for all its variables, including the non-local ones.2

• individual AR not enough for all variables used (non-local vars)
• in stack-organized RTE’s:

– fortunately ARs are stack-allocated
→ with clever use of “links” (access/static links): possible to access variables that are “nested

further out”/ deeper in the stack (following links)

8.5.6 Organize access with procedure parameters

• when calling p: allocate a stack frame
• executing p calls a => another stack frame
• number of parameters etc: knowable from the type of a
• but 2 problems

“control-flow” problem

currently only RTE, but: how can (the compiler arrange that) p calls a (and allocate a frame for a) if a
is not know yet?

2Resp.: at least the possibility to locate them.
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data problem

How can one statically arrange that a will be able to access non-local variables if statically it’s not known
what a will be?

• solution: for a procedure variable (like a): store in AR
– reference to the code of argument (as representation of the function body)
– reference to the frame, i.e., the relevant frame pointer (here: to the frame of q where r is

defined)
• this pair = closure!

8.5.7 Closure for formal parameter a of the example

• stack after the call to p
• closure 〈ip, ep〉
• ep: refers to q’s frame pointer
• note: distinction in calling sequence for

– calling “ordinary” proc’s and
– calling procs in proc parameters (i.e., via closures)

• that may be unified (“closures” only)

8.5.8 After calling a (= r)

• note: static link of the new frame: used from the closure!
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8.5.9 Making it uniform

• note: calling conventions differ
– calling procedures as formal parameters
– “standard” procedures (statically known)

• treatment can be made uniform

8.5.10 Limitations of stack-based RTEs

• procedures: central (!) control-flow abstraction in languages
• stack-based allocation: intuitive, common, and efficient (supported by HW)
• used in many languages
• procedure calls and returns: LIFO (= stack) behavior
• AR: local data for procedure body

Underlying assumption for stack-based RTEs

The data (=AR) for a procedure cannot outlive the activation where they are declared.

• assumption can break for many reasons
– returning references of local variables
– higher-order functions (or function variables)
– “undisciplined” control flow (rather deprecated, goto’s can break any scoping rules, or procedure

abstraction)
– explicit memory allocation (and deallocation), pointer arithmetic etc.

8.5.11 Dangling ref’s due to returning references

int ∗ dangle ( void ) {
int x ; // l o c a l var
return &x ; // a d d r e s s o f x

}

• similar: returning references to objects created via new
• variable’s lifetime may be over, but the reference lives on . . .
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8.5.12 Function variables
program Funcvar ;
var pv : Procedure ( x : integer ) ; (∗ p r o c e d u r var ∗)

Procedure Q( ) ;
var

a : integer ;
Procedure P( i : integer ) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` r e t u r n ' ' P ( as s i d e e f f e c t ) ∗)

end ; (∗ "@" d e p e n d e n t on d i a l e c t ∗)
begin (∗ h e r e : f r e e P a s c a l ∗)

Q( ) ;
pv ( 1 ) ;

end .

funcvar
Runtime error 216 at $0000000000400233

$0000000000400233
$0000000000400268
$00000000004001E0

8.5.13 Functions as return values
package main
import ( " fmt " )

var f = func ( ) ( func ( int ) int ) { // u n i t −> ( i n t −> i n t )
var x = 40 // l o c a l v a r i a b l e
var g = func ( y int ) int { // n e s t e d f u n c t i o n

return x + 1
}
x = x+1 // u p d a t e x
return g // f u n c t i o n as r e t u r n v a l u e

}

func main ( ) {
var x = 0
var h = f ( )
fmt . P r i n t l n ( x )
var r = h ( 1 )
fmt . P r i n t f ( " r = %v " , r )

}

• function g
– defined local to f
– uses x, non-local to g, local to f
– is being returned from f

8.5.14 Fully-dynamic RTEs

• full higher-order functions = functions are “data” same as everything else
– function being locally defined
– function as arguments to other functions
– functions returned by functions

→ ARs cannot be stack-allocated
• closures needed, but heap-allocated (6= Louden)
• objects (and references): heap-allocated
• less “disciplined” memory handling than stack-allocation
• garbage collection
• often: stack based allocation + fully-dynamic (= heap-based) allocation

The stack discipline can be seen as a particularly simple (and efficient) form of garbage collection: returning
from a function makes it clear that the local data can be thrashed.



34 8 Run-time environments
8.6 Parameter passing

8.6 Parameter passing

We discussed how the run-time environment treats procedures as a central abstraction of programming
languages. Often, it results in activation records allocated on the run-time stack; sometimes that’s not
needed if the language is quite primitive (no recursion), sometimes allocating activation records on the stack
is not possible, if the language is expressive as far as procedures are concerned (higher-order functions).

We also discussed typical designs of activation records, with the frame pointer as the “anchor” to the
activation record. Besides other information, the activation records in particular contains space for the
parameters of a procedure, if any. Parameters passing the mechanism where the caller "communicates"
with the callee activation. That is bi-directional in the general case: the caller hands over the actual
parameter values to the callee at call-time and, upon returning, the callee can hand back a return value.

The communication is done via appropriate slots in the activation record. Let’s focus on the input param-
eters of a called procedure, not the return value or return parameter. As we have sketched earlier, a typical
arrangement is that those parameters are located “at the end” of the caller activation record resp. “at the
beginning” of the callee activation record. We also discussed or sketched the concept of calling sequence,
the steps the machine code does to realize the calls and returns, including handing over the parameters
from caller to callee (and later dealing with the return value).

However, one aspect was not really discussed, namely what exactly is passed from called to callee (and
back). Sure, the “parameters” are passed, but there are different ways to do that. There is one basic choice
one can do: make copy of the value to hand over, or alternatively hand over from the caller to callee a
reference to the slot where the caller keeps the value, such that the callee can access it. This latter way
of using a reference is more obvious for the case the the caller passes the argument to the callee. For the
return, it callee cannot just return the reference to a slot where it stores the value to be return; after all,
after returning, that part of the stack is popped off and thereby not usable anymore (the reference would
have to be counted as dangling). Still, one can also handle return in a “by reference” manner, just not in
the naive way using a reference in the callee activation record. We will see later examples.

These two ways are called call-by-value and call-by-reference (and in this terminology, one speaks out
calling, not returning).

8.6.1 Call by-value, by-reference, by value-reference

Call-by-value is conceptually the simplest, the caller makes a copy of the data to be used by the callee.
Call-by-refennce is conceptually also simple, though sometimes one finds it confused with something else,
also on the internet and in text-books. In the above texts, it was formulated like that: the caller hands
over to the callee a reference to the place in its activation record where the caller keeps the data being
handed over. One could say shorter that in call-by-reference, a reference to the data is handed over. That’s
correct, of course, but it can more easily be misinterpreted.

The confusion starts if one has a programming language which supports references or pointers, as most
languages do. Either explicitly and visible to the user, as for instance in C, or implicitly as in Java. In
Java, instances of classes and arrays, for example, are treated as references by the language in general. A
variable of a class type or of an array type does not containt the object itself or the array itself, but a
reference or pointer to the data (typically on the heap).

That includes the treatment when calling function with an object or array as argument, or references
in general. If we assume a language with call-by-value, if we assume a situation where a reference is
handed over, is that call-by-reference? From the perspective of a compiler writer and in particular from
the perspective of the calling sequence, the answer is clear: of course not! The data is copied from the
caller to the callee, that’s call-by-value without any doubt. Passing a reference by-reference would me, the
callee would receive a reference to the caller’s slot which in turn contains a reference to the data.

The parameter passing mechanism of Java (and C, and many other languages) is call-by-value, period.
Still, one finds statements like “be careful, in Java, objects and arrays are passed by reference, unlike data
like integers or floats”. And that may lead to confusion. To avoid that, the situation where references are
passed by value is sometimes called “call-by-value-reference”, though in my opinion one would not need
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a special word for that: all data is passed uniformely by call-by-value, and that includes references, as
well.

Does it matter?. It depends, perhaps it’s a bit splitting hairs, especially from the perspective of the
programmer, i.e., user of a language. Passing a reference or a reference data in call-by-value language
certainly feels like call-by-reference. Both for true call-by-reference and in call-by-value-reference, the
callee works on the data "shared" with the callee, i.e., the callee’s versions is aliased. Only in the case of
call-by-reference, the data being sharing is on the stack, in the caller’s activation record, in the case of a
call-by-value-reference, the sharing is done via the heap. But that may be a fact internal to the run-time
system and of little interest for the programmer. With the data being shared, if the calling procedure
does some changes to the values of the parameters, those changes become available to the caller. This
way, in a call-by-reference language, the formal parameters are commonly not just used to communicate
data from caller to callee, but also to communicate information back, in that the handed over arguments
have been changed. In that way, the parameters take also the task of “returning results”. In a call-by-
reference language, one can thus work without ever officially returning a result value (via return v), but
works with functions of return type void or similar. Sometimes that’s used to distinguish procedures from
functions, which do return a value. Of course, one can program the same way in a call-by-value language
which supports pointer or references.

In a language with call-by-value (without references), one cannot use the call-parameters for (also) com-
municating results back to the caller. One way of doing it is, of course, returning the value via a return
statement. But that’s not the only way. One finds also languages which support two kinds of parameters,
for calling, as usual, and parameter(s) for returning. There are sometimes called in and out-parameters.
So a procedure declaration in-parameters for receiving the arguments and out-parameters for returning
the results (often multiple in-parameters but at most one out-parameter) In such a design, the caller can
use call-by-value when calling. However, out-parameter is treatedin a by-reference manner. Upon calling,
the caller informs the callee where it wants to find the result after the callee is finished, and for that it the
callee activation record stores the address of that call-parameter, of course, the actual call-parameter, not
the formal one.

8.6.2 Communicating values between procedures

• procedure abstraction, modularity
• parameter passing = communication of values between procedures
• from caller to callee (and back)
• binding actual parameters to forma ones
• with the help of the RTE
• formal parameters vs. actual parameters
• two principal versions

1. by-value
2. by-reference

8.6.3 CBV and CBR, roughly

Intro

Core distinction/question

on the level of caller/callee activation records (on the stack frame): how does the AR of the callee get hold
of the value the caller wants to hand over?

1. callee’s AR with a copy of the value for the formal parameter
2. the callee AR with a pointer to the memory slot of the actual parameter

• if one has to choose only one: it’s call-by-value
• remember: non-local variables (in lexical scope), nested procedures, and even closures:

– those variables are “smuggled in” by reference
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– [NB: there are also by value closures]

CBV is in a way the prototypical, most dignified way of parameter passsing nowadays, supporting the
procedure abstraction. If one has references (explicit or implicit, of data on the heap, typically), then one
has call-by-value-of-references, which, “feels” for the programmer as call-by-reference. Some people even
call that call-by-reference, even if it’s technically not, as mentioned earlier.

As also mentioned earlier, if the callee’s activation record gets a copy of the actual parameters upon being
called, one also needs a machanism to return results back, and, in according with the treatment of the
procedure arguments, the result is then copied back in a pure call-by-value scheme. Also possible, however,
is that a results are treated differently, see later.

Procedure or functions may operate with variables in its body, that are not handed over as parameters.
Even in the simplest setup, a procedure can operate on global variables. Access to non-local variables
necessitated static links in the activation record for languages supporting nested procedures, and to deal
properly with higher-order functions, one needs heap-allocated activation records. Independent from how
complex the language design wrt. procedures, there are two kinds of variables whose values originate
from outside the procedure itself. One of course the input parameters which is the topic we are currently
discussing. The “official” parameters of a procedure are handed over via call-by-value, call-by-reference,
or some other scheme. But what about the “inofficial input parameter”, the variable that come from
somewhere outside?

For the global variables, they are of course not copied, their address is globally know. For the variables
originating from an surrounding procedure body, in which the procedure of the current activation record is
nested in, the corresponding activation record can be located via following static links. At least that’s the
situation for languages with lexical scoping. Anyway, also the values for those variables, when used in a
procedure body are not copied in, i.e., even in a call-by-value parameter-passing scheme, they are treated
typically by-reference.

Go, for instance, is an imperative language with call-by-value parameter passing, which supports higher-
order functions and thus closures, which treats “smuggled in” variables by-reference. That is the standard
treatment. If in such a language, one is unhappy with the by-reference treatment of th smuggled in
variables, one can of course rewrite the procedure, add more input parameters and hand over the value
officially, thereby obtaining a call-by-value treatment.

The technique to systematically promote outside variables to official parameters is known as λ-lifting. It’s
mostly used in some compilers for functional languages ([? ]).

8.6.4 Parameter passing by-value

The first inc2 example does not work, of course, if the intention of the function is to do a double increment.
Sure, the function increments its integer argument by 2, allright, but it increments a copy of the actual
parameter, passed by value (and does not do anything with the increased value otherwise). In particular,
it does not return the incremented value; the procedure’s return type is void. The second version, what
is passed is a pointer to, i.e., address of an integer value, as indicated by the parameter type int *. Of
course, the intention is not to increment that address by two, but to increment the value at that address
accordingly. So the increment operation ++ is applied to *x, not x.

In C, it would actually be allowed to do incrementations and other calculations on addresses or pointer;
that’s known as pointer arithmetic. Java and other languages would don’t offer that. Some make the
distinction in terminology that Java has references whereas C has pointers.

How is it in Java, needs clarification

The fact that some variables do not contain data values directly but a pointer to the place where to find the
value is not visible directly to the programmer in Java. There is no need to explictly figure out the address
of some place of data nor to explicitly dereference and address to obtain the value. That’s all behind the
scenes. In connection with parameter passing and this increment example: if one had a method inc2,

https://en.wikipedia.org/wiki/Lambda_lifting
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then the declaration void inc2 (int x) {x++;x++;} would corresponds to the first C-example. And
a declaration using type Integer for the parameter instead corresponds to the second example.

If one tries it out on real Java code, one may, however, get some suprise. See Listing 8.2.

public c l a s s Inctwo {
public s t a t i c void i n c 2 ( int x ) {++x;++x ; }
public s t a t i c void i n c 2 ( I n t e g e r x ) {x++;x++;}
public s t a t i c void main ( S t r i n g [ ] arg ) {

int x1 = 0 ;
I n t e g e r x2 = new I n t e g e r ( 0 ) ; // d e p r e c a t e d
i n c 2 ( x1 ) ;
i n c 2 ( x2 ) ;
System . out . p r i n t ( x2 ) ; // g u e s s what ' s p r i n t e d

}
} ;

Listing 8.2: Call-by-value or by-value-reference, or what?

There are some aspects of the code, unrelated to the issue at hand, namely parameter passing. One is that
there are two methods called inc2. Depending on whether the method is called with x1 as argument or
x2, the appropriate one is chosen. The parameter for both versions is of different type, int vs. Integer,
and that’s good enough for disambiguation. That’s an example of overloading, more precisely, of method
overloading, a variant of polymorphis. We brushed upon overloading in the chapter about types and
type checking. Another aspect crucial for parameter passing is the fact that the methods are static, the
same would occur when using late-bound methods.

What’s then the issue? According to the discussions about call-by-value used on reference data, one could
suspect, that the value of x2 printed at the end is 2, i.e., the second version of the method inc2 in the
example corresponds to the second version of the C-code, passing a refence by value to a called procedure
or methods. Call-by-value-reference is also what happens there. However, the printed value is not 2, but
0. So the method behaves as if it where call-by-value on an integer value, not as the counter-part in C.

The reason(s) for that are actually quite simple, and they have also not much to do much with parameter
passing. You may try to reflect on why the result is 0 before reading on.

The reasons have to do with with the nature of the ++ operation and some conversions that are done
behind the scene.

First to the ++ operator. It’s not defined on integers, i.e, expressions like 5++ are illegal. What is allowed
are ++x and x++, the pre-increment resp. post-increment of the integer content of the variable x (the
difference between pre- and post-increment are not so relevant in the context of this discussion). If x is
of type int, the operator directly takes increments the content of the variable by 1 and stores the result
back to x. So far, so obvious.

The operator, however works also on variables type by Integer. An expression like (new Integer(5))++
is illegal; as said, ++ works on variables only. In particular ++ is not interpreted or translated to invoke a
“method” on the integer object, perhaps like the following:

I n t e g e r x = new I n t e g e r ( 5 ) ;
int h = h . i n t V a l u e ( ) ; // t h a t ' s p o s s i b l e
x . s e t I n t V a l u e ( h+1); // t h a t ' s i m p o s s i b l e

That’s illegal in Java. Instances of Integer are immutable, in particular, they don’t have a set-method;
they do have a get-method, called intValue.

If, however, ++ is applied to a variable of type Integer, what then happens is that the object of type
Integer is converted to the corresponding integer value of type int, and in that way x++ in the second
method is well-typed and works, with some conversion going on behind the scenes. This implicit conversion
can be interpreted in leading to a form of polymorphism. The line between overloading and conversions
of that kind is a bit blurred; both count among so-called ad-hoc polymorphism accordin to the seminal
disucssion of different forms of polymorphism from [? ]. In that paper, such conversions are called
coercions.

That should make clear what happens in Listing 8.2. The reference to the integer object is passed by-value,
the body operators on the variable x, the formal parameter of type Integer, which contains a copy of a
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reference, at least at the beginning. Operating on x doing x++ does not change the state of the integer
object, but creates a new one, to which the parameter x points, thereby severing the connection to the
caller’s reference kept in x2.

In general, the remark still holds: in a call-by-value language, passing references as values makes it behave
like call-by-reference, though it technically is not. If, for instance, passes a “real object” (not a special
case of an immutable value object as here with some specific coversions going on) an the callee mutates
instance variables in that object, then of course the calleer will see those changes. But for the special
case if Integer objects, the code of C with pointer behaves different from the “analogous” code in Java
with references. In connection with that: as said, integer object are immutable, and for immutable data
call-by-reference and call-by-value are the same anyway.

• in C: CBV only parameter passing method
• in some lang’s: formal parameters “immutable”
• straightforward: copy actual parameters → formal parameters (in the ARs).

C examples

void i n c 2 ( int x )
{ ++x , ++x ; }

void i n c 2 ( int ∗ x )
{ ++(∗x ) , ++(∗x ) ; }
/∗ c a l l : i n c (&y ) ∗/

void i n i t ( int x [ ] , int s i z e ) {
int i ;
for ( i =0; i<s i z e ,++ i ) x [ i ]= 0

}

arrays: “by-reference” data
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8.6.5 Call-by-reference

• hand over pointer/reference/address of the actual parameter
• useful especially for large data structures
• typically (for cbr): actual parameters must be variables
• Fortran actually allows things like P(5,b) and P(a+b,c).

void i n c 2 ( int ∗ x )
{ ++(∗x ) , ++(∗x ) ; }
/∗ c a l l : i n c (&y ) ∗/

void P( p1 , p2 ) {
. .
p1 = 3

}
var a , b , c ;
P( a , c )

8.6.6 Call-by-value-result

• call-by-value-result can give different results from cbr
• allocated as a local variable (as cbv)
• however: copied “two-way”

– when calling: actual → formal parameters
– when returning: actual ← formal parameters

• aka: “copy-in-copy-out” (or “copy-restore”)
• Ada’s in and out paremeters
• when are the value of actual variables determined when doing “actual ← formal parameters”

– when calling
– when returning

• not the cleanest parameter passing mechanism around. . .

8.6.7 Call-by-value-result example

void p ( int x , int y )
{

++x ;
++y ;

}

main ( )
{ int a = 1 ;

p ( a , a ) ; // :−O
return 0 ;

}



40 8 Run-time environments
8.6 Parameter passing

• C-syntax (C has cbv, not cbvr)
• note: aliasing (via the arguments, here obvious)
• cbvr: same as cbr, unless aliasing “messes it up”3

8.6.8 Call-by-name (C-syntax)

• most complex (or is it . . . ?)
• hand over: textual representation (“name”) of the argument (substitution)
• in that respect: a bit like macro expansion (but lexically scoped)
• actual paramater not calculated before actually used!
• on the other hand: if needed more than once: recalculated over and over again
• aka: delayed evaluation
• Implementation

– actual paramter: represented as a small procedure (thunk, suspension), if actual parameter =
expression

– optimization, if actually parameter = variable (works like call-by-reference then)

8.6.9 Call-by-name examples

• in (imperative) languages without procedure parameters:
– delayed evaluation most visible when dealing with things like a[i]
– a[i] is actually like “apply a to index i”
– combine that with side-effects (i++) ⇒ pretty confusing

Example 1

void p ( int x ) { . . . ; ++x ; }

• call as p(a[i])
• corresponds to ++(a[i])
• note:

– ++ _ has a side effect
– i may change in ...

Example 2

int i ;
int a [ 1 0 ] ;
void p ( int x ) {

++i ;
++x ;

}

main ( ) {
i = 1 ;
a [ 1 ] = 1 ;
a [ 2 ] = 2 ;
p ( a [ i ] ) ;
return 0 ;

}

3One can ask though, if not call-by-reference would be messed-up in the example already.
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8.6.10 Another example: “swapping”

int i ; int a [ i ] ;

swap ( int a , b ) {
int i ;
i = a ;
a = b ;
b = i ;

}

i = 3 ;
a [ 3 ] = 6 ;

swap ( i , a [ i ] ) ;

• note: local and global variable i

8.6.11 Call-by-name illustrations

Code

procedure P( par ) : name par , i n t par
begin

i n t x , y ;
. . .
par := x + y ; (∗ a l t e r n a t i v e : x := par + y ∗)

end ;

P( v ) ;
P( r . v ) ;
P ( 5 ) ;
P( u+v )

v r.v 5 u+v
par := x+y ok ok error error
x := par +y ok ok ok ok

8.6.12 Call by name (Algol)

begin comment Simple a r r a y example ;
p r o c e d u r e z e r o ( Arr , i , j , u1 , u2 ) ;
i n t e g e r Arr ;
i n t e g e r i , j , u1 , u2 ;

b e g i n
f o r i := 1 s t e p 1 u n t i l u1 do

f o r j := 1 s t e p 1 u n t i l u2 do
Arr := 0

end ;

i n t e g e r a r r a y Work [ 1 : 1 0 0 , 1 : 2 0 0 ] ;
i n t e g e r p , q , x , y , z ;
x := 1 0 0 ;
y := 200
z e r o ( Work [ p , q ] , p , q , x , y ) ;
end

8.6.13 Lazy evaluation

• call-by-name
– complex & potentially confusing (in the presence of side effects)
– not really used (there)

• declarative/functional languages: lazy evaluation
• optimization:
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– avoid recalculation of the argument
⇒ remember (and share) results after first calculation (“memoization”)
– works only in absence of side-effects

• most prominently: Haskell
• useful for operating on infinite data structures (for instance: streams)

8.6.14 Lazy evaluation / streams

magic : : Int −> Int −> [ Int ]
magic 0 _ = [ ]
magic m n = m : ( magic n (m+n ) )

g e t I t : : [ Int ] −> Int −> Int
g e t I t [ ] _ = undefined
g e t I t ( x : xs ) 1 = x
g e t I t ( x : xs ) n = g e t I t xs ( n−1)

8.7 Virtual methods in OO

In the following we shed some light on aspects of the run-time system relevant for object-oriented languages.
Not too much light, though, and not for all aspects of object orientation. It’s basically for one aspect for
some main-stream object-oriented languages, like C++ or Java. Those are class-based languages with class
inheritance and the aspect we look at in this context is late binding or dynamic binding of methods. We
use the terminology of virtual methods here, which is common for C++ and is also used for languages like
Object Pascal. However, the terminology "virtual" as well as the concept is older. It originates from Simula,
the first object-oriented language of them all, developed in Oslo by Ole-Johan Dahl, Kristen Nygaard, and
colleagues [? ], who got the Turing award for the contribution.

For Java, one often does not use that word, but conceptually, methods in Java are late-bound by default,
i.e., in they virtual in C++ terminology. We use the word virtual method, late bound method and
dynamically bound method interchangably.

We earlier also mentioned dynamic dispatch. Dispatch is what the run-time system has to do when calling
a procedure, function, method etc., i.e., jumping to the beinning of the code of body of the procedure (plus
performing the steps of the call sequence). Determining the jump target, i.e., locating the code of the
procedure, can be done at compile time or a run-time. That’s static dispatch resp. dynamic dispatch.

Preferable, efficiency-wise, is static dispatch. If the compiler can determine the jump-target, then it can
produce code with the jump address “hard-coded” into the jump-command. When writing, for intstance,
x.m(), establishing the connection between the source-code level name m of the method and the corre-
sponding method body, ultimately the address in the code section, that’s also called binding. Binding
names to addresses is, of course, more general than for methods or procedure names only. The associatiob
of x with its address is likewise called binding. We have mostly looked a statically bound variables (also
called lexically bound). For instance, the use of static links to locate the proper address of a statically
bound variable in languages with nested procedures.

Static binding is impossible for late-bound methods, resp. late-bound just means the binding is done at
run-time, i.e., dynamically not statically. The concept of late bound method is central for the concept of
[. . . continue here. . . ] The need for dynamic binding for virtual methods is ultimately can be explained
by the

8.7.1 Object-orientation

• class-based/inheritance-based OO
• classes and sub-classes
• typed references to objects
• virtual and non-virtual methods
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8.7.2 Virtual and non-virtual methods + fields

c l a s s A {
int x , y

void f ( s , t ) { . . . FA . . . } ;
virtual void g ( p , q ) { . . . GA . . . } ;

} ;

c l a s s B extends A {
int z

void f ( s , t ) { . . . FB . . . } ;
r e d e f void g ( p , q ) { . . . GB . . . } ;
virtual void h ( r ) { . . . HB . . . }

} ;

c l a s s C extends B {
int u ;
r e d e f void h ( r ) { . . . HC . . . } ;

}

The code sketches a situation with inheritance, more precisely class inheritance. It’s not exactly Java or
C++ code, for instance the keyword redef is used here to highlight a situation which is more commonly
called method overriding. Simula, though, used the terminology and keyword redef, though that did not
stick.

The code shows virtual methods and static ones (the latter called f). The "boxes" on the left of the
picture, illustrate variables called rA, rB, and rC, typed with A, B, and C, respectively. The identifiers A,
B, and C are, in languages like Java etc, at the same time the names of classes that are used to created
instances or objects. In the material about typing, we discussed that in many (statically typed) class-based
object-oriented languages, the class names not only serve the role to denote the class, but also play the
role of being (the name of) a static type. also The objects are shown on the right-hand side.

The instances on the right are shown containing their instance variables. That corresponds also to the way
objects stored in memory, typically allocated on the heap.

The corresponding methods, which are with the field, sometimes also called “members” of an object, are
not shown in the picture as being part of the instance. Conceptually, that’s not wrong. Sometimes objects
are explained as a construct containing data together with the code that operates on the data, like a bundle
of fields and methods. This mental picture is fine, though we know already, that objects (with the content
of the fields) are allocated on the heap, whereas the code of the methods resides in the (static) code area.

Of course, an object “containing” a method can be reasonable or more realistically interpreted also in that
the heap object contains, besides the content of the fields, also addresses of the methods it offers. This is
a possible design of the run-time environment for objects, and is known as embedding (the methods). This
obviously allows late-binding and dynamic dispatch: at run-time, access the object, find the slot containing
the intended method implementation, and then dispatch to there.
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Embedding of methods is, however, not the way languages like Java or C++ solve the late-binding issue, and
this short section is mostly about non-embedding alternatives. In some languages or situations, however,
there is no alternative to embedding of methods. That’s if method-update is supported. Method update
is different from method overriding in inheritance-situations. Fields (unless immutable) can be updated,
i.e., their content can be replaced by a new value at run-time. In Java and C++ etc. which methods are
supported (including which code is executed when such a method), that’s fixed when instantiating a class.
It’s not possible to “replace” the code of a supported method at run-time (nor is possible to add a new
method or remove one at run-time). In languages that support that, one needs to embbed the methods
into the object (in the mentioned sense of embedding a pointer to the intended code).

One way of describing the situation in Java (which is a statially typed language) is that when.an instance
of a class is instantiated, that fixes its run-time type (seeing the class again as a type). Now, if the run-time
system knows the class of which aan object is an instance of, its run-time type so to say, then that can be
used to perform a dynamic dispatch. Of course, to do so, the run-time system need to keep information
about how the classes related to each other and when a method overrides another. In a language with single
(class) inheritance, that means, the run-time envorinment has a representation of the tree of inheritance
available plus an overview over the override information. Then the classes contain pointers to the code
of the methods they implement. Then the dynamic dispatch could be done by navigating the tree: if
a method is called “on” and object, the corresponding run-time type in form of the class is consulted,
if the class implements the methods, it will contain the pointer to the code, which is then used for the
dispatch. If not, the parent class is consulted; each class, except the top-level class (Object in Java) has
a unique parent class in a single-inheriance language. In this way, the look-up will eventually able to find
the corresponding code.

In a statically typed language (and if type-safe), it is guaranteed that there the seach will find the code.
It’s just not statically known in which class it belongs to, that’s why the run-time system searches the tree
at run-time.

That leads to the following reprentation: each object keeps a link to an its class, each class keeps an link
to all the method it itself implements plus a link to its parent, of any (plus pointers to sub-classes).

That’s a plausible solution, though it can be improved. In particular improving on the “search-the-tree”
part. Now that it’s mentioned, the improvement is also pretty obvious: at dispatch-time, don’t send the
run-time searching for the code in the inheritance tree hierarchy. If a method is not directly supported by
a class, but inherited from the super-class, or super-super-class etc., just find out at compile time already
from where it comes and copy in the corresponding address into the class. That’s basically it.

Thus the object points to a data structure which contains pointers to methods, not more, It’s not therefore
not a pointer to the “class” of the object, but to the relevant information needed to do the dispatch. This
table-like structure is also called virtual function table. This is a standard design in standard object-oriented
language (= class-based, single-inheritance).

8.7.3 Call to virtual and non-virtual methods

The following tables summarize and repeats information of the previous picture. rA, rB and rC are meant
as variables of static type A, B, or C. It lists which code can be executed in each case. For the late-bound
methods, that static type does not provide information to be sure which code is meant. For instance, in
the second table, calling h in a variable with static type B (there written rB .h) can mean to execute HB

or HC . It is, because being of a variable of type B can also contain objects of run-time type C. Another
way of seeing the same thing is: an object of static type C is also of type B, and of type A (in the given
example). In Java, it additionally would be of type Object as the supertype of all class types. That’s
a sitation in a statically type language were a well-typed language construct (a variable, an object) has
more than one type (A, B, C, and maybe Object, where we use the class names in they role as types.
So, this is another from of polymorphism (we touched upon overloading and coercion als other forms of
polymorphism before). This one is known as subtyping polymorphism or inclusion polymorphism. It is
typicall for object-oriented languages, in particular in the form here, where inheritency (which connects
classes and is about code reuse) is connected to subtype polymorphism in that inheritance between classes
implies subtyping between the corresponingly named types. So the names are criterion to decide when
a type is a subtype of another, namyl the class corresponding to the subtype is in a inheritance relation
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to the class corresponding to the supertype. So that is known as nominal subtyping. We have seen the
distinction between name-based (i.e., nominal) and structural criteria to compare types when discussing
when two types are “equal”.

non-virtual method f
call target
rA.f FA

rB .f FB

rC .f FB

virtual methods g and h
call target
rA.g GA or GB

rB .g GB

rC .g GB

rA.h illegal
rB .h HB or HC

rC .h HC

8.7.4 Late binding/dynamic binding

• details very much depend on the language/flavor of OO
– single vs. multiple inheritance?
– method update, method extension possible?
– how much information available (e.g., static type information)?

• simple approach: “embedding” methods (as references)
– seldomly done (but needed for updateable methods)

• using inheritance graph
– each object keeps a pointer to its class (to locate virtual methods)

• virtual function table
– in static memory
– no traversal necessary
– class structure need be known at compile-time
– C++

8.7.5 Virtual function table

• static check (“type check”) of rX .f()
– for virtual methods: f must be defined in X or one of its superclasses

• non-virtual binding: finalized by the compiler (static binding)
• virtual methods: enumerated (with offset) from the first class with a virtual method, redefinitions

get the same “number”
• object “headers”: point to the class’s virtual function table
• rA.g():

c a l l r_A . v i r t t a b [ g _ o f f s e t ]

• compiler knows
– g_offset = 0
– h_offset = 1
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8.7.6 Virtual method implementation in C++

• according to [? ]

c l a s s A {
p u b l i c :
double x , y ;
void f ( ) ;
v i r t u a l void g ( ) ;

} ;

c l a s s B: p u b l i c A {
p u b l i c :
double z ;
void f ( ) ;
v i r t u a l void h ( ) ;

} ;

8.7.7 Untyped references to objects (e.g. Smalltalk)

• all methods virtual
• problem of virtual-tables now: virtual tables need to contain all methods of all classes
• additional complication: method extension, extension methods
• Thus: implementation of r.g() (assume: f omitted)

– go to the object’s class
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– search for g following the superclass hierarchy.

8.8 Garbage collection

8.8.1 Management of dynamic memory: GC & alternatives

• dynamic memory: allocation & deallocation at run-time
• different alternatives

1. manual
– “alloc”, “free”
– error prone

2. “stack” allocated dynamic memory
– typically not called GC

3. automatic reclaim of unused dynamic memory
– requires extra provisions by the compiler/RTE

8.8.2 Heap

• “heap” unrelated to the well-known heap-data structure from A&D
• part of the dynamic memory
• contains typically

– objects, records (which are dynamocally allocated)
– often: arrays as well
– for “expressive” languages: heap-allocated activation records

∗ coroutines (e.g. Simula)
∗ higher-order functions

https://en.wikipedia.org/wiki/Simula
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code area

global/static area

stack

free space

heap

Memory

8.8.3 Problems with free use of pointers

int ∗ dangle ( void ) {
int x ; // l o c a l var
return &x ; // a d d r e s s o f x

}

typedef int (∗ proc ) ( void ) ;

proc g ( int x ) {
int f ( void ) { /∗ i l l e g a l ∗/

return x ;
}
return f ;

}

main ( ) {
proc c ;
c = g ( 2 ) ;
p r i n t f ( "%d\n " , c ( ) ) ; /∗ 2? ∗/
return 0 ;

}

• as seen before: references, higher-order functions, coroutines etc ⇒ heap-allocated ARs
• higher-order functions: typical for functional languages,
• heap memory: no LIFO discipline
• unreasonable to expect user to “clean up” AR’s (already alloc and free is error-prone)
• ⇒ garbage collection (already dating back to 1958/Lisp)

8.8.4 Some basic design decisions

• gc approximative, but non-negotiable condition: never reclaim cells which may be used in the future
• one basic decision:

1. never move “objects”
– may lead to fragmentation

2. move objects which are still needed
– extra administration/information needed
– all reference of moved objects need adaptation
– all free spaces collected adjacently (defragmentation)

• when to do gc?
• how to get info about definitely unused/potentially used obects?

– “monitor” the interaction program ↔ heap while it runs, to keep “up-to-date” all the time
– inspect (at approriate points in time) the state of the heap

Objects here are meant as heap-allocated entities, which in OO languages includes objects, but here
referring also to other data (records, arrays, closures . . . ).
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8.8.5 Mark (and sweep): marking phase

• observation: heap addresses only reachable

directly through variables (with references), kept in the run-time stack (or registers)
indirectly following fields in reachable objects, which point to further objects . . .

• heap: graph of objects, entry points aka “roots” or root set
• mark: starting from the root set:

– find reachable objects, mark them as (potentially) used
– one boolean (= 1 bit info) as mark
– depth-first search of the graph

8.8.6 Marking phase: follow the pointers via DFS

• layout (or “type”) of objects need to be known to determine where pointers are
• food for thought: doing DFS requires a stack, in the worst case of comparable size as the heap itself

. . . .

8.8.7 Compactation

Marked
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Compacted

8.8.8 After marking?

• known classification in “garbage” and “non-garbage”
• pool of “unmarked” objects
• however: the “free space” not really ready at hand:
• two options:

1. sweep
– go again through the heap, this time sequentially (no graph-search)
– collect all unmarked objects in free list
– objects remain at their place
– RTE need to allocate new object: grab free slot from free list

2. compaction as well:
– avoid fragmentation
– move non-garbage to one place, the rest is big free space
– when moving objects: adjust pointers

8.8.9 Stop-and-copy

• variation of the previous compactation
• mark & compactation can be done in recursive pass
• space for heap-managment

– split into two halves
– only one half used at any given point in time
– compactation by copying all non-garbage (marked) to the currently unused half
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8.8.10 Step by step
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