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Intermediate code generation
Chapter

What
is it

about?
Learning Targets of this Chapter
1. intermediate code
2. three-address code and P-code
3. translation to those forms
4. translation between those forms
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9.1 Intro

The chapter is called intermediate code generation. At the current stage in the lecture
(and the current “stage” in a compiler) we have to process as input a abstract syntax tree
which has been type-checked and which thus is equipped with relevant type information.
As discussed, key type information is often not stored inside the AST, but associated with
it via a symbol table. More precisely, the symbol table mostly stores type information for
variables, identifiers, etc., not for all nodes of the AST, since that it typically sufficient.
As far as code generation is concerned, we have at least gotten a feeling for certain aspects
of code generation, without details, namely in connection with implementing high-level
abstractions in connection with data. The layout of how certain types can be implemented
and how scoping, memory management etc. is arranged. As far as the control-part of a
program is concerned (not the data part), we also know that the run-time environment
maintains a stack of return adresses to take care of the call-return behavior of the procedure
abstraction. We have also seens, though not in very much detai, the so-called calling
conventions and calling sequences, low-level instructions that take care of “data-aspects”
of maintaining the procedure abstraction (taking care of parameter passing, etc.). All
that was done, as said, not with concrete (machine) code, but explaining what needs to
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be achieved and how those aspects (memory management, stack-arrangement etc.) are
designed.

The task of code generation is to generate instructions which are put into code segment
which is a part of the static part of the memory. That concept as discussed in the in-
troductory part of the chapter covering run-time environments. Basically, to translate
procedure bodies into sequences of instructions.

Ultimately, the generated instructions are binaries, resp. in machine code, which is plat-
form depedent. Generating platform dependent code is this part of the back-end. However,
the task of generating code is usually split into generating first intermediate code and af-
terwards, “real code”. This chapter here is about this intermediate code generation.

Making use of intermediate code not just done in this lecture. Using intermediate code
as another intermediate representation internal to the compiler is commonplace. The
intermediate code may take different forms, however, and we will encounter two flavors.

Why does one want another intermediate representation as opposed to go all the way to
machine code in one step? There are a couple of reasons for that. Code generation may not
be altogether trivial. Especially, at the lower ends of the compiler, one may throw many
different and complex optimizations at the task. So, modularizing the task into smaller
subphases is good design. Related to that: doing it stepwise helps in portability. The
intermediate code still is kind of machine independent. It may resemble the instruction
set of typical hardware, or more likely resembling a subset of such an instruction set
leaving out “esotheric” specialized commands some hardwares may offer. But it’s not
the exact instruction set also in that the IR will still rely on some abstractions which
are not available on any hardware binaries. One is that the IC typically still works with
variables and so-called temporaries, where ultimately the real code operates on addresses
and registers.

If one has some “machine-code” resembling intermediate representation, the task of port-
ing a compiler to a new platform is easier. Furthermore, one can start doing certain
code analyses and optimization already on the IC, thereby making optimizations available
for all platform-dependent backends, without reimplementing the wheel multiple times.
Of course, analyses and optimizations could and should also be done on the platform-
dependent phase. For instance, crucially important for the ultimate perfomance of the
code is the good use of registers. That, however, is platform dependent: different chips of-
fer different register sets and support different ways of using them, reserving some registers
for special use.

Also in this lecture, the intermedatiate code generation postpones register allocation for
the subsequente phase and chapter.

We said, that IR is platform independent. That does not mean, that it may not be
“influenced” by targeted platforms. The are different flavors of instruction sets (RISC vs.
CISC, three-address code, two-address code etc.), and the intermediate code has to make
a choice what flavor of instructions it plans resemble most.

We will deal with two prominent ways. One is a three-address code, the other one is
P-code (which could be also called 1-address code). The latter one does not resembles
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typical instruction sets, but is a known IC format nonetheless. It resembles (conceptually)
byte-code.

Schematic anatomy of a compiler

• code generator:
– may in itself be “phased”
– using additional intermediate representation(s) (IR) and intermediate code

We have seen the figure and similars in the introductory chapter, same with the follow-
ing. It’s a reminder that a compiler may involve different forms of machine code. Also
interpreted byte code may play a role.

A closer look
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Various forms of “executable” code

• different forms of code: relocatable vs. “absolute” code, relocatable code from li-
braries, assembler, etc.

• often: specific file extensions
– Unix/Linux etc.

∗ asm: *.s
∗ rel: *.o
∗ rel. from library: *.a
∗ abs: files without file extension (but set as executable)

– Windows:
∗ abs: *.exe1

• byte code (specifically in Java)
– a form of intermediate code, as well
– executable on the JVM
– in .NET/C]: CIL

∗ also called byte-code, but compiled further

There are many different forms of code. One big distriction is between code “natively” ex-
ecutable, i.e., on a particular (HW) platform on the one hand, and “byte code” or related
concepts on the other. The latter is a Java-centric terminology, while the underlying con-
cept is not. It’s actually sometimes called p-code (representing portable code or interpreter
code. It’s not natively executed but run on an interpreter or virtual machine (for Java
byte code, that’s of course the JVM). The terminology “byte code” refers to the fact that
the op-codes, i.e., instructions of the byte code language, are intended to be represented
by one byte. That piece of information alone, that opcodes fit into one byte, does not give
much insight, though, and there may be many different “byte code representation”. They
are often intendend to be executed on a virtual machine, but of course they can also be
used as another intermediate representation (in the sense of the topic of this chapter). A
virtual machine is a “machine” simulated in software, and the architecture can resemble
the execution mechanism of HW, or can follow principles typically not found in HW. For
example, one typical architecture is a stack machine. One find also virtual machines that
resemble register machines.

We will look into two formats, one called p-code, one called three-address intermediate
code (3AIC). As can be seen from the above remarks, the terminology is a bit unclear. P-
code normally stands for portable code, but 3AIC is also portable. P-code here resembles
(at least conceptually) Java byte code, but also the op-code of 3AIC would fit into one
byte.

As further remark concerning interpretation and “virtual machines” and virtualization in
general. The distinction between compilation and interpretation is not a matter of black
and white. Already in the introductory chapter, “full interpretation” was mentioned, where
the execution is done directly on the user syntax is rather seldom. “Directly on the syntax”
can mean on some abstract syntax, which is seen as “basically” as the programming
language syntax, just stripped from the particularities of concrete syntax. But doing
rewriting directly on that level, in particular on concrete syntax and on character string

1.exe-files include more, and “assembly” in .NET even more
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level is an unpractical execution mechanism, mostly. Interpreting a language on a virtual
machine is already quite closer to machine exectition, the virtual machine works like a
software simulated machine model, and that may be more or less low-level. On the very
lowest end, there are complete virtualization, where a whole operating system is simulated
(often running multiple instances of operating system “on the cloud”). In that case, one
can generate native code.

As mentioned, we will discuss 3AIC and p-code. P-code may be called one-address-code.
A good criterion for different ICs is the format of the instructions, a better criterion at any
rate a better criterion than the “size” of the op-code (“byte”) or the fact that it’s portable
(p-code). By format one mainly refers to how many arguments (many of) the instructions
take. One, two, three, there is even zero-address code. So, that is one dimension for
classification of intermediate code. Another dimension is what kind of addressing modes
are supported. That has to do (often) with the use of registers. Not all intermediate
codes work with the concept of registers, for instance, in this lecture, the two formats are
independent from registers, and we also don’t go into details here of indirect addressing
and similar, which are often used in connection with registers, but can also be understood
independently.

As far as the different formats go: formats like 3AC and 2AC are common for nowaday’s
HW. That means, that 3AIC is a viable format (resembling current HW). 1-address code
and 0-address code is not really found as HW design, but still a viable format for interme-
diate code. Especially for intermediate code intended to run on a virtual machine. One
example is JVM and Java byte code. However, historically, there are machine designs
based on such idea. One very early was the British KDF9 computer, which used a zero-
address format and, more widely known, some designs from the Burroughs company (like
the very unique B5000). A programming language, which gives a feeling of stack-machine
programming is Forth (there is a linux/gnu version of it (gforth)). Forth, in a way,
continues to live on in the form of the well-known Postscript language (run on printers),
at least postscript is said to be inspired by Forth.

Generating code: compilation to machine code

• 3 main forms or variations:
1. machine code in textual assembly format (assembler can “compile” it to 2.

and 3.)
2. relocatable format (further processed by loader)
3. binary machine code (directly executable)

• seen as different representations, but otherwise equivalent
• in practice: for portability

– as another intermediate code: “platform independent” abstract machine code
possible.

– capture features shared roughly by many platforms
∗ e.g. there are stack frames, static links, and push and pop, but exact layout
of the frames is platform dependent

– platform dependent details:
∗ platform dependent code
∗ filling in call-sequence / linking conventions

http://www.cs.man.ac.uk/CCS/res/res18.htm#c
https://www.smecc.org/The%20Architecture%20%20of%20the%20Burroughs%20B-5000.htm
https://en.wikipedia.org/wiki/PostScript
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done in a last step

Byte code generation

• semi-compiled well-defined format
• platform-independent
• further away from any HW, quite more high-level
• for example: Java byte code (or CIL for .NET and C])

– can be interpreted, but often compiled further to machine code (“just-in-time
compiler” JIT)

• executed (interpreted) on a “virtual machine” (like JVM)
• often: stack-oriented execution code (in post-fix format)
• also internal intermediate code (in compiled languages) may have stack-oriented

format (“P-code”)

CIL stands for common intermediate language (earlier known as Microsoft Intermediate
Language, MSIL). There is actually also another intermediate language called CIL, that’s
the C intermediate language. Microsoft’s intermediate language is certainly more widely
used. The C intermediate language, developed at UC Berkely, is used for instance for
developing verifying C compilers in Coq, which is an ambitious project (see CompCert).

9.2 Intermediate code

This short section basically gives a short preview of the two forms of intermediate code
we will cover in the lecture. Three-address intermediate code is covered in Section 9.3 and
p-code in Section 9.4.

Use of intermediate code

• two kinds of IC covered
1. three-address code (3AC, 3AIC)

– generic (platform-independent) abstract machine code
– new names for all intermediate results
– can be seen as unbounded pool of maschine registers
– advantages (portability, optimization . . . )

2. P-code (“Pascal-code”, cf. Java “byte code”)
– originally proposed for interpretation
– now often translated before execution (cf. JIT-compilation)
– intermediate results in a stack (with postfix operations)

• many variations and elaborations for both kinds
– addresses represented symbolically or as numbers (or both)
– granularity/“instruction set”/level of abstraction: high-level op’s available e.g.,

for array-access or: translation in more elementary op’s needed.
– operands (still) typed or not
– . . .

https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://sourceforge.net/projects/cil/
http://compcert.inria.fr/
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Various translations in the lecture

• AST here: tree structure after semantic analysis, let’s call it AST+ or just simply
AST.

• translation AST ⇒ P-code: appox. as in oblig 2
• we touch upon general problems/techniques in “translations”
• one (important) aspect ignored for now: register allocation

AST+

3AIC p-code

As mentioned earlier, the translation from typed ASTs to p-code corresponds to the task
of the second oblig. The target code will be some stack-oriented byte-code format. The
corresping interpreter or virtual machine as execution mechanism is provided in the form
of a Java library.

9.3 Three-address (intermediate) code

Three-address code is an common format, not just for intermediate code, but also for
machine code. The name comes from that fact that some instructions make use of three
“addresses”. Not all operations use three, some use less, but the most general ones make
use of 2 source addresses for the arguments, and one target address for the result. In
particular, binary operations that do calculations use 3, like addition or bitwise and. See
equation (9.1).

We mentioned before that our intermediate code does not make use of addresses and regis-
ters (which is a common thing to do for intermediate code). That means, the instructions
don’t literally work with 3 addresses, but rather they involve 3 variables or constants. The
code also not only makes use of “ordinary” variables (like the ones that originate from
the source code), but the code generation introduces temporary variables or temporaries
for short to store intermediate results. At this phase there is no attempt to economize on
the amount of temporaries. An unbounded supply of those temporaries is assume, and
each time some intermediate result needs to be remembered, a fresh temporary is used for
that.

Of course, ultimately, that’s a wasteful use of memory. In particular, ultimately the tem-
poraries should be preferably be stored in registers, and there will be a limited amout
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of them; temporaries are typically short-lived, so often after having served their purpose
storing an intermediate result, the space, like a register, can be reused to hold the next
intermediate result. Of course not just temporaries are better be kept in registers, if pos-
sible. Also ordinary variables compete for the scarce register resource, passing parameters
via registers may be a good idea, etc.

All that is a complex optimization task, and since our intermediate code is platform
independent, it’s not clear at that point, how many register there will be. Thus, there is
not too much motivation to economize on temporaries already now, which simplifies the
task of intermediate code generation.

The 3AIC is also a linear form of intermediate code. That means, a piece of intermediate
code is an instruction list (not a (syntax) tree or a graph, or some other more structured
representation). That also means, for non-linear control flow, there are op-codes for jumps
and conditional jumps; as opposed to more structured syntax, like conditionals or loops.
Those would correspond to a tree-structured, not linear code format. A linear instruction
list, perhaps stored in an array, very much resembles the arrangement of actual machine
code, with the position of the instruction inside the list or array being an abstract form
of its address.

Jump intructions transfer the control to a specified address, the control “jumps to” the
instruction at that target address. To jump to one instruction, one could use its position
in the list to specify that. That’s ultimately also what will later happen in real machine
code.

However, one can do that more elegantly, specifying jumps and jump targets symbolically.
The “symbols” to represent jump targets (or lines of code, or abstract addresses) are
called labels. So the intermediate code allow to label instructions, giving them unique
labels. Concretely, the 3AIC here does not directly label instructions, it’s rather that
there is an extract label instruction which is part of the instruction set. Of course, it’s
equivalant. Adding a label instruction like label L, which means that one can use for
intance jmp L to just effectivle to the instruction following the line label L. Jumping
to a position in a program will be translated to a real machine code instruction. Being
jumped-to for a labelled place will, of course, not be reflected by some instruction in the
machine code. Therefore, instructions like label L are also called pseudo instructions.

Jumping (and labelling) take care of the control flow. They obviously also not make use of
3 addresses, as in equation (9.1). And indeed, jumping and labelling is independent of the
general instruction format, and that means that also the one-address code or p-code from
Section 9.4 will use the same principles (and the same can be done for 2-address code).

As far as oblig 2 is concerned. The instruction set in byte code of course supports jumps
and conditional jumps. However, the instruction set does not offer labels. Instead one will
have to deal with jumping the more low-level way jumping directly “addresses”, where
an index in an array corrensponds to the concept of address. That’s less convenient that
doing it symbolically, but not much so. When programming the code generator, one can
(and will) of course remember and address or the index on the byte array in some properly
named variable, and that serves the same purpose. This way, the address is, so to say,
symbolically remembered in the meta-language, presumably Java, and is not part of the
programming language itself, i.e., mentioned in the byte-code instructions.
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There is some parallel between labels and temporaries. Both are symbolic representations
of addresses. Temporaries (like variables) correspond to addresses containing data, labels
represent addresses to jump to, and that point in the control flow graph. Besides that,
in both cases, the code generator assumes an unlimited reservoir of those and labels and
both are never “reused”. and each time the code generator encounters the need to store an
intermedate result or need to specify another jump target, it generates a fresh temporary
resp. a fresh jump label.

Of course, the p-code later will not make use of temporaries. Instead it will employ an
(unbounded) stack to store intermediate results, so there will be no need to create fresh
temporaries.

Three-address code

• common (form of) IR

TA: Basic format

x = y op z (9.1)

• x, y, z: names, constants, temporaries . . .
• some operations need fewer arguments

• example of a (common) linear IR
• linear IR: ops include control-flow instructions (like jumps)
• alternative linear IRs (on a similar level of abstraction): 1-address (or even 0) code

(stack-machine code), 2 address code
• well-suited for optimizations
• modern architectures often have 3-address code like instruction sets (RISC-architectures)

3AC example (expression)

2*a+(b-3)

+

*

2 a

-

b 3



10 9 Intermediate code generation
9.3 Three-address (intermediate) code

Three-address code

t1 = 2 ∗ a
t2 = b − 3
t3 = t1 + t2

alternative sequence
t1 = b − 3
t2 = 2 ∗ a
t3 = t2 + t1

We encountered the notion of temporaries already in connection with the activation
records. There, the activation records for some function needs space for various things,
like parameters, local variables, return addresses etc., but also for intermediate results.
That’s the temporary variables of the intermediate code or temporaries for short, which
we talk about here. The slide shows two versions that do the same thing. The two code
listings are not radically different. The fact that both do the same captures the fact that
the order of evaluation does not matter.

In our code examples, though, the convention is: different variable names mean different
memory locations, so by writing a and b, there is no aliasing. Of course, if the 3AIC
uses references (resp. indirect addressing), then different variable names don’t guarantee
absence of aliasing. A related remark concerns the temporaries. The example uses three
different ones t1, t2, and t3. Using different names for the temporary indicate that they are
all different. However, that may look like a waste of memory: One could have “optimized”
it by perhaps avoiding t3 and reuse t2 or t3. One could indeed, but we discussed hat earlier:
code generation at the current stage does not try to cut down on the use of temporaries.
For each intermediate result, it uses just a new, fresh temporary. It will be the task of
later stages, to do something about it, like minimizing the number of temporaries (and put
as many of them into registers). However, the amount of registers is typically only known
at the platform-dependent stage. Most intermediate code formats (like ours) are unaware
of registers or, in other words, assume a (abstract) machine model without registers.

Using a fresh temporary each time we need one means, each temporary is assigned-to
only once (at least if we ignore loops). That restriction is sometimes called static single
assignment. Static means, there is only one line in the code (“statically”) where a variable
is assigned to. That does not guarantee “dynamic” or absolute single assignemnt: because
of loops or subroutines, a variable that is statically only assigned one, may be assigned
to more than once. Note that that SSA restriction applies to temporaries only, user-level
variables may be assigned to multiple times.

There is also the possibility, to make also the standard variables to follow the SSA regime.
This actually is a quite popular format for intermediate code, and has advantages con-
cerning subsequent semantic analyses and optimization. In its generality, SSA a bit more
complex than just using new variables all the time. Therefore we won’t go into that.

3AIC instruction set

• basic format: x = y op z
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• but also:
– x = op z
– x = y

• operators: +,-,*,/, <, >, and, or
• read x, write x
• label L (sometimes called a “pseudo-instruction”)
• conditional jumps: if_false x goto L
• t1, t2, t3 . . . . (or t1, t2, t3, . . . ): temporaries (or temporary variables)

– assumed: unbounded reservoir of those
– note: “non-destructive” assignments (single-assignment)

The terminology of pseudo instruction comes from the fact that there is no real instruction
connected to it. It’s just a way to refer to the corresponding line number a bit more
abstractly. So, in a similar way that temporaries are a representation of abstraction at
the current of memory locations (ultimately addresses in main memory if registers cannot
be used), labels are an representation of addresses, ultimately translated to relocatable
addresses and ultimately to addresses in the code segment.

Illustration: translation to 3AIC

Source

read x ; // input an integer
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t // output : f a c t o r i a l of x

end

Target: 3AIC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
write f a c t
label L1
halt

Variations in the design of 3A-code

• provide operators for int, long, float . . . .?
• how to represent program variables

– names/symbols
– pointers to the declaration in the symbol table?
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– (abstract) machine address?
• how to store/represent 3A instructions?

– quadruples: 3 “addresses” + the op
– triple possible (if target-address (left-hand side) is always a new temporary)

Quadruple-representation for 3AIC (in C)

typedef enum {rd , gr , i f _ f , asn , lab , mul ,
sub , eq , wri , halt , . . . } OpKind ;

typedef enum {Empty , IntConst , S t r i n g } AddrKind ;

typedef struct {
AddrKind kind ;
union {

int v a l ;
char ∗ name ;

} c o n t e n t s ;
} Address ;

typedef struct {
OpKind op ;
Address addr1 , addr2 , addr3 ;

} Quad

A 3A(I)C has three addresses and one piece of information to specify the instruction
itself. That makes 4 pieces of information, a quadruple. The code illustrate how one
could represent it in C. It would look analogous to some extent in other languages. As a
reminder of the typing section: we see how the representation uses the (not-so-type-safe)
union type of C, to squeeze a few bits. We also see the use of so-called enum type for
finite enumerations.

The code is meant as illustration of how it can be done in C, but it depends obviously on
details of the specification of the intermediate code and the supported types (here called
kinds in the code).

9.4 P-code

As mentioned, one of the two formats covered in the chapter can be called p-code. We
also said that the terminolgy is not so informative. Perhaps a better name would be one-
address code. There is even zero-address code (which works similarly), but we don’t cover
it. Both one-address code and zero-address code have in common that they rely heavily
on stack-manipulations. Very roughly, where 3AIC uses temporaries to store intermediate
results, p-code stores those on the stack. We will see details for both later, when we look
how to compile to either intermediate code format.

So we cover 3AIC and “1AIC” (p-code), there is also 2AC / 2AIC, which we will not
cover, at least not in this chapter. For the real code generation, we may have a look at
the problem: how to generate 2AC from 3AIC, in particular how to deal with registers
(assuming a 2AC hardware platform)
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P-code

• different common intermediate code / IR
• aka “one-address code”2 or stack-machine code
• used prominently for Pascal
• remember: post-fix printing of syntax trees (for expressions) and “reverse polish

notation”

P-code is an abbreviation for portable code. Some people also connect it to Pascal (like p
stands for Pascal). Many Pascal compilers were based on p-code for reasons of portability.
Pascal was influential some time ago, especially for computer science curricula. The so-
called p-code machine was not invented for Pascal or by the Pascal-people, but perhaps
Pascal was the most prominent language “run” on a p-code architecture. So, in a way,
p-code was some LLVM or JVM of the 70ies. . .

Example: expression evaluation 2*a+(b-3)

ldc 2 ; load c o n s t a n t 2
lod a ; load value o f v a r i a b l e a
mpi ; i n t e g e r m u l t i p l i c a t i o n
lod b ; load value o f v a r i a b l e b
ldc 3 ; load c o n s t a n t 3
sbi ; i n t e g e r s u b s t r a c t i o n
adi ; i n t e g e r a d d i t i o n

The code should be clear enough (with the help of the commentaries on the right-hand
column). This first example is concerned with expression evaluation, in particular expres-
sions without side effects. Expressions are dealt with in the mentioned “post-fix” manner.
The expression is built-up from binary operators. Those work in a stack-like virtual ma-
chine as follows: both arguments have to be on top of the stack, then executing the opcode
corresponding to the binary operators takes those top to elements and removes them them
from the stack (“pop”), connects them as argments of the operation, and the result is the
the new top of the stack (“push”).

That pattern can be seen clearly in the code 3 times (there are three operators to be trans-
lated, addition, multiplication, and substraction). Constants and variables are pushed onto
the stack by corresponding load-commands (ldo and ldc).

Loading the content of a variable with ldo, as shown in this example, is only one way to
to “load a variable”, namely loading its content. There is a second way, namely loading
the address of a variable. That is not needed for evaluating expressions, and therefore not
part of this example. The next slide translates an assignment to 3AIC. In that example,
we see both versions of the load-command.

2There’s also two-address codes, but those have fallen more or less in disuse for intermediate code.
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P-code for assignments: x := y + 1

• assignments:
– variables left and right: L-values and R-values
– cf. also the values ↔ references/addresses/pointers

lda x ; load a d d r e s s o f x
lod y ; load value o f y
ldc 1 ; load c o n s t a n t 1
adi ; add
sto ; s t o r e top to a d d r e s s

; below top & pop both

The message of this example concerns the treatment of variables, in particular the fact
that variables on the left-hand side of an assignment are treated differently from those on
the right-hand side. For the programmer, the distinction may not always be too visible.
Of course, one is aware that in an assignment, like the one shown in the code, the variable
on the left hand side is assigned to, the variable on the right-hand side is read from.
Everyone knows that. We write := for assignments, to make the distinction more visible.
In languages like C and Java, that is not visible, one writes = for assignment, but it’s
not equality: it’s not symmetric in that a=b is not the same b=a, when = is meant as
assignment. Of course, everyone knows that too.

In the generated code, we see another (related) difference, which may be less obvious. For
x, the address is loaded as part of a step, for y it’s the content. We need the address of
x to store back the result at the end of the generated code.

We mentioned that the stack-machine architecture leads to a post-fix treatment of evalu-
ation. That is true as long as one interprets “evaluation” as determining, in a side-effect
free manner the value of expression (like in the previous example). Now, in this example,
there are side-effects and the strict post-fix schema no longer works: the first thing to do
is load the address of x with lda, i.e., that’s not “post-fix”, that is “pre-fix” treatment.

Finally a comment to the last opcode sto: it takes arguments (on the stack), and stores,
in the example, the result of the computation to the given address (which here is the
address of x). Additionally, both top elements are popped off the stack. Consequently,
the value as the result of the commputation on the right-hand side is no longer available.
So, this translation does not correspond to the semantics of assignments in languages like
C and Java. There, things like (x := y +1) + 5 are allowed, but for a compilation of
a languages with this kind of semantics, the sto command, popping off both elements, is
not how it’s done. We see below an alternative operation, stn, which abbreviates store
non-destructively, which would be adequate if one had a semantics as in Java or C.

P-code of the faculty function

Source

read x ; // input an integer
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t // output : f a c t o r i a l of x
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end

P-code

9.5 Generating P-code

After having introduced the concept of p-code in Section 9.4, including (relevant parts of)
the instruction set, we have a look at code generation; we will do the same for 3AIC in
Section 9.6. Actually, it’s not very hard. We have a look at that problem from different
angles: we make use of attribute grammars, look at some C-code implementation, and
sketch also some code in a functional language. All three angles are basically equiva-
lent. The focus here is on straight-line code. In other words, control-flow constructs (like
conditionals and loops) are not covered right now. Those are translated making use of
(conditional) jumps and labels. We will deal with those aspects later.

Assignment grammar

One way to describe the code generation is with an attribute grammar. So let’s therefore
fix a context-free grammar first, fixing the syntax, for which we later show appropriate
semantic rules in the attribute grammar formalism.

As said, we focus first on straight-line code, there will be no control-flow constructs such as
conditionals and the like. The atomic building blocks of straight-line code are assignments;
the syntax we will use formalizes not (just) assignments of the form x := e where e is a
side-effect free expression. The expressions of the grammar below allow assignments inside
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expressions, to make it more flexible and the code generation slightly more interesting.
So the syntax allows expressions like (x:=x+3)+4. However, we need to be careful when
allowing assignments inside expressions. We touched upon an issue in that context before
before, in Section 9.4, when we gave an example of how p-code for an expression could
look like. In the previous example, the expression was side-effect free, but for the current
example, that’s not the case. That expressions like (x:=x+3)+4 makes sense at all,
the semantics of an assignment x := e must be such that it results in a value and not
in “nothing”. In the corresponding type system, the type of the assignment x := e is
the same as the type of e (and not void). In Section 9.4, we assumed the semantics of
assignments to not give back a value (i.e., to be of type void), but here we have to do
it otherwise. Consequently, the p-code in the example from the older section is not what
would be generated here.

Grammar

exp1 → id := exp2
exp → aexp

aexp → aexp2 + factor
aexp → factor

factor → ( exp )
factor → num
factor → id

(x:=x+3)+4

+

x:=

+

x 3

4

As mentioned, the grammar covers only expression and assignments, i.e., straight-line
code, but no control-structures.

As a side remark: we said that the intermediate code generation takes typically abstract
syntax. Typical abstract syntax would not contain parentheses and the distinction between
factors and terms etc. is more typical for grammars covering concrete syntax and parsing.
But the question, whether the grammar describes typcially abstract or concrete syntax, is
not too relevant for the principle of the translation here, and after all, one can use concrete
syntax as abstract syntax trees, even if it often better design to make the AST a bit more
abstract. Anyway, we don’t bother to show the parentheses in the tree.
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Generating p-code with A-grammars

• goal: p-code as attribute of the grammar symbols/nodes of the syntax trees
• syntax-directed translation
• technical task: turn the syntax tree into a linear IR (here P-code)
⇒ – “linearization” of the syntactic tree structure

– while translating the nodes of the tree (the syntactical sub-expressions) one-by-
one

• not recommended at any rate (for modern/reasonably complex language): code gen-
eration while parsing3

The use of A-grammars is perhaps more a conceptual picture, In practice, one may not for-
mally or explicitly use a-grammars and corresponding tools in the implementation (though
there exists tools for working with a-grammars). Remember that in many situations, the
AST in a compiler is a “just” a data structure programmed inside the chosen meta-
language. For instance, in the compila language, most will have chosen a Java imple-
mentation making use of different abstract and concrete classes, perhaps making a visitor
pattern and what not. Anyway, it’s not in a format directly represented to be handled by
an attribute-grammar tool (though also that is possible). Anyway, realizing the semantic
rules we show in a-grammar format in a programming language format, operating on the
AST tree data structure is not complex. In particular, since the attribute grammar is of
a particularly simple format: it’s uses a synthesized attribute only (which is the simplest
format). It works bottom-up or in a divide-and-conquer or compositional manner: the
code of a compound statement consist of compiling the substatements and connecting the
resulting translated code, with some additional commands. For expressions, the additional
instructions are done at the end (“post-fix”), in more general situations, one encounters
also pre-fix code (and sometimes even infix).

That captures the principle core of compilation, it better be compositional: to compile a
large program means, to break it down into pieces, compile smaller pieces and the put the
compiled pieces together for the overall result.

The principle of compositionality or divide-and-conquer is perhaps so typical or natural
for compilation in general, to appear as not even worth mentioning. That maybe so,
but the principle applies only when ignoring optimization. Optimization breaks with
the principle of compositionality, mostly. Taking two “optimized” pieces of generated
code together in a divide-and-conquer manner will typically not result in an optimized
overall piece of code. Optimization is done more “globally”, not compositional wrt. the
syntax structure of the program. The improvement may refer to the execution time or
memory consumption (or even on the size of the code itself, which itself is not a semantic
criterion, but the optimization must preserve the semantics, of course). The remarks here
about compositionality of code generation and the non-compositionality of analysis and
optimization is not particular for p-code generation. The same applies to 3AIC generation
and actually to compilation in general. The compilation part is typically compositional and
therefore efficient. Analysis and optimization(s) are done afterwards and depending on how
much one invests afterwards in analysing the result and how aggressive the optimizations

3One can use the a-grammar formalism also to describe the treatment of ASTs, not concrete syntax
trees/parse trees.
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are, that part may no longer be efficient. By efficient I basically mean: linear (or at least
polynomial) in the size of the input program.

When saying, analysis and optimization is not compositional (unlike code generation),
that probably should be understood as a qualified, not absolute statement. It’s mostly
not possible to invest in an absolutely global analysis, it would be too costly. It may be
“compositional” in respecting the user-level syntax in that it does analyses each procedure
individually, but tries not to make a global optimization across procedure body boundaries.
Or even simpler, the optimization focuses on stretches of straight-line code. For instance,
if one translates a conditional, there will be in the translation some jumps and labels, but
those mark the boundaries of the optimization. In a way, the two branches of a conditional
are optimized independently, in that sense the optimization is composition as far as the
user-level syntax is concerned, and one does not attempt to see if additional gains could
be achieve to analyze both branches “globally”. These issues —analysis, optimization,
and various levels of “globality” for that— will be relevant in the next chapter, where we
discuss the ultimate code generation, not intermediate code generation. Of course, a real
compiler may use differerent optimizations in various phases of its compilation process.

A-grammar for statements/expressions

• focus here on expressions/assignments: leaving out certain complications
• in particular: control-flow complications

– two-armed conditionals
– loops, etc.

• also: code-generation “intra-procedural” only, rest is filled in as call-sequences
• A-grammar for intermediate code-gen:

– rather simple and straightforwad
– only 1 synthesized attribute: pcode

As mentioned, the code generated here is for straight-line code only and relatively simply,
as can be seen on the a-grammar on the next slide.

A-grammar

• “string” concatenation: ++ (construct separate instructions) and ˆ (concat one in-
struction)
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productions/grammar rules semantic rules
exp1 → id := exp2 exp1 .pcode = ”lda”ˆid.strval ++

exp2 .pcode ++ ”stn”
exp → aexp exp .pcode = aexp .pcode

aexp1 → aexp2 + factor aexp1 .pcode = aexp2 .pcode
++ factor .pcode
++ ”adi”

aexp → factor aexp .pcode = factor .pcode
factor → ( exp ) factor .pcode = exp .pcode
factor → num factor .pcode = ”ldc”ˆnum.strval
factor → id factor .pcode = ”lod”ˆnum.strval

The op-codes are marked in red. The generation is rather simple: the only attribute,
containing the generated code, is purely synthesized (which is arguably the simplest form of
AGs). It works purely bottom-up, divide and conquer. When are dealing with expressions
only, the code generation works similarly as the evaluation of side-effect free expressions
(which also works bottom-up). However, code generation works also when dealing with
assignments (something that we did not do earlier in the atrribute grammar chapter, when
doing expression evaluation).

As discussed in the previous subsection, we see also the difference between l-values and
r-values (lda and lod).

Linearization

Let’s address another small point here. As mentioned, we are dealing with a linear IR:
like 3AIC and other formats, p-code is a linear IR. It is a language consisting of a linear
sequence of simple commands (and uses jumps and labels for control, even though those
parts are currently not in the focus). The task of code generation (if one assume that
one deals with control-structures as well) it to translate the non-linear tree structure
into a linear one (justing jumps and labels). So, that may be called “linearization”. Since
currently we don’t focus on the control-structures, the task is to translate an already linear
language (“straight-line code”) to another linear arrangement, the linear P-code. We do
so in the AG, assuming operations like ˆ and ++ . The respesent appending an element to
a list resp. concatenating two lists. However, strictly speaking ++ is a binary operation.
We wrote in the semantic rules of the AG things like l1 ++ l2 ++ l3. We did not say how
to “think” of that (like to parse it mentally). Is that left or right associative? Or do we
mean that the reader understands that it does not really matter, as list concatenation
is associative and we mean the resulting overall list, obviously. Sure, it should be clear.
Note also, that ++ is understood as separating two pieces of code from each other (one
can think “newline” in code examples). Later, we show an implementation in a functional
language, we use the constructor Seq for that (for sequential composition). However, we
don’t implement that as concatenation of lists but as a simple constructor. Consequently,
the result of that translation (which corrresponds to the AG here) is not technically linear,
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it’s still a tree (even if of of quite simple structure). Therefore, in a last steps, one needs
to flatten out the tree to a ultimate linear list. See Listings 9.3 and 9.4.

Why does one do so? Well, it may be more efficient that way: concatenating lists “on
the fly” in functional languages is typically not a tail-recursive procedure and thus not
altogether cheap. So one may be better off by first doing another tree-like structure, to be
flattened out afterward. It’s a common technique. And furthermore, if we would right now
also consider conditionals and loops, etc. it’s harder to find the ultimate linear sequence
of commands while processing then abstract syntax. Also for that reason, one might be
better off to first generate pieces of the code that are afterwards glued together in a linear
arrangement. Linearization of a similar form is done for instance in the compiler described
in [1] as part of the so-called canonization phase, massaging the intermediate code (there
some 3AIC) to get get ready for the last phase of generating platform dependent machine
code.

But apart from those fine points, the implementation shown later reflects pretty truthfully
the AG here.

(x := x + 3) + 4

Attributed tree

+

x:=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

“result” attr.

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

• note: here x:=x+3 has a side-effect and “return” value (as in C . . . ):
• stn (“store non-destructively”)

– similar to sto , but non-destructive
1. take top element, store it at address represented by 2nd top
2. discard address, but not the top-value
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The issue of the semantics of an assignment has been mentioned earlier: does it give back
a result or not. Before, the code shown in an example was correct under the assumption
no value is “returned”. Here, we interpret it different, in accordance with languages like
C or Java. Thus, we have to use the command stn instead of sto from before.

Implementation in a functional language

The following slides show how the intermediate code generation resp. the AG can be
implemented straightforwardly in a functional language. Later, we will see also how the
code looks in C, which is also straightforward (though I believe the functional code is more
concise).

We start defining the two syntaxes of the two languages, the source code and the target
code. There are more or less one-to-one transscripts of the grammars we have seen.

Overview: p-code data structures

Source

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| Plus of expr ∗ expr
| Assign of symbol ∗ expr

Listing 9.1: Syntax of the source language (expressions with side effects)

Target

type i n s t r = (∗ p−code i n s t r u c t i o n s ∗)
LDC of i n t

| LOD of symbol
| LDA of symbol
| ADI
| STN
| STO

type tree = Onel ine of i n s t r
| Seq of tree ∗ tree

type program = i n s t r l i s t

Listing 9.2: Syntax of the target language

• symbols:
– here: strings for simplicity
– concretely, symbol table may be involved, or variable names already resolved in

addresses etc.

In the target syntax, there are two “stages”: a program is a linear list of instructions, but
there is also the notion of “tree”: the leaves of the trees are “one-line” instructions and
trees can be combined using sequential composition. Consequently, the translation (on
the next slide) will also have 2 stages: the first one (which is the interesting one) generates
a tree, and the second one flattens out the tree or “combs it” into a list.
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Two-stage translation

val to_tree : A s t e x p r a s s i g n . expr −> Pcode . tree

val l i n e a r i z e : Pcode . tree −> Pcode . program

val to_program : A s t e x p r a s s i g n . expr −> Pcode . program

Listing 9.3: Code generation (interface)

l e t rec to_tree ( e : expr ) =
match e with
| Var s −> ( Onel ine (LOD s ) )
| Num n −> ( Onel ine (LDC n ) )
| Plus ( e1 , e2 ) −>

Seq ( to_tree e1 ,
Seq ( to_tree e2 , Onel ine ADI) )

| Assign ( x , e ) −>
Seq ( Onel ine (LDA x ) ,

Seq ( to_tree e , Onel ine STN) )

l e t rec l i n e a r i z e ( t : t r e e ) : program =
match t with

Onel ine i −> [ i ]
| Seq ( t1 , t2 ) −> ( l i n e a r i z e t1 ) @ ( l i n e a r i z e t2 ) ; ; (∗ l i s t c o n c a t ∗)

l e t to_program e = l i n e a r i z e ( to_tree e ) ; ;

Listing 9.4: Code generation

The code makes more visible, that operations like ++ used in the AG are binary, the AG
generates a tree rather than a sequence. Nonetheless, flattening out the tree in a second
step (linearize) is child’s play. As mentioned earlier, in connection with that AG: it
would be straightforward not to have these 2 stages: instead of using Seq for doing the
trees first, one could use directly list-append. Appending lists in functional languages is
typically not tail-recursive and one may be better off, efficiency-wise, to split it into two
stages as shown.

Next we do the same implementation in C. We start by showing a possible way to represent
ASTs. We have seens similar representations in earlier chapters. We have also seen ways to
represent such trees in Java where we operated with concrete classes as beeing subclasses
of abstract classes. Here, the data structure uses enumeration types and structs (Listing
9.5).

Source language AST data in C

typedef enum { Plus , Assign } Optype ;
typedef enum {OpKind , ConstKind , IdKind} NodeKind ;
typedef struct s t r e e n o d e {

NodeKind kind ;
Optype op ; /∗ used w i t h OpKind ∗/
struct s t r e e n o d e ∗ l c h i l d , ∗ r c h i l d ;
int v a l /∗ used w i t h ConstKind ∗/
char ∗ s t r v a l /∗ used f o r i d e n t i f i e r s and numbers ∗/

} STreenode ;
typedef STreenode ∗ SyntaxTree ;

Listing 9.5: AST in C (for expressions with assignments)

Figure 9.1 shows schematically a small sample AST. The table summarizes the "attributes"
per node.
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Figure 9.1: Sample AST

node kind op val strval
x:= OpKind assign
+ OpKind Plus
x IdKind "x"
3 ConstKind 3

Code-generation via tree traversal (schematic)

procedure genCode(T: t r e e n o d e )
begin

i f T 6= n i l
then

`` g e n e r a t e code to prepare for code for l e f t c h i l d ' ' // p r e f i x
genCode ( l e f t c h i l d of T ) ; // p r e f i x ops
`` g e n e r a t e code to prepare for code for r i g h t c h i l d ' ' // i n f i x

genCode ( r i g h t c h i l d of T ) ; // i n f i x ops
`` g e n e r a t e code to implement a c t i o n ( s ) for T' ' // p o s t f i x

end ;

Listing 9.6: Schematic code generation GenCode in C

This sketch of a code skeleton basically says: the code generation is a recursive procedure,
traversing a given abstract syntax tree. During traversal, it involves prefix-actions, post-
fix actions and maybe even infix-actions. By actions I mean generating or emitting p-code
commands. Looking at the functional code we can see that there was no code generated in
infix-position, so we can expect to see no such thing in the C-code as well. The sketched
skeleton just shows the general shape, there may be other situations more complex that
the ASTs covered here that would call for infix code. We, at least don’t make use of it
here. See Listing 9.7 later for more complete code for codeGen for expressions.

Code generation from AST+

• main “challenge”: linearization
• here: relatively simple
• no control-flow constructs
• linearization here (see a-grammar):

– string of p-code
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– not necessarily the ultimate choice (p-code might still need translation to “real”
executable code)

preamble code

calc. of operand 1

fix/adapt/prepare ...

calc. of operand 2

execute operation

Code generation

The code generation works in principle the same as in the functional implementation (and
the AG), of course. In the functional implementation from before from Listing 9.4, we
have choosen not to emit strings already. Instead we have chosen to construct an element
of a data structure representing the instructions of the p-code (we called the type instr).
Given the fact that we are not yet at the “real” code level, but at an intermediate stage,
generating a data structure is more realistic and better than generating a string. A string
would have to be parsed again etc., and operating on strings is always more error prone
(typos) than operating on constructors of a data structure.

Not that reparsing strings would be hard. Also for debugging reasons a compiler could
have the option to emit a “pretty-printed” version of the intermediate code (or some
other external exchange format), but a well-designed internal representation is, for various
reasons, the more dignified and realistic way of handing things over to the next stage.

In the functional implementation, we turned the abstract syntax tree into a linear structure
(a list) in a two-stage process (cf. also the interface from Listing 9.3). Working with a
(functional) list data structure as target, doing it like that is more efficient; functional list
concatenation, which would be used in a one-stage approach, is not very efficient.
void genCode ( SyntaxTree t ) {

char c o d e s t r [ CODESIZE ] ;
/∗ CODESIZE = max l e n g t h o f one l i n e o f p−code ∗/
i f ( t !=NULL) {

switch ( t−>kind {
case OpKind :

switch ( t−>op ) {
case Plus :

genCode ( t−>l c h i l d ) ;
genCode ( t−>r c h i l d ) ;
emitCode( " adi " ) ;
break ;

case Assign :
s p r i n t f ( c o d e s t r , "%s %s , " ld a " , t−>s t r v a l ) ;
emit ( c o d e s t r i n g ) ;
getCode ( t−>l c h i l d ) ;
emitCode ( " stn " ) ;
break ;

d e f a u l t :
emitCode ( " Error " ) ;
break ;

} ;
break ;
c a s e ConstKind :

s p r i n t f ( c o d e s t r , "%s %s " , " l d c " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;
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break ;
c a s e IdKind :

s p r i n t f ( c o d e s t r , "%s %s " , " lod " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;
break ;

d e f a u l t :
emitCode ( " Error " ) ;
break ;

} ;
} ;

}

Listing 9.7: GenCode for expressions / assignments in C

9.6 Generation of three-address intermediate code

This section does the analogous thing we have done for p-code (one-address code) in
Section 9.5. We start by showing how resulting intermediate could look like, using the
same faculty example from before. When covering p-code, we did not talk about control-
flow constructs. We do the same here, focusing on straight-line code again. Treatment of
control-flow will be done in Secion 9.9: Indeed, there is not much difference between 3AIC
and p-code as far as the control-flow is concerned: both formats have to use conditional
jumps to translate conditionals, loops, and the like. Section 9.8.

3AIC manual translation again

Source

read x ; // input an integer
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t // output : f a c t o r i a l of x

end

Target: 3AIC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
write f a c t
label L1
halt

In this section, as we did for the p-code, we focus on straight-line code, though the example
shows also how conditionals and loops are treated (which we cover later). As far as the
treatment for the latter constructs is concerned, the p-code generation and the 3AIC code
generation works analogously anyway. In the translated target code for the faculty, we
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see also here labelling commands (pseudo-instructions) and (conditional) jumps, as in the
target code when translated to p-code.

Implementation in a functional language

We do the same as for the p-code and show how to realize the code generation in some
functional language (ocaml). The source language, expressions in the abstract syntax
tree and assignments, are unchanged (the abstract grammar was shown on page 15). In
the following, we start by repeat the data structure for the source language (which is
unchanged) and showing the data structures for the target language similar what we did
for the p-code. The data structure can be seen as “abstract syntax” for the 3AIC. One can
also see: the 3AIC data structure covers more than we (currently) actually need. There is
branching and labels. There is also something that deals with using arrays in assignment.
More complex data structures like array accesses and indexed access will be coverered
later as well, but not right now. The format for the source code is unchanged, see Listing
9.1.

Three-address code data structures (some)

Data structures (target)

type mem =
Var of symbol

| Temp of symbol
| Addr of symbol (∗ &x ∗)

type operand = Const of i n t
| Mem of mem

type cond = Bool of operand
| Not of operand
| Eq of operand ∗ operand
| Leq of operand ∗ operand
| Le of operand ∗ operand

type rhs = Plus of operand ∗ operand
| Times of operand ∗ operand
| Id of operand

type i n s t r =
Read of symbol

| Write of symbol
| Lab of symbol (∗ pseudo i n s t r u c t i o n ∗)
| Assign of symbol ∗ rhs
| AssignRI of operand ∗ operand ∗ operand (∗ a := b [ i ] ∗)
| AssignLI of operand ∗ operand ∗ operand (∗ a [ i ] := b ∗)
| BranchComp of cond ∗ l a b e l
| Halt
| Nop

type t r e e = Onel ine of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

Listing 9.8: Syntax of the target language (3AIC)

• symbols: again strings for simplicity
• again “trees” not really needed (for simple language without more challenging control

flow)
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The data structure for the target language does the same two layers we used for the p-
code. One “tree” representation that connects single-line instructions using Seq, and a
linear list of instructions as the final representation.

Translation to three-address code

l e t rec to_tree ( e : expr ) : t r e e ∗ temp =
match e with

Var s −> ( Onel ine Nop , s )
| Num i −> ( Onel ine Nop , s t r i n g _ o f _ i n t i )
| Ast . Plus ( e1 , e2 ) −>

(match ( to_tree e1 , to_tree e2 ) with
( ( c1 , t1 ) , ( c2 , t2 ) ) −>

l e t t = newtemp ( ) in
( Seq ( Seq ( c1 , c2 ) ,

Onel ine (
Assign ( t ,

Plus (Mem(Temp( t1 ) ) ,Mem(Temp( t2 ) ) ) ) ) ) ,
t ) )

| Ast . Assign ( s ' , e ' ) −>
l e t ( c , t2 ) = to_tree ( e ' )
in ( Seq ( c ,

Onel ine ( Assign ( s ' ,
Id (Mem(Temp( t2 ) ) ) ) ) ) ,

t2 )

Listing 9.9: Code generation 3AIC (expressions)

For the code generation, we focus on the translation of the part we are currently inter-
ested in, assignments and expressions, leaving out the other complications. We see the
generation of new temporaries using a function newtemp. The implementation of that
is not shown, but is easy enough (simply using a counter that generates a new number
at each invocation and returning a corresponding temporary). Strictly speaking, such a
counter is not purely functional. That’s not a problem, most functional languages are not
purely declarative, and one can implement such a generating function and other impera-
tive things. Later, we look at a corresponding AG. Normally, an attribute grammar (as a
theoretical construct) is purely declarative or functional, which means without side-effects.
Still, we will allow ourselves in the AG a function like newtemp for convenience.

In principle, one could do a fully functional representation (here in the code as well as in
the AG later), simply adding an additional argument, for instance a integer counter that
is appropriately handed over. That does not add to the clarity to the code, so a generator
like newtemp is more concise, it would seem.

An interesting aspect of the code generator is its type, resp. its return type. It returns,
obviously, 3AIC, more precisely a “tree” of 3AIC instructions. However, it also returns an
element of type temp. This is needed, because in order to generate code for compound
statements, one needs to know where to find the results of the translation of the sub-
expressions. That can be seen, for instance, in the case for addition.

The two recursive calls on the subexpressions of the addition give back a tuple each, i.e.,
one has two pairs of information; see the correponding match-expression in the code. The
resulting code is constructed as trees, and the result is given back in temporaries t1 and
t2 (or t1 and t2 in the code). Then the last 3AIC line generated in the addition-case
is t := t1 + t2, where t is a new temporary, and the function return the pair of the code
together with this freshly generated t.
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Three-address code by synthesized attributes

• similar to the representation for p-code
• again: purely synthesized
• semantics of executing expressions/assignments4

– side-effect plus also
– value

• two attributes (before: only 1)
– tacode: instructions (as before, as string), potentially empty
– name: “name” of variable or tempary, where result resides5

• evaluation of expressions: left-to-right (as before)

A-grammar

productions/grammar rules semantic rules
exp1 → id = exp2 exp1 .name = exp2 .name

exp1 .tacode = exp2 .tacode ++
id.strvalˆ”=”ˆ exp2 .name

exp → aexp exp .name = aexp .name
exp .tacode = aexp .tacode

aexp1 → aexp2 + factor aexp1 .name = newtemp()
aexp1 .tacode = aexp2 .tacode ++ factor .tacode ++

aexp1 .nameˆ”=”ˆ aexp2 .nameˆ
”+”ˆ factor .name

aexp → factor aexp .name = factor .name
aexp .tacode = factor .tacode

factor → ( exp ) factor .name = exp .name
factor .tacode = exp .tacode

factor → num factor .name = num.strval
factor .tacode = ””

factor → id factor .name = num.strval
factor .tacode = ””

As mentioned, we allow ourselves here a function newtemp() to generate a new temporary
in the case of addition, even if, super-strictly speaking, that’s not covered by AGs which
are introduced as declarative, side-effect free formalism. But doing it purely functional
(which is possible) would not add to understanding how 3AIC is generated.

Another sketch of 3AI-code generation

The code-sketch shows the code generation in a C-like notation, following the discussed
principles.

4That’s one possibility of a semantics of assignments (C, Java).
5In the p-code, the result of evaluating expression (also assignments) ends up in the stack (at the top).
Thus, one does not need to capture it in an attribute.
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switch kind {
case OpKind :

switch op {
case Plus : {

tempname = new temorary name ;
varname_1 = r e c u r s i v e c a l l on l e f t subt ree ;
varname_2 = r e c u r s i v e c a l l on r i g h t subt ree ;
emit ( " tempname = varname_1 + varname_2 " ) ;
return ( tempname ) ; }

case Assign : {
varname = id . for v a r i a b l e on l h s ( in the node ) ;
varname 1 = r e c u r s i v e c a l l in l e f t subt ree ;
emit ( " varname = opname " ) ;
return ( varname ) ; }

}
case ConstKind ; { return ( constant−s t r i n g ) ; } // emit nothing
case IdKind : { return ( i d e n t i f i e r ) ; } // emit nothing

}

Listing 9.10: Code generation 3AIC (expressions)

• “return” of the two attributes
– name of the variable (a temporary): officially returned
– the code: via emit

• note: postfix emission only (in the shown cases)

Generating code as AST methods

• possible: add genCode as method to the nodes of the AST
• e.g.: define an abstract method String genCodeTA() in the Exp class (or Node,

in general all AST nodes where needed)
S t r i n g genCodeTA ( ) { S t r i n g s1 , s2 ; S t r i n g t = NewTemp ( ) ;

s1 = l e f t . GenCodeTA ( ) ;
s2 = r i g h t . GenCodeTA ( ) ;
emit ( t + "=" + s1 + op + s2 ) ;
return t

}

ASTs are trees, of course, and we have seen how one can realize the AST data structure
in object-oriented, class-based languages, like Java etc., and probably most have chosen a
corresponding representation in oblig 1. Of course, recursion over such data structure can
be done straightforwardly, by adding a corresponding method. That’s object-orientation
“101”: one adds a corresponding method to the classes, whose instances represent different
nodes in the trees, and then calls them recursively, as shown in the code sketch.

Whether it is a good design from the perspective of modular compiler architecture and
code maintenance, to clutter the AST with methods for code generation and god knows
what else, e.g. type checking, pretty printing, optimization . . . , is a different question.

A better design, many would posit, is in this situation to separate the functionality from
the tree structure, i.e., to separate the “algorithm” from the “data structure”, not embedd
the algorithm. Such a separation can be achieved in Java-like OO languages but a design-
pattern called visitor. It allows to iterate over recurive stuctures “from the outside”. It’s a
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better design in our context of compilers; it allows to separate different modules from the
central data structure and intermediate representation of ASTs (and might be useful for
other intermediate representations as well). Since this is not a lecture about Java or C++
design patterns, but about (principles of) compilers, so we leave it like at that, especially
since the “embedded solution” shown on the slide works ok as well. Some groups for oblig
1 actually did the effort to realize the print-function as visitor (at least 2020, and previous
years, but not this year).

Attributed tree (x:=x+3) + 4

• note: room for optimization

To conclude this section, here the generated code for the example we have seen before,
presented as attributes from the AG.

9.7 From P-code to 3A-Code and back: static simulation &
macro expansion

In this intermezzo we shortly have a look how to translate back and forth between the
two different intermediate code formats, 1-address-code and 3AIC. We do that mainly to
touch upon two concepts, macro-expansion and static simulation. The first is one rather
straightforward, the static simulation is a more complex topic.

Apart from the fact that those mentioned concepts are interesting also in contexts different
from the one where they are discussing here, one may still ask: why would one want to
translate 1AIC to 3AIC and back (beyond using the translations as illustrating some
concepts)?

Well, notions of 1AC and 3AC exist also independent from their use as intermediate code.
In particular, hardware may offer an instruction set in 3A-format, or at least partly in
3A-format (or 2A-format). 1A-hardware, though, is non-existant (there had been attemps
for that in the past). So, if one has an intermediate representation like the p-code or 1AIC
as presented here, then generating code for a 3AC hardware faces problems like those
discussed here. Final code generation faces additional problems like platform-dependent
optimization, and register allocation, which will not enter the picture in this section. For
the ultimate code generation, we will probably translate from 3AIC to 2AC machine code,
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which is not directly covered in this section here, but anyway, our focus later will be on
register allocation.

“Static simulation”

• illustrated by transforming p-code ⇒ 3AC
• restricted setting: straight-line code
• cf. also basic blocks (or elementary blocks)

– code without branching or other control-flow complications (jumps/conditional
jumps. . . )

– often considered as basic building block for static/semantic analyses,
– e.g. basic blocks as nodes in control-flow graphs, the “non-semicolon” control

flow constructs result in the edges
• terminology: static simulation seems not widely established
• cf. abstract interpretation, symbolic execution, etc.

The term “static simulation” seems like an oxymoron, a contradicton in itself. Simulation
sounds like running a program, and static means, at compile time, before running a pro-
gram. And, due to fundamental limitations (undecidablity of the halting problem), the
compiler in general cannot simulate a program (for reasons of analysis or, here specifically,
for translating it to a different representation). However, here we are in the quite restricted
situation: straight-line code (especially no loops), which means the program terminates
anyway, actually, the number of steps it does is known, it’s the number of lines. So it’s
a finite problem, there are no issues with undecidability. Being finite, one can execute
“mentally” one command after the other and know what will happen when running the
program. That’s what the compiler does for the translation and one can call it static
simulation. Actually and as mentioned, the term “static simular” is not very widely used
in compiler construction, that’s why I put it into quotation marks.

The other mentioned techniques, like abstraction interpretation and symbolic execution,
are well-established techniques and frameworks. Like static analysis here, they work by
“mentally” executing the code step by step to achieve their result. They are used though
for semantic analysis, not for compiling or translating one code representation into another,
at least not directly. In a very general way, of course, all semantic analyses to some extent,
statically “simulate” the code (the code on AST level, or intermediate code, or whatever).
After all, the semantic analysis phase, generally, analyses the given code to predict what
might happen at run-time, at least approximately, and the predictions helps to generate
the code or generate better code, or optimize the given code by transforming it. This
prediction is based to mentally “execute” the given code, one could say simulate the code
execution. This “simulation” aspect is more felt or less in different techniques. Even
data-flow analysis can be understood loosely as simulating, on an abstract level, the given
program. Loosely insofar, that the data flow analysis typically does not need to follow the
order of the statements as they appear in the program, but can treat them in a different
orders. Therefore, the aspect of “simulation” or “execution” is typically less felt for data-
flow analysis. We will look at data flow analysis in the following chapter for so-called live
variable analysis. That’s an important kind of data flow analysis, and also typical in the
sense, that many other kind of data flow analyses work similarly. Another reason why the
execution aspect feels not so pronouncedv in data flow analysis and likewise in abstract
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interpretation is that they work on "abstractions"; they abstract away from details of the
concrete program and its behavior. Those techniques simulate or executes the behavior
therefore on an (more or less) abstract level; the term “abstract interpretation” directly
expresses that. Being abstract in the sense of ignoring details. As a consquence, the
analytic predictions those techniques yield via “simulation” or via “abstractly executing
the program” are not precise, but approximative.

The latter point is a crucial difference to what we do here! Translating from one (inter-
mediate) code representation to a another one cannot ignore details or abstract away from
anything. The transformation has to preserve the semantics, obviously.

We show two directions of such a translation: form p-code two 3AIC, and vice version.
The reverse direction, from 3AIC to p-code can be done quite trivially, by macro expan-
sion. That’s a technique not based on static simulation or similar approaches, it’s simply
replaces syntactically each line of, here, 3AIC, by (typically more than) one line of p-code,
preserving the behavior.

That will be easy. However, as it turns out, one could better. When comparing the result
from translating directly from an abstract syntax tree to p-code via the indirect result,
first to 3AIC and then macro-expanding that to p-code, it’s clear that the direct route
results in better code.

One can actually rememdy that. One just has to be more smart about how to translate
3AIC to p-code. The macro expansion translation is correct, but not very clever. If the
translation is not purely syntactical, but the the semantics of the translated constructs
into account, one can do much better. And then we are back at doing something that one
may call static simulation.

We won’t show how to translated all of the p-language or all of the 3AIC language, we focus
on straight-line code; conceptually sequences of assignments. Other parts, like jumps and
labels don’t need much translation, since they are analogous in both languages (though
the commands are called differently).

P-code ⇒ 3AIC via “static simulation”

• difference:
– p-code operates on the stack
– leaves the needed “temporary memory” implicit

• given the (straight-line) p-code:
– traverse the code = list of instructions from beginning to end
– seen as “simulation”

∗ conceptually at least, but also
∗ concretely: the translation can make use of an actual stack
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From P-code ⇒ 3AIC: illustration

The slide illustrates the concept on a simple example x := (x+3) + 4 (which we have
seen before). The code on the top of the left-hand side is the target code, the p-code
instructions. The right-hand side shows the evolution of the abstract p-code machine,
when executing the p-code on the left. In particular, the stack as the crucial part is shown
in its evolution, not after every single line having been executed, but at crucial intermediate
stages. One such stages is after having done adi, for instance the first such instance. As
discussed, the stack machine uses the stack for intermediate results, that’s exactly what
happens when executing adi (or similar operations): the operands are popped of the
stack, and the intermediate result is stored on the stack (“push”). Without stack, the
3AIC needs to store that intermediate result somewhere else, and that’s of course a (new)
temporary. Note also: the semantics of the abstract syntax is assumed to be that an
assignment (like x := x+3 in the example) gives back a value, like on C or Java. That is
reflected in the p-code by using stn, the non-destructive storing, as discussed earlier. In
the translation to 3AIC, the right-hand side is stored in t1, and that is used in the last
line t2 := t1 + 3.

P-code ⇐ 3AIC: macro expansion

• also here: simplification, illustrating the general technique, only
• main simplification:

– register allocation
– but: better done in just another optmization “phase”

The inverse direction of the translation is simpler, at least when doing it in a simple way.
It does not need any static simulation of the architecture, i.e., considering the program’s
semantic, it can work simply on the syntactic structure of the input program. It simple
expands each line by a corresponding sequence of p-code instructions. The is illustrated
on the basic 3AIC instruction on the next slide and afterwards on the previous example.

Macro for general 3AIC instruction: a := b + c
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lda a
lod b ; or `` ldc b ' ' i f b i s a const
lod c : or `` ldc c ' ' i f c i s a const
adi
sto

Example: P-code ⇐ 3AIC ((x:=x+3)+4)

There are two different p-codes shown, translated in different ways. One indirectly, via
the 3AIC, which is macro-expanded as illustrated. The second p-code is generated directly
from the abstract syntax code. Clearly, the directly translated code is quite much shorter
(and more efficient). One important factor in that “loss” in the indirect translation is that
the macro-expansion is “brainless”. That’s makes the expansion simple and efficient, but
at the price is that the resulting code is not efficient when being executed. We will, in
the following at least hint how to do it better. In general, however, generating efficiently
non-efficient (but correct) code that is afterwards optimized is not per se a bad idea. That
common place in many compilers (even if compilers might not compiler back-and-forth
1AIC and 3AIC). Anyway, the “better” translation we will look at improves on one piece
of inefficiency (in the example). The 3AIC contains a line x = t1. After that x and t1
contain obviously the same value. The macro expansion “mindlessly” expands this line,
even though one does not need to have two copies of the value around. More generally,
the translation does not keep track of which values are stored where, it works purely
line-by-line and syntactically. That can be improved, in “static-simulation” style.

In a preview of code generation in the last chapter: similar information, which value is
stored where, in particular in which register and which main-memory address, that style
of information tracking will be employed in that context later as well.

source 3AI-code

t1 = x + 3
x = t1
t2 = t1 + 4

Direct p-code

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +
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P-code via 3A-code by macro exp.

;−−− t1 = x + 3
lda t1
lod x
ldc 3
adi
sto
;−−− x = t1
lda x
lod t1
sto
;−−− t2 = t1 + 4
lda t2
lod t1
ldc 4
adi
sto

cf. indirect 13 instructions vs. direct: 7 instructions

As mentioned earlier, translating via macro expansion is correct, though it can be improved
(“optimized”). We sketch a bit how that can be achieved.

Indirect code gen: source code ⇒ 3AIC ⇒ p-code

• as seen: detour via 3AIC leads to sub-optimal results (code size, also efficiency)
• basic deficiency: too many temporaries, memory traffic etc.
• several possibilities

– avoid it altogether, of course (but remember JIT in Java)
– chance for code optimization phase
– here: more clever “macro expansion” (but sketch only)

the more clever macro expansion: some form of static simulation again

• don’t macro-expand the linear 3AIC
– brainlessly into another linear structure (p-code), but
– “statically simulate” it into a more fancy structure (a tree)

“Static simulation” into tree form (sketch)

• more fancy form of “static simulation” of 3AIC
• result: tree labelled with

– operator, together with
– variables/temporaries containing the results

Source

t1 = x + 3
x = t1
t2 = t1 + 4
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Tree

+

+

x 3

4

t2

x,t1

note: instruction x = t1 from 3AIC: does not lead to more nodes in the tree

P-code generation from the generated tree

Tree from 3AIC

+

+

x 3

4

t2

x,t1

Direct code = indirect code

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

• with the thusly (re-)constructed tree
⇒ p-code generation

– as before done for the AST
– remember: code as synthesized attributes

• the “trick”: reconstruct essential syntactic tree structure (via “static simulation”)
from the 3AI-code

• Cf. the macro expanded code: additional “memory traffic” (e.g. temp. t1)



9 Intermediate code generation
9.8 More complex data types 37

Compare: AST (with direct p-code attributes)

+

x:=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

9.8 More complex data types

Next we drop one of the simplifications we have done so far, concerning the involved data.
We have a lock at how to lift the other simplification, lack of control-flow commands
in Section 9.9 later. As far as the data is concerned, we have treated only variables
(and temporaries) for simple data types, but not compound ones like arrays, records, etc.
Also, we have not looked at reference data (pointers). To deal with that adequately and
efficiently, intermediate languages support additional ways to access data, i.e., additional
addressing modes. A taste of that we have seen in the p-code: a variable can be loaded in
two different ways, depending on whether the variable is used as l-value or r-value. The
two commands are lod and lda, load the variable’s value or load the variable’s address.

Status update: code generation

• so far: a number of simplifications
• data types:

– integer constants only
– no complex types (arrays, records, references, etc.)

• control flow
– only expressions and
– sequential composition

⇒ straight-line code

Address modes and address calculations

• so far
– just standard “variables” (l-variables and r-variables) and temporaries, as in x
= x + 1

– variables referred to by their names (symbols)
• but in the end: variables are represented by addresses
• more complex address calculations needed
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addressing modes in 3AIC:

• &x: address of x (not for temporaries!)
• *t: indirectly via t

addressing modes in P-code

• ind i: indirect load
• ixa a: indexed address

The concepts underlying the commands here are typically also supported by standard
hardware. There may be special registers for indexed access, to make that form of access
fast. Indexed access (here in p-code) is an access which has two arguments: the address
of some place (in memory) and an offset. That should remind us to the way that arrays
are layed out in memory (we had discussed that earlier). Indeed, HW-supported indexed
access is one important reason, that arrays are a very efficient data structure. We will
illustrate the new constructions on arrays (but also records) in the following.

In 3AIC, we don’t have indexed addressing, we have a C-like situation, with access to the
addresses of variables. The &x operation corresponds to the lda instruction in p-code.

Loading indirectly (in 3AIC and 1AIC) means: do not load the content of the variable
(nor load its address): load the content of the variable (or here the temporary), interpret
the loaded value as address, and then, load from there. Similarly when using *t on the
left-hand side of a 3AIC assignments.

Address calculations in 3AIC: x[10] = 2

• notationally represented as in C
• “pointer arithmetic” and address calculation with the available numerical operations
t1 = &x + 10
∗ t1 = 2

• 3-address-code data structure (e.g., quadrupel): extended (adding address mode)

The compilation is straightforward. The code also shows, that (at least in our 3AIC) there
is no indexed access. The off-set, in the example 10 is calculated by 3AIC instructions. It’s
a form of “pointer arithmetic”. We will revisit the example in p-code; there, the translation
will make use of an indexed access command ixa.
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Address calculations in P-code: x[10] = 2

• tailor-made commands for address calculation

• ixa i: integer scale factor (here factor 1)

lda x
ldc 10
ixa 1 // f a c t o r 1
ldc 2
sto

The efect of the two introduced commands ixa and ind is shown in the transitions in
the picture, stepping from the stack content on the left-hand side to the stack on the
right-hand side. The two commands correspond to a situation, where a array expression
is written-to (ind) resp. read-from (ixa). The difference correspond to the notions of
l-values and r-values, we have seen before (but not in the context of array accesses). Also
on the next slide, we see the difference between the two flavors of array-accesses (l- vs-
r-value usage).

In the two pictures, the a is mnonic for a value representing an address. In the code ex-
ample: The ixa command expects two argument on the stack (and has as third argument
the scale factor as part of the command. To make use of the command, we first load the
address of x loaded and afterwards constant 10. Executing then the ixa 1 command
yields does the calculation in the box, which is intended as address calculation. So the
result of that calculation is (intended as) an address again. To that address, the constant
2 is stored (and the values discared from the stack: sto is the “destructive” write).
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Array references and address calculations

int a [ SIZE ] ; int i , j ;
a [ i +1] = a [ j ∗2 ] + 3 ;

• difference between left-hand use and right-hand use
• arrays: stored sequentially, starting at base address
• offset, calculated with a scale factor (dep. on size/type of elements)
• for example: for a[i+1] (with C-style array implementation)6

a + (i+1) * sizeof(int)

• a here directly stands for the base address

Array accesses in 3AI code

• one possible way: assume 2 additional 3AIC instructions
• remember: 3AIC can be seen as intermediate code, not as instruction set of a partic-

ular HW!
• 2 new instructions7

t2 = a [ t1 ] ; f e t c h value o f array element

a [ t2 ] = t1 ; a s s i g n to the address o f an array element

Source code

a [ i +1] = a [ j ∗2 ] + 3 ;

TAC

t1 = j ∗ 2
t2 = a [ t1 ]
t3 = t2 + 3
t4 = i + 1
a [ t4 ] = t3

We have mentioned that IC is an intermediate representation that may be more or less
close to actual machine code. It’s a design decision, and there are trade-offs either way.
Like in this case: obviously it’s (slightly) easier to translate array accesses to a 3AIC which
offers such array accesses itself (like on this slide). It’s, however, not too big a step to
do the translation without this extra luxury. In the following we see how to do exactly
that, without those array-accesses at the IC level (both for 3AIC as well as for P-code).

6In C, arrays start at a 0-offset as the first array index is 0. Details may differ in other languages.
7Still in 3AIC format. Apart from the “readable” notation, it’s just two op-codes, say =[] and []=.
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That’s done by macro-expansion, something that we touched upon earlier. The fact that
one can “expand away” the extra commands shows there are no real complications either
way (with or without that extra expressivity).

One interesting aspect, though, is the use of the helper-function elem_size. Note that
this depends on the type of the data structure (the elements of the array). It may also
depend on the platform, which means, the function elem_size is (at the point of inter-
mediate code generation) conceptually not yet available, but must provided and used when
generating platform-dependent code. As similar “trick” we will see soon when compiling
record-accesses (in the form of a function field_offset.

As a side remark: syntactic constructs that can be expressed in that easy way, by forms
of macro-expansion, are sometimes also called “syntactic sugar”.

Or “expanded”: array accesses in 3AI code (2)

Expanding t2=a[t1]

t3 = t1 ∗ elem_size ( a )
t4 = &a + t3
t2 = ∗ t4

Expanding a[t2]=t1

t3 = t2 ∗ elem_size ( a )
t4 = &a + t3
∗ t4 = t1

• “expanded” result for a[i+1] = a[j*2] + 3

t1 = j ∗ 2
t2 = t1 ∗ elem_size ( a )
t3 = &a + t2
t4 = ∗ t3
t5 = t4 +3
t6 = i + 1
t7 = t6 ∗ elem_size ( a )
t8 = &a + t7
∗ t8 = t5

Array accessses in P-code

Expanding t2=a[t1]

lda t2
lda a
lod t1
ixa e lem_size ( a )
ind 0
sto
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Expanding a[t2]=t1

lda a
lod t2
ixa e lem_size ( a )
lod t1
sto

• “expanded” result for a[i+1] = a[j*2] + 3

lda a
lod i
ldc 1
adi
ixa elem_size ( a )
lda a
lod j
ldc 2
mpi
ixa elem_size ( a )
ind 0
ldc 3
adi
sto

Extending grammar & data structures

• extending the previous grammar

exp → subs = exp2 | aexp
aexp → aexp + factor | factor

factor → ( exp ) | num | subs
subs → id | id [ exp ]

Extending the language (here with arrays) means extending the AST. That means we
have to extend the tree definition from Listing 9.5. Actually, the extension is quite small:
Compared to the the tree struction from Listing 9.5, the only addition is a new “code”
Sub in the enumeration Optype.

typedef enum { Plus , Assign , Sub} Optype ; /∗ Sub i s new ∗/
/∗ o t h e r d e c l a r a t i o n as b e f o r e ∗/

Listing 9.11: AST in C: additional OpType
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Syntax tree for (a[i+1]:=2)+a[j]

+

:=

a[]

+

i 1

2

a[]

j

Code generation for P-code

Listing 9.12 shows as C how one can generate code for the “array access” grammar from
before. Compared to the correspinding procedure for code generation from Listing 9.7,
the procedure genCode has one additional argument, a boolean flag. That has to do
with the discinction we want to make (here) whether the argument is to be interpeted as
address or not. And that in turn is related between so called L-values and R-values and
the fact that the grammar allows “assignments” (written x := exp2) to be expressions
themselvves. In the code generation, that is reflected also by the fact we use stn (non-
destructive writing). Of course, already without arrays, there had been the distinction
between L-values and R-values. Nonetheless, the code generation from Listing 9.7 could
be achieved without the extra argument isAddr.
void genCode ( SyntaxTree t , int isAddr ) {

char c o d e s t r [ CODESIZE ] ;
/∗ CODESIZE = max l e n g t h o f 1 l i n e o f P−code ∗/
i f ( t != NULL) {

switch ( t−>kind ) {
case OpKind :

{ switch ( t−>op ) {
case Plus :

i f ( i s A d d r e s s ) emitCode ( " Error " ) ; // new c h e c k
e l s e { // unchanged

genCode ( t−>l c h i l d , FALSE ) ;
genCode ( t−>r c h i l d , FALSE ) ;
emitCode ( " ad i " ) ; // a d d i t i o n

}
break ;

case Assign :
genCode ( t−>l c h i l d ,TRUE) ; // `` l −v a l u e ' '
genCode ( t−>r c h i l d , FALSE ) ; // ``r−v a l u e ' '
emitCode ( " stn " ) ;
break

case Subs :
s p r i n t f ( c o d e s t r i n g , "%s %s " , " lda " , t−>s t r v a l ) ;
emitCode ( c o d e s t r i n g ) ;
genCode ( t−>l c h i l d . FALSE ) ;
s p r i n t f ( c o d e s t r i n g , "%s %s %s " ,

" i x a elem_size ( " , t−>s t r v a l , " ) " ) ;
emitCode ( c o d e s t r i n g ) ;
i f ( ! isAddr ) emitCode ( " ind 0 " ) ; // i n d i r e c t l o a d
break ;

default :
emitCode ( " Error " ) ;
break ;

}
break ;

case ConstKind :
i f ( isAddr ) emitCode ( " Error " ) ;
e l s e {

s p r i n t f ( c o d e s t r , "%s %s " , " l d s " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;

}
break ;
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case IdKind :
i f ( isAddr )

s p r i n t f ( c o d e s t r , "%s %s " , " lda " , t−>s t r v a l ) ;
e l s e

s p r i n t f ( c o d e s t r , "%s %s " , " lod " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;
break ;

default :
emitCode ( " Error " ) ;
break ;

}
}

}

Listing 9.12: Code generation 3AIC (arrays)

Access to records

Let’s have also a short look to records. This time we don’t show how to extend the
abstract syntax tree declarations further or how to extend the genCode implementation
in detail

For dealing with records, one may consult also the remarks when discussing record types
resp. the memory layout for different data types (in connection with the run-time envi-
ronment). Records are not much more complex that arrays, it’s only that the different
slots are not “uniformely” sized. This one cannot simply access “slot number 10” (using
indexed access or pointer arithmetic). Luckily, however, the offsets are all statically known
(by the compiler), and with that, one can access the corresponding slot.

One complication is: the offset may be statically known (before running the program),
but actually not yet right now, in the intermediate code phase. It typically may be known
only when having decided for the platform. That’s still at compiler-time, but lies “in
the future” in the phased design of the compiler. It’s not hard to solve that. Instead of
generating a concrete offset right now, one injects some “function” (say field_offset)
whose implementation (resp. expansion) will be done later, as part of fixing platform-
dependent details. It’s similar what we used already in the context of the array-accesses,
which made use of a function elem_size.

typedef struct Rec {
int i ;
char c ;
int j ;

} Rec ;
. . .

Rec x ;

Listing 9.13: Sample struct type declaration
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Layout

• fields with (statically known) offsets from base address
• note:

– goal: intermediate code generation platform independent
– another way of seeing it: it’s still IR, not final machine code yet.

• thus: introduce function field_offset(x,j)
• calculates the offset.
• can be looked up (by the code-generator) in the symbol table
⇒ call replaced by actual off-set

Records/structs in 3AIC

• note: typically, records are implicitly references (as for objects)
• in (our version of a) 3AIC: we can just use &x and *x

simple record access x.j

t1 = &x + f i e l d _ o f f s e t ( x , j )

left and right: x.j := x.i

t1 = &x + f i e l d _ o f f s e t ( x , j )
t2 = &x + f i e l d _ o f f s e t ( x , i )
∗ t1 = ∗ t2

The second example shows record access a l-value and as r-value.

Field selection and pointer indirection in 3AIC

Next we cover an pointer indirection, actually in connection with records. In C-like lan-
guages, that’s the way one can implement recursive data structure (which makes it an
important programming pattern). Of course, in languages without pointers, which may
support inductive data types for instance, those structures need to be translated similarly.
The C-code shows a typical example, a tree-like data structure. The following snippets
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then two typical examples making use of such trees, one on the left-hand side, one on
the right-hand side of an assignment. The notation -> is C-specific, here used to “move”
up or down the tree. The same example (the tree) will also be used to show the p-code
translation afterwards.

C code

typedef struct treeNode {
int v a l ;
struct treeNode ∗ l c h i l d ,

∗ r c h i l d ;
} treeNode
. . .

Treenode ∗p ;

Listing 9.14: Some sample record type declaration (binary trees)

Assignments involving fields

p −> l c h i l d = p ;
p = p−>r c h i l d ;

3AIC
t1 = p + f i e l d _ o f f s e t (∗ p , l c h i l d )
∗ t1 = p
t2 = p + f i e l d _ o f f s e t (∗ p , r c h i l d )
p = ∗ t2

Structs and pointers in P-code

• basically same basic “trick”
• make use of field_offset(x,j)

3AIC

p −> l c h i l d = p ;
p = p−>r c h i l d ;

lod p
ldc f i e l d _ o f f s e t (∗ p , l c h i l d )
ixa 1
lod p
sto
lda p
lod p
ind f i e l d _ o f f s e t (∗ p , r c h i l d )
sto
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9.9 Control statements and logical expressions

So far, we have dealt with straight-line code only. The main “complication” were com-
pound expressions, which do not exist in the intermediate code, neither in 3AIC nor in
p-code. That required the introduction of temporaries resp. the use of the stack to store
those intermediate results.

The core addition to deal with control statements here is the use of labels. Labels can be
seen as “symbolic” respresentations of “programming lines” or “control points”. Ultimately,
in the final binary, the platform will support jumps and conditional jumps which will
“transfer” control (= program pointer) from one address to another, “jumping to an
address”. Since we are still at an intermediate code level, we do jumps not to real addresses
but to labels (referring to the starting point of sequences of intermediate code). As a side
remark: also assembly language editors will in general support labels to make the program
at least a bit more human-readable (and relocatable) for an assembly programmer. Labels
and goto statements are also known in (not-so-)high-level languages such as classic Basic
(and even Java has goto as reserved word, even if it makes no use of it).

Besides the treatment of control constructs, we discuss a related issue namely a particular
use of boolean expressions. It’s discussed here as well, as (in some languages) boolean
expressions can behave as control-constructs, as well. Consequently, the translation of
that form of booleans, require similar mechanisms (labels) as the translation of standard-
control statements. In C-like languages, including Java, that’s know as short-circuiting.

As a not-so-important side remark: Concretely in C, “booleans” and conditions operate
also on more than just a boolean two-valued domain (containing true and false or
0 and 1). In C, “everything” that’s not 0 is treated as 1. That may sounds not too
“logical” but reflects how some hardware instructions and conditional jumps work. Doing
some operations sets “ hardware flags” which then are used for conditional jumps: jump-
on-zero checks whether the corresponds flag is set accordingly. Furthermore, in functional
languges, the phenomenon also occurs (but typically not called short-circuiting), and in
general there, the dividing line between control and data is blurred anyway.

Control statements

• so far: basically straight-line code
• general (intra-procedural) control more complex thanks to control-statements

– conditionals, switch/case
– loops (while, repeat, for . . . )
– breaks, gotos, exceptions . . .

important “technical” device: labels

• symbolic representation of addresses in static memory

• specifically named (= labelled) control flow points
• nodes in the control flow graph
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• generation of labels (cf. also temporaries)

Intra-procedural means “inside” a procedure. Inter-procedural control-flow refers to calls
and returns, which is handled by calling sequences (which also maintain, in standard
C-like languages the call-stack of the RTE), as discussed in the chapter about run-time
environments.

Concerning gotos: gotos (if the language supports them) are almost trivial in code gen-
eration, as they are basically available at machine code level. The “considered-harmful”
qualification goes back to a famous (or infamous?) paper or letter by Dijkstra “Go To
Statement Considered Harmful”. Actually, when submitted the title of that piece was
phrase differently, but the editor, Nikolaus Wirth, suggested a juicier one (Nikolaus Wirth
is the guy behind Pascal, among other things). That letter was kind of the opening salvo
or one important early salvo in the “structured programming wars”. . .

Loops and conditionals: linear code arrangement

Let’s first fix the abstract syntax, extending the previous version. The additions are not
very fancy, some some syntax for conditionals and for loops. Abstract syntax is in tree-
form, and the task will be to turn it to a linear representation, since we are working with
linear intermediate code formats. In principle, the task should be clear, working heavily
with conditional jumps to represent conditinals and loops in the abstract syntax; see later
Figures 9.2 and 9.3

if -stmt → if ( exp ) stmt else stmt
while-stmt → while ( exp ) stmt

• challenge:
– high-level syntax (AST) well-structured (= tree) which implicitly (via its struc-

ture) determines complex control-flow beyond SLC
– low-level syntax (3AIC/P-code): rather flat, linear structure, ultimately just a

sequence of commands

Arrangement of code blocks and cond. jumps

The two pictures show the “control-flow graph” of two structured commands (conditionals
and loop). They should be clear enough. However, the pictures can also be read as
containg more information than the CFG: The graphical arrangement hints at the fact
that ultimate, the code is linear. Crucial here are conditional jumps, but those are one-
armed commands. That means, one jumps on some condition. But if the condition is
not met, one does not jump. That is called “fall-through”. In the picture, it’s hinted at
insofar that the boxes are aligned strictly from top to bottom. A graphical illustration of
a (control-flow) graph structure would not need to do that, a graph consists of nodes and
edges, no matter how one arrange them for illustrative purposes. Secondly, the two graphs
use always the true-case as fall-through. Of course, the underlying intermediate code can

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
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Figure 9.2: Conditional

Figure 9.3: Conditional

support different formd of conditional jumps (like jump-on-zero and jump-on-non-zero)
which may swap the situatiom. Our code will work with jump-on-false which explains the
true-as-fall-through depiction.

Anyway, the pictures are intended to remind us that we are generating code for linear
intermediate code languages, and in particular, the graph should not be interpreted (with
its true and false edge) should not be misunderstood to think we still have two-armed
jumps. The “graphical” representation can also be understood as control flow graph. The
nodes contain sequences of “basic statements” of the form we covered before (like one-
line 3AIC assignments) but not conditionals and similar and no procedure calls (we don’t
cover them in the chapter anyhow). So the nodes (also known as basic blocks) contain
staight-line code.

In the following we show how to translate conditionals and while statements into inter-
mediate code, both for 3AIC and p-code. The translation is rather straightforward (and
actually very similar for both cases, both making use of labels).

To do the translation, we need to enhance the set of available “op-codes” (= available
commands). We need a mechanism for labelling and a mechanism for conditional jumps.
Both kinds of statements need to be added to 3AIC and p-code, and in both variants,
they basically work the same, except that the actual syntax of the commands is different.
But that’s details.
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Jumps and labels for conditionals and loops

For conditionals if (E) then S1 else S2 and while loops while (E) S, the 3AIC is given
in Listing 9.15, resp. in Listing 9.16.
<code to e v a l E to t1>
i f _ f a l s e t1 goto L1 // goto f a l s e branch

<code f o r S1> // f a l l through to t r u e branch
goto L2 // hop over f a l s e branch
label L1

<code f o r S2>
label L2

Listing 9.15: 3AIC for conditionals

label L1 // label the loop header
<code to e v a l u a t e E to t1>
i f _ f a l s e t1 goto L2 // jump to a f t e r the loop

<code f o r S>
goto L1 // jump back
label L2 // label the loop e x i t

Listing 9.16: 3AIC for while loops

For comparison, we show also the corresponding p-code in 9.17, resp. in Listing 9.18. We
see that both translations work basically the same, which is not surprising, as both linear
intermediate code forms have equivalent commands for handling the control flow, namely
labelling and jumps to labels, in particular conditional jumps.
<code to e v a l u a t e E>
f j p L1 // got f a l s e branch

<code f o r S1> // f a l l through to t r u e branch
ujp L2 // hop over f a l s e branch
lab L1
<code f o r S2>
lab L2

Listing 9.17: 3AIC for conditionals

lab L1 // l a b e l the loop header
<code to e v a l u a t e E>
f j p L2 // jump to a f t e r the loop

<code f o r S>
ujp L1 // jump back
lab L2 // l a b e l the loop e x i t

Listing 9.18: 3AIC for while loops

Boolean expressions

• two alternatives for treatment
1. as ordinary expressions
2. via short-circuiting

• ultimate representation in HW:
– no built-in booleans (HW is generally untyped)
– but “arithmetic” 0, 1 work equivalently & fast
– bitwise ops which corresponds to logical ∧ and ∨ etc

• comparison on “booleans”: 0 < 1?
• boolean values vs. jump conditions
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Short circuiting boolean expressions

The notation is C-specific, and a popular idiom for nifty C-hackers. For non-C users it
may look a bit cryptic. A “popular” error in C-like languagues are nil-pointer exceptions,
and programmers a well-advised to check pointer accesses whether the pointer is nil or not.
In the example, the access p -> val would derail the program if p were nil. However,
the “conjuction” checks for nil-ness, and the nifty programmer knows that the first part is
checked first. And not only that, if it evaluates to false (or 0 in C), the second conjuct is
not executed (to find out if it’s true or false), it’s jumped over. That’s known as “circuit
evaluation”.

Short circuit illustration

i f ( ( p!=NULL) && p −> v a l ==0)) . . .

• done in C, for example
• semantics must fix evaluation order
• note: logically equivalent a ∧ b = b ∧ a
• cf. to conditional expressions/statements (also left-to-right)

a and b , if a then b else false
a or b , if a then true else b

Pcode for (x!=0) && (x==y)

lod x
ldc 0
neq // x!=0 ?
f j p L1 // jump , i f x=0
lod y
lod x
equ // x =? y
ujp L2 // hop over
lab L1
ldc FALSE
lab L2

• new op-codes
– equ
– neq

The p-code might not be the very best representation, for instance, one may come up with
a different solution that does not load x two times.

A side remark: we are still at intermediate code. Optimizations and the use of registers
have not yet entered the picture. That is to say, that the above remark that x is loaded two
times might be of not so much concern ultimately, as an optimizer and register allocator
should be able to do something about it. On the other hand: why generate inefficient
code in the hope the optimizer will clean it up.
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Grammar for loops and conditionals

stmt → if -stmt | while-stmt | break | other
if -stmt → if ( exp ) stmt else stmt

while-stmt → while ( exp ) stmt
exp → true | false

• note: simplistic expressions, only true and false
typedef enum {ExpKind , I f k i n d , Whilekind ,

BreakKind , OtherKind} NodeKind ;

typedef struct s t r e e n o d e {
NodeKind kind ;
struct s t r e e n o d e ∗ c h i l d [ 3 ] ;
int v a l ; /∗ used w i t h ExpKind ∗/

/∗ used f o r t r u e v s . f a l s e ∗/
} STreeNode ;

type STreeNode ∗ SyntaxTree ;

Listing 9.19: C data structures for AST (control flow structures)

Translation to P-code

i f ( t r u e ) while ( t r u e ) i f ( f a l s e ) break e l s e o t h e r

Syntax tree

P-code

ldc t r u e
f j p L1
lab L2
ldc t r u e
f j p L3
ldc f a l s e
f j p L4
ujp L3
ujp L5
lab L4
Other
lab L5
ujp L2
lab L3
lab L1
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Code generation

• extend/adapt genCode
• break statement:

– absolute jump to place afterwards
– new argument: label to jump-to when hitting a break

• assume: label generator genLabel()
• case for if-then-else

– has to deal with one-armed if-then as well: test for NULL-ness

• side remark: control-flow graph (see also later)
– labels can (also) be seen as nodes in the control-flow graph
– genCode generates labels while traversing the AST

⇒ implict generation of the CFG
– also possible:

∗ separately generate a CFG first
∗ as (just another) IR
∗ generate code from there

Code generation for for P-code

Listing 9.20 shows p-code generation for abstract syntax trees; the corresponding type
declaration was shown earlier in Listing 9.19.
void genCode ( SyntaxTree t , char∗ label ) {

char c o d e s t r [ CODESIZE ] ;
char ∗ lab1 , ∗ lab2 ;
i f ( t != NULL) switch ( t−>kind ) {

case ExpKind :
i f ( t−>v a l ==0)

emitCode ( " l d c f a l s e " ) ;
e l s e emitCode ( " l d c t r u e " ) ;
break ;

case I fKind :
genCode ( t−>c h i l d [ 0 ] , label ) ;
lab1 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " f j p " , lab1 ) ;
emitCode ( c o d e s t r ) ;
genCode ( t−c h i l d [ 1 ] , label ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) {

lab2 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , lab2 ) ;
emitCode ( c o d e s t r ) ;

}
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab1 ) ;
emitCode ( c o d e s t r ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) {

genCode ( t−>c h i l d [ 2 ] , label ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab2 ) ;
emitCode ( c o d e s t r ) ;

}
break ;

case WhileKind :
lab1 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab1 ) ;
emitCode ( c o d e s t r ) ;
genCode ( t−>c h i l d [ 0 ] , label ) ;
lab2 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " f j p " , lab2 ) ;
emitCode ( c o d e s t r ) ;
genCode ( t−>c h i l d [ 1 ] , label ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , lab1 ) ;
emitCode ( c o d e s t r ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab2 ) ;
emitCode ( c o d e s t r ) ;
break ;

case BreakKind :
s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , label ) ;
emitCode ( c o d e s t r ) ;
break ;
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case OtherKind :
emitCode ( " Other " ) ;
break ;

default :
emitCode ( " Error " ) ;
break ;

}
}

Listing 9.20: Code generation for p-code (control structures)

Listing 9.7

The code being generated is p-code, though actually the important message of that pro-
cedure is not that; we know that the treatment of labels and jumps is done analogously
for 3AIC. The code also resembles earlier C-code implementation of p-code generation,
basically a recursive procedure with a post-fix generation of code for expression evaluation.
We have seen that before.

Of course, now we have to make jumps and use labels. The most important or most
high-level change in the procedure has to do with handling labels. In principle, we have
seen what labels are and how to use them. Now, however, we have a concrete recursive
procedure, traversing the tree. Now, the (small) challenge we have is: sometimes one has
to inject a jump-command to some label which, at that point in the traversal, is not yet
available, as not yet being generated. This is needed (for instance) when doing a break-
statement in a loop. The way the code deals with it is that it takes a label as additional
argument, that is used to jump-to when processing a break. This argument is handed
down the recursive calls.

There are alterntaive ways to deal with this (mini-)challenge. Later we also have a look
at an alternative ways, making use of two labels as argument.

More on short-circuiting (now in 3AIC)

• boolean expressions contain only two (official) values: true and false
• as stated: boolean expressions are often treated special: via short-circuiting
• short-circuiting especially for boolean expressions in conditionals and while-loops and

similar
– treat boolean expressions different from ordinary expressions
– avoid (if possible) to calculate boolean value “till the end”

• short-circuiting: specified in the language definition (or not)

Example for short-circuiting

Source

i f a < b | |
( c > d && e >= f )

then
x = 8

e l s e
y = 5

endif
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3AIC

t1 = a < b
if_true t1 goto 1 // s h o r t c i r c u i t
t2 = c > d
i f _ f a l s e goto 2 // s h o r t c i r c u i t
t3 = e >= f
i f _ f a l s e t3 goto 2
label 1
x = 8
goto 3
label 2
y = 5
label 3

Alternative code generation for boolean expressions

So far, we have sketched code generation in connection with short-circuiting boolean ex-
pressions by some examples. In the following we show, also slightly sketchy, how the
short-circuiting can be integrated into the genCode procedures which we have looked at
repeatedly. We do so only for the p-code, but it can be done analogously for the 3AIC.
We look at short-circuiting boolean expressions when they are uses in control-flow con-
structions, i.e., as the boolean condition for conditionals or loop. For that we focus on
conditionals, only, i.e., we revisit the the IfKind case in the code from Listing 9.20. In
that older version, there was no short-circuiting. Now, in Listing 9.21, we want to include
short-circuiting, and the part is handled by a separate sub-procedure genBoolCode; see
Listing 9.22.

Note that genBoolCode takes to labels are arguments, one for the true-case one for
the false case. Note also, that there is no general break label as third argument. We
had introduced that in Listing 9.20 as jump-target “after” the surrounding code in case a
break is executed. Basically, we assume that there are no breaks allowed inside boolean
expressions. It would be easy to add that to Listing 9.22. as well to treat a possible
break-case, but the code is a sketch anyway and not all switch-cases are shown. In case
the genBoolCode does not have a break-label as third argument (as in the shown code),
of course, it’s not good enough to assume that the programmer is not so stupid to use
breaks in boolean conditions. If that’s forbidden, it should be checked by the semantic
analysis phase and if that is violated, an error message should be generated. That’s
better than letting the compiler stumble upon it during the intermediate code generation
phase (for instance not having a break-case in genBoolCode). If the genBoolCode
is programmed in C in a similar style as genCode from Listing 9.20, there might be a
default case at the end of the case switch, which at least generates some “error”. But,
as said, it’s better handled in the semantic analysis phase. But having the code generator
generating an “error code” now is still better than a situation where the intermediate
code generator generates proper executable code (resp. proper intermediate code that will
result afterwards in executable code), where the behavior is unclear (perhaps the code
crashes, or does something unexpected, or generates code as if there is no break). And
the excuse “the user should not do that and the code generator assumes that no one does
such a thing” is actually no excuse at all. . .

On the other hand, there seems indeed no legitimate reason why someone would wish
to execute an explicit break in an boolean condition. Some would even say, don’t use
side effects in the boolean condition of a conditional or a loop, though it’s quite common
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practice in C-like languages (also in connection with the short-circuit semantics and the
fact that assignments give back values). Indeed, the short-circuiting treatment of booleans
is similar to a break. If, for instance, in an “or” boolean expression, the left subexpression
gives a true, then there is no need to evaluate the right sub-expression, this the execution
hops over the corresponding code: it’s like executing a “break” to jump after the rest of
the expression and continue there.

case I fKind :
lab_t = genLabel ( ) ;
lab_f = genLabel ( ) ;
genBoolCode( t−>c h i l d [ 0 ] , lab_t , lab_f ) ; // b o o l e a n c o n d i t i o n
s p r i n t f ( c o d e s t r , "%s %s " , " lab " , lab_t ) ; // i f −branch
emitCode ( c o d e s t r ) ;
genCode ( t−>c h i l d [ 1 ] , l a b e l ) ;
lab_x = genLabel ( ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) { // does t h e r e e x i s t s an e l s e branch ?

s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , lab_x ) ;
emitCode ( c o d e s t r ) ;

}
s p r i n t f ( c o d e s t r , "%s %s " , " lab " , lab_f ) ; // e l s e −branch
emitCode ( c o d e s t r ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) { // does t h e r e e x i s t s an e l s e branch ?

genCode ( t−>c h i l d [ 2 ] , l a b e l ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " lab " , lab_x ) ; // p o st −s t a t e m e n t l a b e l ( i f 2 arms )
emitCode ( c o d e s t r ) ;

}
break ;

Listing 9.21: Alternative code generation for p-code (conditionals)

Anyway, Listing 9.21 shows a few cases, the one for "and" and "or", and also one comparison
operator. The situation for "or" is also shown in Figure 9.4 (where lt stands for lab_t in
the code etc).
void genBoolCode ( s t r i n g lab_t , lab_f ) =

. . .
switch . . . {

case " | | " : {
S t r i n g lab_x = genLabel ( ) ;
l e f t . genBoolCode ( lab_t , lab_x ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " lab " , lab_x ) ;
emitCode ( c o d e s t r ) ;
r i g h t . genBoolCode ( lab_t , lab_f ) ;

}

case "&&" : {
S t r i n g lab_x = genLabel ( ) ;
l e f t . genBoolCode ( lab_x , lab_f ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " lab " , lab_x ) ;
emitCode ( c o d e s t r ) ;
r i g h t . genBoolCode ( lab_t , lab_f ) ;

}

case " not " : { // h e r e j u s t a l e f t t r e e
l e f t . genBoolCode ( lab_f , lab_t ) ;

}

case "<" : { // example f o r a b i n a r y r e l a t i o n
S t r i n g t_1 , t_2 , t_3 ; //
t_1 = l e f t . genIntCode ( ) ;
t_2 = r i g h t . genIntCode ( ) ;
t_3 = genLabel ( ) ;
emit4 ( t_3 , t_1 , " l t " , t_2 ) ;
emit3 ( " f j p " , t_3 , lab_f ) ;
emit2 ( " ujp " , lab_t ) ;

}

Listing 9.22: Alternative code generation for p-code (short-circuiting booleans)
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Figure 9.4: Short circuiting booleans, case "or"
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