
Chapter 9
Intermediate code generation

Course “Compiler Construction”
Martin Steffen
Spring 2021

Section
Targets

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

Chapter 9
Learning Targets of Chapter “Intermediate code
generation”.

1. intermediate code
2. three-address code and P-code
3. translation to those forms
4. translation between those forms

Chapter 9
Outline of Chapter “Intermediate code genera-
tion”.
Targets
Intro
Intermediate code
Three-address (intermediate) code
P-code
Generating P-code
Generation of three-address intermediate code
From P-code to 3A-Code and back: static simulation &
macro expansion
More complex data types
Control statements and logical expressions

Section
Intro

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-6

Schematic anatomy of a compiler

• code generator:
• may in itself be “phased”
• using additional intermediate representation(s) (IR) and

intermediate code

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-7

A closer look

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-8

Various forms of “executable” code

• different forms of code: relocatable vs. “absolute” code,
relocatable code from libraries, assembler, etc.
• often: specific file extensions

• Unix/Linux etc.
• asm: *.s
• rel: *.o
• rel. from library: *.a
• abs: files without file extension (but set as executable)

• Windows:
• abs: *.exe1

• byte code (specifically in Java)
• a form of intermediate code, as well
• executable on the JVM
• in .NET/C]: CIL

• also called byte-code, but compiled further

1.exe-files include more, and “assembly” in .NET even more

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-9

Generating code: compilation to machine
code
• 3 main forms or variations:

1. machine code in textual assembly format (assembler
can “compile” it to 2. and 3.)

2. relocatable format (further processed by loader)
3. binary machine code (directly executable)

• seen as different representations, but otherwise
equivalent
• in practice: for portability

• as another intermediate code: “platform independent”
abstract machine code possible.

• capture features shared roughly by many platforms
• e.g. there are stack frames, static links, and push and

pop, but exact layout of the frames is platform
dependent

• platform dependent details:
• platform dependent code
• filling in call-sequence / linking conventions

done in a last step

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-10

Byte code generation

• semi-compiled well-defined format
• platform-independent
• further away from any HW, quite more high-level
• for example: Java byte code (or CIL for .NET and C])

• can be interpreted, but often compiled further to
machine code (“just-in-time compiler” JIT)

• executed (interpreted) on a “virtual machine” (like
JVM)
• often: stack-oriented execution code (in post-fix format)
• also internal intermediate code (in compiled languages)
may have stack-oriented format (“P-code”)

Section
Intermediate code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-12

Use of intermediate code
• two kinds of IC covered

1. three-address code (3AC, 3AIC)
• generic (platform-independent) abstract machine code
• new names for all intermediate results
• can be seen as unbounded pool of maschine registers
• advantages (portability, optimization . . .)

2. P-code (“Pascal-code”, cf. Java “byte code”)
• originally proposed for interpretation
• now often translated before execution (cf.

JIT-compilation)
• intermediate results in a stack (with postfix operations)

• many variations and elaborations for both kinds
• addresses represented symbolically or as numbers (or

both)
• granularity/“instruction set”/level of abstraction:

high-level op’s available e.g., for array-access or:
translation in more elementary op’s needed.

• operands (still) typed or not
• . . .

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-13

Various translations in the lecture

• AST here: tree structure
after semantic analysis,
let’s call it AST+ or just
simply AST.
• translation AST ⇒
P-code: appox. as in
oblig 2
• we touch upon general
problems/techniques in
“translations”
• one (important) aspect
ignored for now: register
allocation

AST+

3AIC p-code

Section
Three-address (intermediate) code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-15

Introduction
Three-address code is an common format, not just for
intermediate code, but also for machine code. The name
comes from that fact that some instructions make use of
three “addresses”. Not all operations use three, some use
less, but the most general ones make use of 2 source
addresses for the arguments, and one target address for the
result. In particular, binary operations that do calculations
use 3, like addition or bitwise and. See equation (1).
We mentioned before that our intermediate code does not
make use of addresses and registers (which is a common
thing to do for intermediate code). That means, the
instructions don’t literally work with 3 addresses, but rather
they involve 3 variables or constants. The code also not only
makes use of “ordinary” variables (like the ones that
originate from the source code), but the code generation
introduces temporary variables or temporaries for short to
store intermediate results. At this phase there is no attempt
to economize on the amount of temporaries. An unbounded
supply of those temporaries is assume, and each time some
intermediate result needs to be remembered, a fresh
temporary is used for that.
Of course, ultimately, that’s a wasteful use of memory. In
particular, ultimately the temporaries should be preferably be
stored in registers, and there will be a limited amout of
them; temporaries are typically short-lived, so often after
having served their purpose storing an intermediate result,
the space, like a register, can be reused to hold the next
intermediate result. Of course not just temporaries are
better be kept in registers, if possible. Also ordinary variables
compete for the scarce register resource, passing parameters
via registers may be a good idea, etc.
All that is a complex optimization task, and since our
intermediate code is platform independent, it’s not clear at
that point, how many register there will be. Thus, there is
not too much motivation to economize on temporaries
already now, which simplifies the task of intermediate code
generation.
The 3AIC is also a linear form of intermediate code. That
means, a piece of intermediate code is an instruction list (not
a (syntax) tree or a graph, or some other more structured
representation). That also means, for non-linear control
flow, there are op-codes for jumps and conditional jumps; as
opposed to more structured syntax, like conditionals or
loops. Those would correspond to a tree-structured, not
linear code format. A linear instruction list, perhaps stored
in an array, very much resembles the arrangement of actual
machine code, with the position of the instruction inside the
list or array being an abstract form of its address.
Jump intructions transfer the control to a specified address,
the control “jumps to” the instruction at that target address.
To jump to one instruction, one could use its position in the
list to specify that. That’s ultimately also what will later
happen in real machine code.
However, one can do that more elegantly, specifying jumps
and jump targets symbolically. The “symbols” to represent
jump targets (or lines of code, or abstract addresses) are
called labels. So the intermediate code allow to label
instructions, giving them unique labels. Concretely, the 3AIC
here does not directly label instructions, it’s rather that there
is an extract label instruction which is part of the instruction
set. Of course, it’s equivalant. Adding a label instruction like
label L, which means that one can use for intance jmp L
to just effectivle to the instruction following the line label
L. Jumping to a position in a program will be translated to a
real machine code instruction. Being jumped-to for a
labelled place will, of course, not be reflected by some
instruction in the machine code. Therefore, instructions like
label L are also called pseudo instructions.
Jumping (and labelling) take care of the control flow. They
obviously also not make use of 3 addresses, as in equation
(1). And indeed, jumping and labelling is independent of the
general instruction format, and that means that also the
one-address code or p-code from Section 6 will use the same
principles (and the same can be done for 2-address code).
As far as oblig 2 is concerned. The instruction set in byte
code of course supports jumps and conditional jumps.
However, the instruction set does not offer labels. Instead
one will have to deal with jumping the more low-level way
jumping directly “addresses”, where an index in an array
corrensponds to the concept of address. That’s less
convenient that doing it symbolically, but not much so.
When programming the code generator, one can (and will)
of course remember and address or the index on the byte
array in some properly named variable, and that serves the
same purpose. This way, the address is, so to say,
symbolically remembered in the meta-language, presumably
Java, and is not part of the programming language itself,
i.e., mentioned in the byte-code instructions.
There is some parallel between labels and temporaries. Both
are symbolic representations of addresses. Temporaries (like
variables) correspond to addresses containing data, labels
represent addresses to jump to, and that point in the control
flow graph. Besides that, in both cases, the code generator
assumes an unlimited reservoir of those and labels and both
are never “reused”. and each time the code generator
encounters the need to store an intermedate result or need
to specify another jump target, it generates a fresh
temporary resp. a fresh jump label.
Of course, the p-code later will not make use of temporaries.
Instead it will employ an (unbounded) stack to store
intermediate results, so there will be no need to create fresh
temporaries.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-16

Three-address code
• common (form of) IR

TA: Basic format

x = y op z (1)

• x, y, z: names, constants, temporaries . . .
• some operations need fewer arguments

• example of a (common) linear IR
• linear IR: ops include control-flow instructions (like

jumps)
• alternative linear IRs (on a similar level of abstraction):
1-address (or even 0) code (stack-machine code), 2
address code
• well-suited for optimizations
• modern architectures often have 3-address code like
instruction sets (RISC-architectures)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-17

3AC example (expression)

2*a+(b-3)

+

*

2 a

-

b 3

Three-address code

t1 = 2 ∗ a
t2 = b − 3
t3 = t1 + t2

alternative sequence
t1 = b − 3
t2 = 2 ∗ a
t3 = t2 + t1

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-18

3AIC instruction set

• basic format: x = y op z

• but also:
• x = op z
• x = y

• operators: +,-,*,/, <, >, and, or
• read x, write x

• label L (sometimes called a “pseudo-instruction”)
• conditional jumps: if_false x goto L

• t1, t2, t3 (or t1, t2, t3, . . .): temporaries (or
temporary variables)
• assumed: unbounded reservoir of those
• note: “non-destructive” assignments (single-assignment)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-19

Illustration: translation to 3AIC

Source

r ead x ; // i npu t an i n t e g e r
i f 0<x then

f a c t := 1 ;
r epeat

f a c t := f a c t ∗ x ;
x := x −1

u n t i l x = 0 ;
w r i t e f a c t // output : f a c t o r i a l of x

end

Target: 3AIC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
l a b e l L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
wr i t e f a c t
l a b e l L1
ha l t

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-20

Variations in the design of 3A-code

• provide operators for int, long, float?
• how to represent program variables

• names/symbols
• pointers to the declaration in the symbol table?
• (abstract) machine address?

• how to store/represent 3A instructions?
• quadruples: 3 “addresses” + the op
• triple possible (if target-address (left-hand side) is

always a new temporary)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-21

Quadruple-representation for 3AIC (in C)

typede f enum { rd , gr , i f _ f , asn , lab , mul ,
sub , eq , wr i , h a l t , . . . } OpKind ;

typede f enum {Empty , In tCons t , S t r i n g } AddrKind ;

typede f s t r u c t {
AddrKind k ind ;
union {

i n t v a l ;
char ∗ name ;

} c o n t e n t s ;
} Address ;

typede f s t r u c t {
OpKind op ;
Address addr1 , addr2 , addr3 ;

} Quad

Section
P-code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-23

P-code

• different common intermediate code / IR
• aka “one-address code”2 or stack-machine code
• used prominently for Pascal
• remember: post-fix printing of syntax trees (for
expressions) and “reverse polish notation”

2There’s also two-address codes, but those have fallen more or less
in disuse for intermediate code.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-24

Example: expression evaluation 2*a+(b-3)

l d c 2 ; l o a d c o n s t a n t 2
l od a ; l o a d v a l u e o f v a r i a b l e a
mpi ; i n t e g e r m u l t i p l i c a t i o n
l od b ; l o a d v a l u e o f v a r i a b l e b
l d c 3 ; l o a d c o n s t a n t 3
s b i ; i n t e g e r s u b s t r a c t i o n
ad i ; i n t e g e r a d d i t i o n

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-25

P-code for assignments: x := y + 1

• assignments:
• variables left and right: L-values and R-values
• cf. also the values ↔ references/addresses/pointers

l d a x ; l o a d a d d r e s s o f x
l od y ; l o a d v a l u e o f y
l d c 1 ; l o a d c o n s t a n t 1
ad i ; add
s to ; s t o r e top to a d d r e s s

; be low top & pop both

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-26

P-code of the faculty function

r ead x ; // i npu t an i n t e g e r
i f 0<x then

f a c t := 1 ;
r epeat

f a c t := f a c t ∗ x ;
x := x −1

u n t i l x = 0 ;
w r i t e f a c t // output : f a c t o r i a l of x

end

Section
Generating P-code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-28

Assignment grammar

Grammar

exp1 → id := exp2
exp → aexp

aexp → aexp2 + factor
aexp → factor

factor → (exp)
factor → num
factor → id

(x:=x+3)+4

+

x:=

+

x 3

4

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-29

Generating p-code with A-grammars

• goal: p-code as attribute of the grammar
symbols/nodes of the syntax trees
• syntax-directed translation
• technical task: turn the syntax tree into a linear IR
(here P-code)

⇒ • “linearization” of the syntactic tree structure
• while translating the nodes of the tree (the syntactical

sub-expressions) one-by-one

• not recommended at any rate (for modern/reasonably
complex language): code generation while parsing3

3One can use the a-grammar formalism also to describe the
treatment of ASTs, not concrete syntax trees/parse trees.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-30

A-grammar for statements/expressions

• focus here on expressions/assignments: leaving out
certain complications
• in particular: control-flow complications

• two-armed conditionals
• loops, etc.

• also: code-generation “intra-procedural” only, rest is
filled in as call-sequences
• A-grammar for intermediate code-gen:

• rather simple and straightforwad
• only 1 synthesized attribute: pcode

A-grammar
• “string” concatenation: ++ (construct separate
instructions) and ˆ (concat one instruction)

productions/grammar rules semantic rules
exp1 → id := exp2 exp1 .pcode = ”lda”ˆid.strval ++

exp2 .pcode ++ ”stn”
exp → aexp exp .pcode = aexp .pcode

aexp1 → aexp2 + factor aexp1 .pcode = aexp2 .pcode
++ factor .pcode
++ ”adi”

aexp → factor aexp .pcode = factor .pcode
factor → (exp) factor .pcode = exp .pcode
factor → num factor .pcode = ”ldc”ˆnum.strval
factor → id factor .pcode = ”lod”ˆnum.strval

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-32

(x := x + 3) + 4

Attributed tree

+

x:=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

“result” attr.

l d a x
l od x
l d c 3
ad i
s tn
l d c 4
ad i ; +

• note: here x:=x+3 has a side-effect and “return” value
(as in C . . .):
• stn (“store non-destructively”)

• similar to sto , but non-destructive
1. take top element, store it at address represented by

2nd top
2. discard address, but not the top-value

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-33

Overview: p-code data structures

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| P lu s of expr ∗ expr
| A s s i gn of symbol ∗ expr

Listing 1: Syntax of the source
language (expressions with side
effects)

type i n s t r =
(∗ p−code i n s t r u c t i o n s ∗)

LDC of i n t
| LOD of symbol
| LDA of symbol
| ADI
| STN
| STO

type t r e e = O n e l i n e of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

Listing 2: Syntax of the target
language

• symbols:
• here: strings for simplicity
• concretely, symbol table may be involved, or variable

names already resolved in addresses etc.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-34

Two-stage translation

v a l t o _ t r e e : A s t e x p r a s s i g n . exp r −> Pcode . t r e e

v a l l i n e a r i z e : Pcode . t r e e −> Pcode . program

v a l to_program : A s t e x p r a s s i g n . exp r −> Pcode . program

Listing 3: Code generation (interface)

l e t r ec t o _ t r e e (e : exp r) =
match e with
| Var s −> (O n e l i n e (LOD s))
| Num n −> (O n e l i n e (LDC n))
| P lu s (e1 , e2) −>

Seq (t o _ t r e e e1 ,
Seq (t o _ t r e e e2 , O n e l i n e ADI))

| As s i gn (x , e) −>
Seq (O n e l i n e (LDA x) ,

Seq (t o _ t r e e e , O n e l i n e STN))

l e t r ec l i n e a r i z e (t : t r e e) : program =
match t with

O n e l i n e i −> [i]
| Seq (t1 , t2) −> (l i n e a r i z e t1) @ (l i n e a r i z e t2) ; ; (∗ l i s t concat ∗)

l e t to_program e = l i n e a r i z e (t o _ t r e e e) ; ;

Listing 4: Code generation

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-35

Source language AST data in C

typede f enum { Plus , As s i gn } Optype ;
typede f enum {OpKind , ConstKind , IdK ind } NodeKind ;
typede f s t r u c t s t r e e n o d e {

NodeKind k ind ;
Optype op ; /∗ used wi th OpKind ∗/
s t r u c t s t r e e n o d e ∗ l c h i l d , ∗ r c h i l d ;
i n t v a l /∗ used wi th ConstKind ∗/
char ∗ s t r v a l /∗ used f o r i d e n t i f i e r s and numbers ∗/

} STreenode ;
typede f STreenode ∗ SyntaxTree ;

Listing 5: AST in C (for expressions with assignments)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-36

Code-generation via tree traversal
(schematic)

procedure genCode (T: t r e e n o d e)
beg in
i f T 6= n i l
then

`` g e n e r a t e code to p r e p a r e f o r code f o r l e f t c h i l d ' ' // p r e f i x
genCode (l e f t c h i l d of T) ; // p r e f i x ops
`` g e n e r a t e code to p r e p a r e f o r code f o r r i g h t c h i l d ' ' // i n f i x
genCode (r i g h t c h i l d of T) ; // i n f i x ops

`` g e n e r a t e code to implement a c t i o n (s) f o r T ' ' // p o s t f i x
end ;

Listing 6: Schematic code generation GenCode in C

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-37

Code generation from AST+

• main “challenge”:
linearization
• here: relatively simple
• no control-flow
constructs
• linearization here (see
a-grammar):
• string of p-code
• not necessarily the

ultimate choice
(p-code might still
need translation to
“real” executable
code)

preamble code

calc. of operand 1

fix/adapt/prepare ...

calc. of operand 2

execute operation

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-38

Code generation

Section
Generation of three-address inter-
mediate code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-40

3AIC manual translation again

Source

r ead x ; // i npu t an i n t e g e r
i f 0<x then

f a c t := 1 ;
r epeat

f a c t := f a c t ∗ x ;
x := x −1

u n t i l x = 0 ;
w r i t e f a c t // output : f a c t o r i a l of x

end

Target: 3AIC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
l a b e l L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
wr i t e f a c t
l a b e l L1
ha l t

Three-address code data structures (some)

type symbol = s t r i n g

type exp r =
| Var of symbol
| Num of i n t
| P lu s of exp r ∗ exp r
| As s i gn of symbol ∗ exp r

type mem =
Var of symbol

| Temp of symbol
| Addr of symbol (∗ &x ∗)

type operand = Const of i n t
| Mem of mem

type cond = Bool of operand
| Not of operand
| Eq of operand ∗ operand
| Leq of operand ∗ operand
| Le of operand ∗ operand

type r h s = Plus of operand ∗ operand
| Times of operand ∗ operand
| I d of operand

type i n s t r =
Read of symbol

| Wr i te of symbol
| Lab of symbol

(∗ pseudo i n s t r u c t i o n ∗)
| A s s i gn of symbol ∗ r h s
| As s i gn R I of operand ∗ operand ∗ operand

(∗ a := b [i] ∗)
| A s s i g n L I of operand ∗ operand ∗ operand

(∗ a [i] := b ∗)
| BranchComp of cond ∗ l a b e l
| Ha l t
| Nop

type t r e e = O n e l i n e of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

Listing 7: Syntax of the target
language (3AIC)

• symbols: again strings for simplicity
• again “trees” not really needed (for simple language
without more challenging control flow)

Translation to three-address code

l e t r ec t o _ t r e e (e : exp r) : t r e e ∗ temp =
match e with

Var s −> (O n e l i n e Nop , s)
| Num i −> (O n e l i n e Nop , s t r i n g _ o f _ i n t i)
| Ast . P lu s (e1 , e2) −>

(match (t o _ t r e e e1 , t o _ t r e e e2) with
((c1 , t1) , (c2 , t2)) −>

l e t t = newtemp () i n
(Seq (Seq (c1 , c2) ,

O n e l i n e (
As s i gn (t ,

P lu s (Mem(Temp(t1)) ,Mem(Temp(t2)))))) ,
t))

| Ast . As s i gn (s ' , e ') −>
l e t (c , t2) = t o _ t r e e (e ')
i n (Seq (c ,

O n e l i n e (As s i gn (s ' ,
I d (Mem(Temp(t2)))))) ,

t2)

Listing 8: Code generation 3AIC (expressions)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-43

Three-address code by synthesized
attributes
• similar to the representation for p-code
• again: purely synthesized
• semantics of executing expressions/assignments4

• side-effect plus also
• value

• two attributes (before: only 1)
• tacode: instructions (as before, as string), potentially

empty
• name: “name” of variable or tempary, where result

resides5

• evaluation of expressions: left-to-right (as before)

4That’s one possibility of a semantics of assignments (C, Java).
5In the p-code, the result of evaluating expression (also assignments)

ends up in the stack (at the top). Thus, one does not need to capture it
in an attribute.

A-grammar

productions/grammar rules semantic rules
exp1 → id = exp2 exp1 .name = exp2 .name

exp1 .tacode = exp2 .tacode ++
id.strvalˆ”=”ˆ exp2 .name

exp → aexp exp .name = aexp .name
exp .tacode = aexp .tacode

aexp1 → aexp2 + factor aexp1 .name = newtemp()
aexp1 .tacode = aexp2 .tacode ++ factor .tacode ++

aexp1 .nameˆ”=”ˆ aexp2 .nameˆ
”+”ˆ factor .name

aexp → factor aexp .name = factor .name
aexp .tacode = factor .tacode

factor → (exp) factor .name = exp .name
factor .tacode = exp .tacode

factor → num factor .name = num.strval
factor .tacode = ””

factor → id factor .name = num.strval
factor .tacode = ””

Another sketch of 3AI-code generation

• “return” of the two attributes
• name of the variable (a temporary): officially returned
• the code: via emit

• note: postfix emission only (in the shown cases)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-46

Generating code as AST methods

• possible: add genCode as method to the nodes of the
AST
• e.g.: define an abstract method String
genCodeTA() in the Exp class (or Node, in general
all AST nodes where needed)

S t r i n g genCodeTA () { S t r i n g s1 , s2 ; S t r i n g t = NewTemp () ;
s1 = l e f t . GenCodeTA () ;
s2 = r i g h t . GenCodeTA () ;
emit (t + "=" + s1 + op + s2) ;
r e t u r n t

}

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-47

Translation to three-address code (from
before)

l e t r ec t o _ t r e e (e : exp r) : t r e e ∗ temp =
match e with

Var s −> (O n e l i n e Nop , s)
| Num i −> (O n e l i n e Nop , s t r i n g _ o f _ i n t i)
| Ast . P lu s (e1 , e2) −>

(match (t o _ t r e e e1 , t o _ t r e e e2) with
((c1 , t1) , (c2 , t2)) −>

l e t t = newtemp () i n
(Seq (Seq (c1 , c2) ,

O n e l i n e (
As s i gn (t ,

P lu s (Mem(Temp(t1)) ,Mem(Temp(t2)))))) ,
t))

| Ast . As s i gn (s ' , e ') −>
l e t (c , t2) = t o _ t r e e (e ')
i n (Seq (c ,

O n e l i n e (As s i gn (s ' ,
I d (Mem(Temp(t2)))))) ,

t2)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-48

Attributed tree (x:=x+3) + 4

• note: room for optimization

Section
From P-code to 3A-Code and back:
static simulation & macro expansion

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-50

“Static simulation”

• illustrated by transforming p-code ⇒ 3AC
• restricted setting: straight-line code
• cf. also basic blocks (or elementary blocks)

• code without branching or other control-flow
complications (jumps/conditional jumps. . .)

• often considered as basic building block for
static/semantic analyses,

• e.g. basic blocks as nodes in control-flow graphs, the
“non-semicolon” control flow constructs result in the
edges

• terminology: static simulation seems not widely
established
• cf. abstract interpretation, symbolic execution, etc.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-51

P-code ⇒ 3AIC via “static simulation”

• difference:
• p-code operates on the stack
• leaves the needed “temporary memory” implicit

• given the (straight-line) p-code:
• traverse the code = list of instructions from beginning

to end
• seen as “simulation”

• conceptually at least, but also
• concretely: the translation can make use of an actual

stack

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-52

From P-code ⇒ 3AIC: illustration

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-53

P-code ⇐ 3AIC: macro expansion

• also here: simplification, illustrating the general
technique, only
• main simplification:

• register allocation
• but: better done in just another optmization “phase”

Macro for general 3AIC instruction: a := b + c

l d a a
l od b ; o r `` l d c b ' ' i f b i s a c o n s t
l od c : o r `` l d c c ' ' i f c i s a c on s t
ad i
s to

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-54

Example: P-code ⇐ 3AIC ((x:=x+3)+4)

source 3AI-code

t1 = x + 3
x = t1
t2 = t1 + 4

Direct p-code

l d a x
l od x
l d c 3
ad i
s tn
l d c 4
ad i ; +

P-code via 3A-code by macro
exp.

;−−− t1 = x + 3
l d a t1
l od x
l d c 3
ad i
s to
;−−− x = t1
l d a x
l od t1
s to
;−−− t2 = t1 + 4
l d a t2
l od t1
l d c 4
ad i
s to

cf. indirect 13 instructions vs. direct: 7 instructions

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-55

Indirect code gen: source code ⇒ 3AIC ⇒
p-code
• as seen: detour via 3AIC leads to sub-optimal results
(code size, also efficiency)
• basic deficiency: too many temporaries, memory traffic

etc.
• several possibilities

• avoid it altogether, of course (but remember JIT in
Java)

• chance for code optimization phase
• here: more clever “macro expansion” (but sketch only)

the more clever macro expansion: some form of static
simulation again
• don’t macro-expand the linear 3AIC

• brainlessly into another linear structure (p-code), but
• “statically simulate” it into a more fancy structure (a

tree)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-56

“Static simulation” into tree form (sketch)

• more fancy form of “static simulation” of 3AIC
• result: tree labelled with

• operator, together with
• variables/temporaries containing the results

Source

t1 = x + 3
x = t1
t2 = t1 + 4

Tree

+

+

x 3

4

t2

x,t1

note: instruction x = t1 from 3AIC:
does not lead to more nodes in the tree

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-57

P-code generation from the generated tree
Tree from 3AIC

+

+

x 3

4

t2

x,t1

Direct code = indirect code

l d a x
l od x
l d c 3
ad i
s tn
l d c 4
ad i ; +

• with the thusly (re-)constructed tree
⇒ p-code generation

• as before done for the AST
• remember: code as synthesized attributes

• the “trick”: reconstruct essential syntactic tree
structure (via “static simulation”) from the 3AI-code
• Cf. the macro expanded code: additional “memory
traffic” (e.g. temp. t1)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-58

Compare: AST (with direct p-code
attributes)

+

x:=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

Section
More complex data types

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-60

Status update: code generation

• so far: a number of simplifications
• data types:

• integer constants only
• no complex types (arrays, records, references, etc.)

• control flow
• only expressions and
• sequential composition
⇒ straight-line code

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-61

Address modes and address calculations

• so far
• just standard “variables” (l-variables and r-variables)

and temporaries, as in x = x + 1
• variables referred to by their names (symbols)

• but in the end: variables are represented by addresses
• more complex address calculations needed

addressing modes in 3AIC:

• &x: address of x (not for
temporaries!)
• *t: indirectly via t

addressing modes in P-code

• ind i: indirect load
• ixa a: indexed address

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-62

Address calculations in 3AIC: x[10] = 2

• notationally represented as in C
• “pointer arithmetic” and address calculation with the
available numerical operations

t1 = &x + 10
∗ t1 = 2

• 3-address-code data structure (e.g., quadrupel):
extended (adding address mode)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-63

Address calculations in P-code: x[10] = 2

• tailor-made commands for address calculation

• ixa i: integer scale factor (here factor 1)

l d a x
l d c 10
i x a 1 // f a c t o r 1
l d c 2
s to

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-64

Array references and address calculations

i n t a [SIZE] ; i n t i , j ;
a [i +1] = a [j ∗2] + 3 ;

• difference between left-hand use and right-hand use
• arrays: stored sequentially, starting at base address
• offset, calculated with a scale factor (dep. on size/type
of elements)
• for example: for a[i+1] (with C-style array
implementation)6

a + (i+1) * sizeof(int)

• a here directly stands for the base address

6In C, arrays start at a 0-offset as the first array index is 0. Details
may differ in other languages.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-65

Array accesses in 3AI code

• one possible way: assume 2 additional 3AIC instructions
• remember: 3AIC can be seen as intermediate code, not
as instruction set of a particular HW!
• 2 new instructions7

t2 = a [t1] ; f e t c h v a l u e o f a r r a y e l ement

a [t2] = t1 ; a s s i g n to the a d d r e s s o f an a r r a y e l ement

a [i +1] = a [j ∗2] + 3 ;

t1 = j ∗ 2
t2 = a [t1]
t3 = t2 + 3
t4 = i + 1
a [t4] = t3

7Still in 3AIC format. Apart from the “readable” notation, it’s just
two op-codes, say =[] and []=.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-66

Or “expanded”: array accesses in 3AI code
(2)

Expanding t2=a[t1]

t3 = t1 ∗ e l em_s i z e (a)
t4 = &a + t3
t2 = ∗ t4

Expanding a[t2]=t1

t3 = t2 ∗ e l em_s i z e (a)
t4 = &a + t3
∗ t4 = t1

• “expanded” result for a[i+1] = a[j*2] + 3

t1 = j ∗ 2
t2 = t1 ∗ e l em_s i z e (a)
t3 = &a + t2
t4 = ∗ t3
t5 = t4 +3
t6 = i + 1
t7 = t6 ∗ e l em_s i z e (a)
t8 = &a + t7
∗ t8 = t5

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-67

Array accessses in P-code
Expanding t2=a[t1]

l d a t2
l d a a
l od t1
i x a e l em_s i z e (a)
i nd 0
s to

Expanding a[t2]=t1

l d a a
l od t2
i x a e l em_s i z e (a)
l od t1
s to

• “expanded” result for a[i+1] = a[j*2] + 3

l d a a
l od i
l d c 1
ad i
i x a e l em_s i z e (a)
l d a a
l od j
l d c 2
mpi
i x a e l em_s i z e (a)
i nd 0
l d c 3
ad i
s to

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-68

Extending grammar & data structures

• extending the previous grammar

exp → subs = exp2 | aexp
aexp → aexp + factor | factor

factor → (exp) | num | subs
subs → id | id [exp]

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-69

Syntax tree for (a[i+1]:=2)+a[j]

+

:=

a[]

+

i 1

2

a[]

j

P-code generation: arrays (1): op

vo id genCode (SyntaxTree t , i n t i sAddr) {
char c o d e s t r [CODESIZE] ;
/∗ CODESIZE = max l e n g t h o f 1 l i n e o f P−code ∗/
i f (t != NULL) {

sw i tch (t−>kind) {
case OpKind :

{ sw i tch (t−>op) {
case Plus :

i f (i s A d d r e s s) emitCode (" E r r o r ") ; // new check
e l s e { // unchanged

genCode (t−>l c h i l d , FALSE) ;
genCode (t−>r c h i l d , FALSE) ;
emitCode (" a d i ") ; // a d d i t i o n

}
break ;

case Ass i gn :
genCode (t−>l c h i l d ,TRUE) ; // `` l −v a l u e ' '
genCode (t−>r c h i l d , FALSE) ; // `` r−v a l u e ' '
emitCode (" s t n ") ;

Listing 9: Code generation 3AIC (arrays)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-71

P-code generation: arrays (2): “subs”

• new code, of course

case Subs :
s p r i n t f (c o d e s t r i n g , "%s %s " , " l d a " , t−>s t r v a l) ;
emitCode (c o d e s t r i n g) ;
genCode (t−>l c h i l d . FALSE) ;
s p r i n t f (c o d e s t r i n g , "%s %s %s " ,

" i x a e l em_s i z e (" , t−>s t r v a l , ") ") ;
emitCode (c o d e s t r i n g) ;
i f (! i s A d d r) emitCode (" i n d 0") ; // i n d i r e c t l o a d
break ;

d e f a u l t :
emitCode (" E r r o r ") ;
break ;

Listing 10: Code generation 3AIC (arrays: "subs")

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-72

P-code generation: arrays (3): constants
and identifiers

case ConstKind :
i f (i s A d d r) emitCode (" E r r o r ") ;
e l s e {

s p r i n t f (c o d e s t r , "%s %s " , " l d s " , t−>s t r v a l) ;
emitCode (c o d e s t r) ;

}
break ;

case I dK ind :
i f (i s A d d r)

s p r i n t f (c o d e s t r , "%s %s " , " l d a " , t−>s t r v a l) ;
e l s e

s p r i n t f (c o d e s t r , "%s %s " , " l o d " , t−>s t r v a l) ;
emitCode (c o d e s t r) ;
break ;

d e f a u l t :
emitCode (" E r r o r ") ;
break ;

}
}

}

Listing 11: Code generation 3AIC (arrays: constants and ids)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-73

Access to records
typede f s t r u c t Rec {

i n t i ;
char c ;
i n t j ;

} Rec ;
. . .

Rec x ;

Listing 12: Sample struct type
declaration
• fields with (statically known) offsets from base address
• note:

• goal: intermediate code generation platform
independent

• another way of seeing it: it’s still IR, not final machine
code yet.

• thus: introduce function field_offset(x,j)
• calculates the offset.
• can be looked up (by the code-generator) in the symbol

table
⇒ call replaced by actual off-set

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-74

Records/structs in 3AIC

• note: typically, records are implicitly references (as for
objects)
• in (our version of a) 3AIC: we can just use &x and *x

simple record access x.j

t1 = &x +
f i e l d _ o f f s e t (x , j)

left and right: x.j := x.i

t1 = &x + f i e l d _ o f f s e t (x , j)
t2 = &x + f i e l d _ o f f s e t (x , i)
∗ t1 = ∗ t2

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-75

Field selection and pointer indirection in
3AIC

typede f s t r u c t t reeNode {
i n t v a l ;
s t r u c t t reeNode ∗ l c h i l d ,

∗ r c h i l d ;
} t reeNode
. . .

Treenode ∗p ;

Listing 13: Some sam-
ple record type declara-
tion (binary trees)

p −> l c h i l d = p ;
p = p−>r c h i l d ;

3AIC

t1 = p + f i e l d _ o f f s e t (∗p , l c h i l d)
∗ t1 = p
t2 = p + f i e l d _ o f f s e t (∗p , r c h i l d)
p = ∗ t2

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-76

Structs and pointers in P-code

• basically same basic “trick”
• make use of field_offset(x,j)

p −> l c h i l d = p ;
p = p−>r c h i l d ;

l od p
l d c f i e l d _ o f f s e t (∗p , l c h i l d)
i x a 1
l od p
s to
l da p
l od p
i nd f i e l d _ o f f s e t (∗p , r c h i l d)
s to

Section
Control statements and logical ex-
pressions

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2021

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-78

Control statements

• so far: basically straight-line code
• general (intra-procedural) control more complex thanks
to control-statements
• conditionals, switch/case
• loops (while, repeat, for . . .)
• breaks, gotos, exceptions . . .

important “technical” device: labels

• symbolic representation of addresses in static memory
• specifically named (= labelled) control flow points
• nodes in the control flow graph

• generation of labels (cf. also temporaries)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-79

Loops and conditionals: linear code
arrangement

if -stmt → if (exp) stmt else stmt
while-stmt → while (exp) stmt

• challenge:
• high-level syntax (AST) well-structured (= tree) which

implicitly (via its structure) determines complex
control-flow beyond SLC

• low-level syntax (3AIC/P-code): rather flat, linear
structure, ultimately just a sequence of commands

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-80

Arrangement of code blocks and cond.
jumps

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-81

Jumps and labels: conditionals

if (E) then S1 else S2

3AIC for conditional

<code to e v a l E to t1>
i f _ f a l s e t1 goto L1
// goto f a l s e branch
<code f o r S1>
// f a l l th rough to t r u e branch
goto L2
// hop ove r f a l s e branch
l a b e l L1

<code f o r S2>
l a b e l L2

P-code for conditional

<code to e v a l u a t e E>
f j p L1
// got f a l s e branch
<code f o r S1>
// f a l l th rough to t r u e branch
ujp L2
// hop ove r f a l s e branch
l ab L1
<code f o r S2>
l ab L2

3 new op-codes:
• ujp: unconditional jump

(“goto”)
• fjp: jump on false
• lab: label (for pseudo

instructions)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-82

Jumps and labels: while

while (E) S

3AIC for while

l a b e l L1
// l a b e l the l oop heade r
<code to e v a l u a t e E to t1>
i f _ f a l s e t1 goto L2
// jump to a f t e r the l oop
<code f o r S>
goto L1
// jump back
l a b e l L2
// l a b e l the l oop e x i t

P-code for while

l ab L1
// l a b e l the l oop heade r
<code to e v a l u a t e E>
f j p L2
// jump to a f t e r the l oop
<code f o r S>
ujp L1
// jump back
l ab L2
// l a b e l the l oop e x i t

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-83

Boolean expressions

• two alternatives for treatment
1. as ordinary expressions
2. via short-circuiting

• ultimate representation in HW:
• no built-in booleans (HW is generally untyped)
• but “arithmetic” 0, 1 work equivalently & fast
• bitwise ops which corresponds to logical ∧ and ∨ etc

• comparison on “booleans”: 0 < 1?
• boolean values vs. jump conditions

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-84

Short circuiting boolean expressions

i f ((p!=NULL) && p −> v a l ==0)) . . .

• done in C, for example
• semantics must fix evaluation order
• note: logically equivalent

a ∧ b = b ∧ a

• cf. to conditional
expressions/statements (also
left-to-right)

a and b , if a then b else false
a or b , if a then true else b

l od x
l d c 0
neq // x !=0 ?
f j p L1
// jump , i f x=0
l od y
l od x
equ // x =? y
ujp L2 //
hop ove r
l ab L1
l d c FALSE
l ab L2

• new op-codes
• equ
• neq

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-85

Grammar for loops and conditionals

stmt → if -stmt | while-stmt | break | other
if -stmt → if (exp) stmt else stmt

while-stmt → while (exp) stmt
exp → true | false

• note: simplistic expressions, only true and false

typede f enum {ExpKind , I f k i n d , Whi lek ind ,
BreakKind , OtherKind } NodeKind ;

typede f s t r u c t s t r e e n o d e {
NodeKind k ind ;
s t r u c t s t r e e n o d e ∗ c h i l d [3] ;
i n t v a l ; /∗ used wi th ExpKind ∗/

/∗ used f o r t r u e vs . f a l s e ∗/
} STreeNode ;

type STreeNode ∗ SyntaxTree ;

Listing 14: C data structures for AST (control flow structures)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-86

Translation to P-code

i f (t r u e) wh i l e (t r u e) i f (f a l s e) break e l s e o t h e r

l d c t r u e
f j p L1
l ab L2
l d c t r u e
f j p L3
l d c f a l s e
f j p L4
ujp L3
ujp L5
l ab L4
Other
l ab L5
ujp L2
l ab L3
l ab L1

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-87

Code generation
• extend/adapt genCode
• break statement:

• absolute jump to place afterwards
• new argument: label to jump-to when hitting a break

• assume: label generator genLabel()
• case for if-then-else

• has to deal with one-armed if-then as well: test for
NULL-ness

• side remark: control-flow graph (see also later)
• labels can (also) be seen as nodes in the control-flow

graph
• genCode generates labels while traversing the AST
⇒ implict generation of the CFG
• also possible:

• separately generate a CFG first
• as (just another) IR
• generate code from there

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-88

Code generation procedure for P-code (old)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-89

More on short-circuiting (now in 3AIC)

• boolean expressions contain only two (official) values:
true and false
• as stated: boolean expressions are often treated special:
via short-circuiting
• short-circuiting especially for boolean expressions in
conditionals and while-loops and similar
• treat boolean expressions different from ordinary

expressions
• avoid (if possible) to calculate boolean value “till the

end”
• short-circuiting: specified in the language definition (or
not)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-90

Example for short-circuiting

Source

i f a < b | |
(c > d && e >= f)

then
x = 8

e l s e
y = 5

end i f

3AIC

t1 = a < b
i f _ t r u e t1 goto 1 // s h o r t c i r c u i t
t2 = c > d
i f _ f a l s e goto 2
// s h o r t c i r c u i t
t3 = e >= f
i f _ f a l s e t3 goto 2
l a b e l 1
x = 8
goto 3
l a b e l 2
y = 5
l a b e l 3

Code generation for conditional (short
circuit)
case I f K i n d :

l ab_t = genLabe l () ;
l a b_ f = genLabe l () ;
genBoolCode (t−>c h i l d [0] , lab_t , l a b_ f) ; // boo l ean c o n d i t i o n
s p r i n t f (c o d e s t r , "%s %s " , " l a b " , l ab_t) ; // i f −branch
emitCode (c o d e s t r) ;
genCode (t−>c h i l d [1] , l a b e l) ;
lab_x = genLabe l () ;
i f (t−>c h i l d [2] ! =NULL) { // does t h e r e e x i s t s an e l s e branch ?

s p r i n t f (c o d e s t r , "%s %s " , " u jp " , lab_x) ;
emitCode (c o d e s t r) ;

}
s p r i n t f (c o d e s t r , "%s %s " , " l a b " , l a b_ f) ; // e l s e −branch
emitCode (c o d e s t r) ;
i f (t−>c h i l d [2] ! =NULL) { // does t h e r e e x i s t s an e l s e branch ?

genCode (t−>c h i l d [2] , l a b e l) ;
s p r i n t f (c o d e s t r , "%s %s " , " l a b " , lab_x) ; // post−s ta tement l a b e l (i f 2 arms)
emitCode (c o d e s t r) ;

}
break ;

Listing 15: Alternative code generation for p-code (condition-
als)

Code generation for bools (short circuit)
vo id genBoolCode (s t r i n g lab_t , l ab_f) =

. . .
sw i tch . . . {

case " | | " : {
S t r i n g lab_x = genLabe l () ;
l e f t . genBoolCode (lab_t , lab_x) ;
s p r i n t f (c o d e s t r , "%s %s " , " l a b " , lab_x) ;
emitCode (c o d e s t r) ;
r i g h t . genBoolCode (lab_t , l ab_f) ;

}

case "&&" : {
S t r i n g lab_x = genLabe l () ;
l e f t . genBoolCode (lab_x , l ab_f) ;
s p r i n t f (c o d e s t r , "%s %s " , " l a b " , lab_x) ;
emitCode (c o d e s t r) ;
r i g h t . genBoolCode (lab_t , l ab_f) ;

}

case " not " : { // he r e j u s t a l e f t t r e e
l e f t . genBoolCode (lab_f , l ab_t) ;

}

case "<" : { // example f o r a b i n a r y r e l a t i o n
S t r i n g t_1 , t_2 , t_3 ; //
t_1 = l e f t . gen IntCode () ;
t_2 = r i g h t . gen IntCode () ;
t_3 = genLabe l () ;
emit4 (t_3 , t_1 , " l t " , t_2) ;
emit3 (" f j p " , t_3 , l ab_f) ;
emit2 (" u jp " , l ab_t) ;

}

Listing 16: Alternative code generation for p-code (short-
circuiting booleans)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

Intermediate code

Three-address
(intermediate)
code

P-code

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
data types

Control
statements and
logical expressions

9-93

Or case

left

right

lf

lt

false

true

true

false

lx

Figure: Short circuiting booleans, case "or"

INF5110 –
Compiler

Construction

10-0

References I

INF5110 –
Compiler

Construction

10-1

References II

[plain,t]

Chapter 10
*

Course “Compiler Construction”
Martin Steffen
Spring 2021

Bibliography

	Intermediate code generation
	Targets
	Targets & Outline
	Intro
	Intermediate code
	Three-address (intermediate) code
	P-code
	Generating P-code
	Generation of three-address intermediate code
	From P-code to 3A-Code and back: static simulation & macro expansion
	More complex data types
	Control statements and logical expressions

	*

