Chapter 9

Intermediate code generation

Course “Compiler Construction”
Martin Steffen
Spring 2021

Section
Targets

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Chapter 9

Learning Targets of Chapter “Intermediate code

generation”.

ol

intermediate code
three-address code and P-code
translation to those forms

translation between those forms

Chapter 9

Outline of Chapter “Intermediate code genera-
tion”.

Targets

Intro

Intermediate code

Three-address (intermediate) code

P-code

Generating P-code

Generation of three-address intermediate code
From P-code to 3A-Code and back: static simulation &

macro expansion
More complex data types
Control statements and logical expressions

Section

Intro

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Schematic anatomy of a compiler

7N
. program)
S beriket
erike
/ tekst._ tokens_ syntaks-tre
/ e P s synlaks-tre
/ / N/ ™
/ Pre- Scanner | Parser | Checker | Code
processor generator
 Fine [+ Sjekker
N + Makroer | |= Deleoppi| Stukturi | bruke
S = Betinget leksemer program- definisjon
“~—» kompilering | [« met Type
. Sepleing| |- oKk? OKi siekk
henhold til
gram-
malikk?
Symboltabell (navn <>Betydning (definisjon))

® code generator:

Lex/ Yacc/
Flex Bison
lignende lignende
verktoy verktoy

® may in itself be “phased”

® using additional intermediate representation(s) (IR) and

intermediate code

Attributtgrammatikker
+

Div. metoder

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

A closer look

INF5110 —
Compiler
Construction

calp

Targets

goto start+30

Targets & Outline

-~ Intro
A et |/
— \ Assembler Lkt :
[\

i\ / A L Intermediate code

1 - > -
\ \\/\ progrel " callp
\

—
_ -~~~ progasm)
/ —

Three-address

- p— . .
/ / - (intermediate)
\ — .
“<(ByteCode) il code
\,_\// goto start+10 - [,
N 7 oo strte 10 P-code
fortolkning | Machine ~ - b

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Various forms of “executable” code

e different forms of code: relocatable vs. “absolute” code,
relocatable code from libraries, assembler, etc.

® often: specific file extensions
® Unix/Linux etc.
® asm: x.s
® rel: x.0
® rel. from library: *.a
® abs: files without file extension (but set as executable)
® Windows:

® abs: x.exe!

® byte code (specifically in Java)
® a form of intermediate code, as well

® executable on the JVM
® in .NET/Cﬁ: CIL

® also called byte-code, but compiled further

1 exe-files include more, and “assembly” in .NET even more

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Generating code: compilation to machine

code
® 3 main forms or variations:
1. machine code in textual assembly format (assembler
can “compile” it to 2. and 3.)
2. relocatable format (further processed by loader)
3. binary machine code (directly executable)

® seen as different representations, but otherwise
equivalent
® in practice: for portability
® as another intermediate code: “platform independent”
abstract machine code possible.
® capture features shared roughly by many platforms

® e.g. there are stack frames, static links, and push and
pop, but exact layout of the frames is platform
dependent
® platform dependent details:
® platform dependent code
e filling in call-sequence / linking conventions
done in a last step

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Byte code generation

semi-compiled well-defined format
platform-independent

further away from any HW, quite more high-level
for example: Java byte code (or CIL for .NET and C¥)

® can be interpreted, but often compiled further to
machine code (“just-in-time compiler” JIT)

executed (interpreted) on a “virtual machine” (like
JVM)

often: stack-oriented execution code (in post-fix format)

also internal intermediate code (in compiled languages)
may have stack-oriented format (“P-code”)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Section

Intermediate code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Use of intermediate code

e two kinds of IC covered
1. three-address code (3AC, 3AIC)

generic (platform-independent) abstract machine code
new names for all intermediate results

can be seen as unbounded pool of maschine registers
advantages (portability, optimization ...)

2. P-code (“Pascal-code”, cf. Java “byte code”)

® intermediate results in a stack (with postfix operations)

originally proposed for interpretation
now often translated before execution (cf.
JIT-compilation)

® many variations and elaborations for both kinds

® addresses represented symbolically or as numbers (or
both)

® granularity/“instruction set” /level of abstraction:
high-level op’s available e.g., for array-access or:
translation in more elementary op’s needed.

® operands (still) typed or not

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Various translations in the lecture

AST here: tree structure
after semantic analysis,
let's call it AST™ or just
simply AST.

translation AST =
P-code: appox. as in
oblig 2

we touch upon general

problems/techniques in
“translations”

one (important) aspect
ignored for now: register
allocation

p-code

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

KBS G
N

?@
NGigas g

»

SNIVE
STnAS

Section

Three-address (intermediate) code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Introduction

Three-address code is an common format, not just for
intermediate code, but also for machine code. The name
comes from that fact that some instructions make use of
three “addresses”. Not all operations use three, some use
less, but the most general ones make use of 2 source
addresses for the arguments, and one target address for the
result. In particular, binary operations that do calculations
use 3, like addition or bitwise and. See equation (1).

We mentioned before that our intermediate code does not
make use of addresses and registers (which is a common
thing to do for intermediate code). That means, the
instructions don't literally work with 3 addresses, but rather
they involve 3 variables or constants. The code also not only
makes use of “ordinary” variables (like the ones that
originate from the source code), but the code generation
introduces temporary variables or temporaries for short to
store intermediate results. At this phase there is no attempt
to economize on the amount of temporaries. An unbounded

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

..

Three-address code

TA:

common (form of) IR

Basic format
T =1yopz (1)

x, Yy, Z: names, constants, temporaries . ..

some operations need fewer arguments

example of a (common) linear IR

linear IR: ops include control-flow instructions (like
jumps)

alternative linear IRs (on a similar level of abstraction):
1-address (or even 0) code (stack-machine code), 2
address code

well-suited for optimizations

modern architectures often have 3-address code like
inctriiction cete (RISC-architectiirec)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

..

3AC example (expression)

2xa+ (b-3)

Three-address code

tl = 2 % a
t2 = b — 3
t3 = t1 4+ t2

alternative sequence

tl = b — 3
t2 = 2 % a
t3 = t2 + tl

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

3AIC instruction set

basic format: x = yop 2

but also:
® r=o0pz
cr=y

operators: +,-,*,/, <, >, and, or
readzx, writex
label L (sometimes called a “pseudo-instruction™)

conditional jumps: if_false x goto L
ty, to, t3 (ortl, t2, t3,
temporary variables)

® assumed: unbounded reservoir of those

® note: “non-destructive” assignments (single-assignment)

..): temporaries (or

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Illustration: translation to 3AIC

Source
read x; // input an integer
if O<x then
fact = 1
repeat
fact := fact * x;
x = x —1
until x = 0;

write fact // output: factorial

end

Target: 3AIC

read x

tl = x>0

if_false tl goto L1
fact =1

label L2

t2 = fact * x

fact = t2

t3 =x—1

% = 8

t4 =x =20
if_false t4 goto L2
write fact

label L1

halt

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Variations in the design of 3A-code

® provide operators for int, long, float?
® how to represent program variables

® names/symbols
® pointers to the declaration in the symbol table?
® (abstract) machine address?

® how to store/represent 3A instructions?

® quadruples: 3 “addresses” + the op
® triple possible (if target-address (left-hand side) is
always a new temporary)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Quadruple-representation for 3AIC (in C)

typedef enum {rd,gr,if_f ,asn,lab, mul,
sub, eq, wri, halt, } OpKind;
typedef enum {Empty, IntConst, String } AddrKind;

typedef struct {
AddrKind kind;
union {
int val;
char % name;
} contents;
} Address;

typedef struct {

OpKind op;

Address addrl, addr2, addr3;
} Quad

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Section
P-code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

P-code

e different common intermediate code / IR
* aka “one-address code"? or stack-machine code
® used prominently for Pascal

® remember: post-fix printing of syntax trees (for
expressions) and “reverse polish notation”

2There’s also two-address codes, but those have fallen more or less
in disuse for intermediate code.

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

..

Example: expression evaluation 2xa+ (b-3)

Idc 2
lod a
mpi
lod b
Idc 3
sbi
adi

load constant 2

load value of variable a
integer multiplication
load value of variable b
load constant 3

integer substraction
integer addition

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

P-code for assighments: x := y + 1

Ida
lod
Idc
adi
sto

assignments:
® variables left and right: L-values and R-values
® cf. also the values <> references/addresses/pointers
X . load address of x
y ; load value of y
1 : load constant 1
: add
; store top to address

; below top & pop both

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

P-code of the faculty function

read x; // input an
if 0<x then
fact = 1;
repeat
fact : fact * x;
x = x —1
until x = 0;

write fact // output:
end

integer

factorial

of

X

L1
fact

fact
fact

load address of x

read an integer, store to

address on top of stack (& pop it)
load the value of x

load constant 0

pop and compare top two values
push Boolean result

pop Boolean value, jump to L1 if false
load address of fact

load constant 1

pop two values, storing first to
address represented by second
definition of label L2

load address of fact

load value of fact

load value of x

multiply

store top to address of second & pop
load address of x

load value of x

load constant 1

subtract

store (as before)

load value of x

load constant 0

test for equality

jump to L2 if false

load value of fact

write top of stack & pop
definition of label L1

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Section

Generating P-code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Assignment grammar

Grammar

exp,
exp
aexp
aexp
factor
factor
factor

Lo d e bl

id:
aexp

aexp,y + factor
factor

(eap)

num

id

ezp,

(x:=x+3) +4

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Generating p-code with A-grammars

® goal: p-code as attribute of the grammar
symbols/nodes of the syntax trees

® syntax-directed translation

® technical task: turn the syntax tree into a /inear IR
(here P-code)
= ® “linearization” of the syntactic tree structure

® while translating the nodes of the tree (the syntactical
sub-expressions) one-by-one

® not recommended at any rate (for modern/reasonably
complex language): code generation while parsing3

30ne can use the a-grammar formalism also to describe the
treatment of ASTs, not concrete syntax trees/parse trees.

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

A-grammar for statements/expressions

INF5110 —
Compiler
Construction

® focus here on expressions/assignments: leaving out

certain complications
. . . . Targets
® in particular: control-flow complications Targets & Outline

® two-armed conditionals

Intro

[J
|OOpS, etc. Intermediate code
® also: code-generation “intra-procedural” only, rest is Three-address
. . (intermediate)
filled in as call-sequences code
® A-grammar for intermediate code-gen: P-code

Generating P-code

® rather simple and straightforwad

® only 1 synthesized attribute: pcode Generation of

intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

A-grammar

® “string” concatenation: ++ (construct separate
instructions) and " (concat one instruction)

productions/grammar rules

erpy

exp
aexpy

aexp
factor
factor
factor

_>

Ll

L1l

id := exp,

aexp
aexp, + factor

factor
(exp)
num
id

semantic rules
exp; .pcode = "lda”"id.strval H-
exp, .pcode H- "stn”
exp .pcode = aexp .pcode
aexrp, .pcode = aerp, .pcode
+ factor .pcode
+H 7adi”
aexp .pcode = factor .pcode
factor .pcode = exp .pcode
factor .pcode = "ldc” " num.strval
factor .pcode = "lod” " num.strval

(x :=x + 3) + 4

Attributed tree

+ o]

da »

lod

e I

adi 3
stn

Xi=

lod z
1dc 3
adi

|
A

foz] 3]

® note: here x:=x+3 has a side-effect and “return” value

(asin C...):
* stn (“store non-destructively”)
® similar to sto , but non-destructive

1. take top element, store it at address represented by

2nd top

Ida
lod
Idc
adi
stn
Idc
adi

“result” attr.

X
X
3

4

2. discard address, but not the top-value

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Overview: p-code data structures

type symbol = string

type expr =

Var of symbol

Num of int

Plus of expr x expr
Assign of symbol x expr

Listing 1: Syntax of the source
language (expressions with sideI

type instr =

(* p—code instructions x)

LDC of int

LOD of symbol
LDA of symbol

STN

|
|
| ADI
|
| sTO

type tree = Oneline of instr
| Seq of tree x tree

type program =

instr

list

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address

effects)

® symbols:

Listing 2: Syntax of the target

language

® here: strings for simplicity

® concretely, symbol table may be involved, or variable

names already resolved in addresses etc.

(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Two-stage translation

val to_tree: Astexprassign.expr —> Pcode.tree
val linearize: Pcode.tree —> Pcode.program
| val to_program: Astexprassign.expr —> Pcode.program
Listing 3: Code generation (interface)
let rec to_tree (e: expr) =

match e with
Var s —> (Oneline (LOD s))

| Num n

let

Plus (el,e2) —>

Seq (to_tree el ,
Seq(to_tree e2,

Assign

(x, e) =

Seq (Oneline (LDA x),
Seq(to_tree e,

rec linearize (t:

match t with

let

Oneline

to_program e =

i — [i]
Seq (tl, t2) —> (linearize tl) @ (linearize t2);;

tree)

linearize

—> (Oneline (LDC n))

Oneline ADI))

Oneline STN))

program =

(to_tree e);;

(*

list concat x)

Listing 4: Code generation

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Source language AST data in C

typedef enum {Plus, Assign} Optype;
typedef enum {OpKind, ConstKind , IdKind} NodeKind;
typedef struct streenode {
NodeKind kind;
Optype op; /* used with OpKind %/
struct streenode xlchild , *rchild;
int val /* used with ConstKind x/
char % strval /* used for identifiers and numbers x/
} STreenode;
typedef STreenode *SyntaxTree;

Listing 5: AST in C (for expressions with assignments)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

procedure genCode(T:

begin
if T # nil
then

treenode)

‘‘generate code to prepare for

genCode (left

child of T);

‘‘generate code to prepare for
genCode (right child of T);

end;

Code-generation via tree traversal
(schematic)

code for left child'"'" // prefix
// prefix ops
code for right child'"' //infix
// infix ops
//postfix

‘‘generate code to implement action(s) for T''

Listing 6: Schematic code generation GenCode in C

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

. L

main “challenge”:
linearization

here: relatively simple

no control-flow
constructs

linearization here (see
a-grammar):
® string of p-code
® not necessarily the
ultimate choice
(p-code might still
need translation to
“real” executable
code)

Code generation from AST™

preamble code

calc. of operand 1

fix/adapt/prepare ...

calc. of operand 2

execute operation

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Code generation

void genCode(SyntaxTree t)
{ char codestr[CODESIZE];
/* CODESIZE = max length of 1 line o

if (t

1=

NULL)

{ switch (t->kind)
{ case OpKind:

switch (t->op)

{ case Plus:

genCode (t->1child);
genCode (t->rchild);

emitCode ("adi

break;

« rek.kall
<+ rek_ kall

case Assign:

sprintf(codestr, "%s %s',

emitCode (codestr);

genCode (t->1child);

emitCode("stn");

break;
default:

emitCode ("Error");

break;
}
break;
case ConstKind:

emitCode (codestr) ;

sprintf (codestr, "%s %s","ldc",t->strval);

break;
case IdKind:

emitCode (codestr) ;

sprintf (codestr, "%s %s","lod",t->strval);

break;
default:

emitCode ("Error");

break;

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Section

Generation of three-address
mediate code

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

inter-

3AIC manual translation again

Source
read x; // input an integer
if O<x then
fact = 1
repeat
fact := fact * x;
x = x —1
until x = 0;

write fact // output: factorial of x
end

Target: 3AIC

read x

tl = x>0

if_false tl goto L1
fact =1

label L2

t2 = fact * x

fact = t2

t3 =x—1

% = 8

t4 =x =20
if_false t4 goto L2
write fact

label L1

halt

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Three-address code data structures (some)

type mem =
Var of symbol
| Temp of symbol
| Addr of symbol (¥ &x x)

type operand = Const of int
| Mem of mem

type cond = Bool of operand
| Not of operand
| Eq of operand % operand
| Leq of operand x operand
| Le of operand % operand

type rhs = Plus of operand x operand
| Times of operand * operand

X | Id of operand
type symbol = string
type instr =

Read of symbol
Write of symbol

type expr =
Var of symbol |
Num of int | Lab of symbol

Plus of expr * expr (* pseudo instruction x)
Assign of symbol x expr | Assign of symbol % rhs

| AssignRl of operand x operand % operand

(* a = b[i] *)

| AssignLl of operand x operand % operand
(x a[i] := b x)

| BranchComp of cond % label

| Halt

| Nop
type tree = Oneline of instr

| Seq of tree x tree

Translation to three-address code

let rec to_tree (e: expr) : tree * temp =
match e with
Var s — (Oneline Nop, s)
| Num i —> (Oneline Nop, string_of_int i)
| Ast.Plus (el,e2) —>
(match (to_tree el, to_tree e2) with
((el,t1), (c2,t2)) —
let t = newtemp() in
(Seq(Seq(cl,c2),
Oneline (
Assign (t,
Plus (Mem(Temp(tl)) ,Mem(Temp(t2)))))) .,
t))
| Ast.Assign (s',e') —>
let (c,t2) = to_tree(e')
in (Seq(c,
Oneline (Assign(s',
1d (Mem(Temp(£2)))))) .
t2)

Listing 8: Code generation 3AIC (expressions)

Three-address code by synthesized
attributes

® similar to the representation for p-code
® again: purely synthesized
® semantics of executing expressions/assignments4
® side-effect plus also
® value
® two attributes (before: only 1)
® tacode: instructions (as before, as string), potentially
empty
® name: “name” of variable or tempary, where result
resides®

* evaluation of expressions: left-to-right (as before)

*That's one possibility of a semantics of assignments (C, Java).

®In the p-code, the result of evaluating expression (also assignments)
ends up in the stack (at the top). Thus, one does not need to capture it
in an attribute.

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

A-grammar

productions/grammar rules

exp; — id=exp, erp, .name = eIp,.name
exp, .tacode = exp,.tacode ++
id.strval”’="" exp, .name
exp — aexp erp.name = aexp.name
erp .tacode = aezp.tacode
aexp, — aexpy + factor aexp, name = newtemp()
aexp, .tacode = aexp,.tacode H factor .tacode +
aexp, .name”"="" qexrp, .name”
"7 factor .name
aexp — factor aerp .name = factor .name
aexrp .tacode = factor.tacode
factor — (exp) factor name = exp.name
factor .tacode = exp.tacode
factor — num factor name = num.strval
factor .tacode = 77
factor — id factor name = num.strval
factor .tacode = 77

semantic rules

Another sketch of 3Al-code generation

® “return” of the two attributes

® name of the variable (a temporary): officially returned
® the code: via emit

® note: postfix emission only (in the shown cases)

Generating code as AST methods

® possible: add genCode as method to the nodes of the
AST

® e.g.: define an abstract method String
genCodeTA () in the Exp class (or Node, in general
all AST nodes where needed)

String genCodeTA() { String sl,s2; String t = NewTemp();
sl = left.GenCodeTA();
s2 = right.GenCodeTA();
emit (t + "=" 4+ sl 4+ op + s2);
return t

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Translation to three-address code (from
before)

let rec to_tree (e: expr) : tree x temp =
match e with
Var s —> (Oneline Nop, s)
| Num i — (Oneline Nop, string_of_int i)
| Ast.Plus (el,e2) —>
(match (to_tree el, to_tree e2) with
((cl,t1), (c2,t2)) —>
let t = newtemp() in
(Seq(Seq(cl,c2),
Oneline (
Assign (t,

Plus (Mem(Temp(tl)),Mem(Temp(t2)))

£))
| Ast.Assign (s',e') —>
let (c,t2) = to_tree(e')
in (Seq(c,
Oneline (Assign(s',
1d (Mem(Temp(£2))))))
t2)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code
Three-address

(intermediate)
code

)) §soce

Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Attributed tree (x:=x+3) + 4

= — —

"name”: navn pa variabelen der svaret ligger

tacode = &1 = y

3-
name =t2 A k1.
(x=x+3)+4
tacode = "7
name = 4
X= tacode = " t.l
name =t * 4y,
lk ~
&7 g
tacode = £1 =
/ ﬁ_ i B
X tacode= "" tacode = "~
name = X name = 3

® note: room for optimization

tl = x + 3
x = tl
t2 = tl + 4
t2
§t1+
¢,
24

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

. L

Section

From P-code to 3A-Code and back:
static simulation & macro expansion

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

“Static simulation”

® jllustrated by transforming p-code = 3AC

® restricted setting: straight-line code
e cf. also basic blocks (or elementary blocks)

® code without branching or other control-flow
complications (jumps/conditional jumps...)

® often considered as basic building block for
static/semantic analyses,

® e.g. basic blocks as nodes in control-flow graphs, the
“non-semicolon” control flow constructs result in the
edges

® terminology: static simulation seems not widely
established

e cf. abstract interpretation, symbolic execution, etc.

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro cxpansion

More complex

.

P-code = 3AIC via “static simulation”

INF5110 —
Compiler
Construction

e difference:

® p-code operates on the stack Targets
® leaves the needed “temporary memory” implicit Targets & Outline
e given the (straight-line) p-code: Intro
® traverse the code = list of instructions from beginning Intermediate code
to end Three-address

(intermediate)

® seen as ‘simulation”

code
® conceptually at least, but also P-code
® concretely: the translation can make use of an actual Generating P-code
stack

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

From P-code = 3AIC: illustration

-— fop of stack

{(x=x+3)+4 3
P-kode: x
lda x address of x
10d X -=— top of stack
ldc 3 =
address of x
adi
stn T e
ldc 4
adi " <— top of stack
@nskemal: £l
tl = x + 3
-—— top of stack
x = tl e]
t2 = tl1 + 4 Som vi ser: Vi far den kode-

sekvensen vi ensket oss!

28

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

P-code <= 3AIC: macro expansion

® also here: simplification, illustrating the general
technique, only
® main simplification:
® register allocation
® but: better done in just another optmization “phase”

Macro for general 3AIC instruction: a := b + c

Ida a

lod b; or ““ldec b'"'" if b is a const
lod c: or ““ldc c¢'"'" if ¢ is a const
adi

sto

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Example: P-code < 3AIC ((x:=x+3)+4)

source 3Al-code

tl = x + 3
x = tl
t2 = tl + 4

Direct p-code

Ida x
lod
Idc 3
adi
stn
Idc 4
adi

X

P-code via 3A-code by macro

exp.

—— tl = x + 3
Ida t1

lod x

Idc 3

adi

sto

cf. indirect 13 instructions vs. direct: 7 instructions

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Indirect code gen: source code = 3AIC =

p-code

as seen: detour via 3AIC leads to sub-optimal results
(code size, also efficiency)

basic deficiency: too many temporaries, memory traffic
etc.

several possibilities
® avoid it altogether, of course (but remember JIT in
Java)
® chance for code optimization phase
® here: more clever “macro expansion” (but sketch only)
the more clever macro expansion: some form of static
simulation again

don't macro-expand the linear 3AIC
® brainlessly into another linear structure (p-code), but
® ‘“statically simulate” it into a more fancy structure (a
tree)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

“Static simulation” into tree form (sketch)

® more fancy form of “static simulation” of 3AIC
® result: tree labelled with

® operator, together with
® variables/temporaries containing the results

Source
tl = x + 3
x = tl
t2 = t1 + 4

Tree

+(t2]
+[xt1] 4

X 3

note: instruction x = t1 from 3AIC:
does not lead to more nodes in the tree

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

P-code generation from the generated tree

Tree from 3AIC Direct code = indirect code

+E Ida x
/\ lod
Idc 3
adi
+ stn
/\ ldc 4
adi o+

X

® with the thusly (re-)constructed tree
= p-code generation
® as before done for the AST
® remember: code as synthesized attributes
® the “trick”: reconstruct essential syntactic tree
structure (via “static simulation”) from the 3Al-code
e Cf. the macro expanded code: additional “memory
traffic” (e.g. temp. t1)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro cxpansion

More complex

L

Compare: AST (with direct p-code

attributes)

-« —
=

=]

1dc 3
adi 3
stn

/lﬁam

lod =

lod =
ldc 3
adi

1]

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

. L

Section

More complex data types

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Status update: code generation

® so far: a number of simplifications
® data types:

® integer constants only

® no complex types (arrays, records, references, etc.)
® control flow

® only expressions and

® sequential composition

= straight-line code

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Address modes and address calculations

® 5o far

® just standard “variables” (l-variables and r-variables)
and temporaries, as in x = x + 1
® variables referred to by their names (symbols)

® but in the end: variables are represented by addresses

® more complex address calculations needed

addressing modes in 3AIC:

® &x: address of x (not for
temporaries!)

® «t: indirectly via t

addressing modes in P-code

® ind 1i: indirect load

® ixa a: indexed address

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Address calculations in 3AIC: x[10]

tl
*tl

® notationally represented as in C

® “pointer arithmetic” and address calculation with the

available numerical operations

&X

&x + 10
= 2

¢ 3-address-code data structure (e.g., quadrupel):
extended (adding address mode)

f

10

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Address calculations in P-code: x[10]

® tailor-made commands for address calculation

ixa s
: fue s

® ixa 1: integer scale factor (here factor 1)

&X
Ida x

ldc 10

ixa 1 // factor 1
lde 2

sto

f

10

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Array references and address calculations

int a[SIZE]; int i,j;
ali+1] = a[j=*2] + 3;
|

e difference between left-hand use and right-hand use
® arrays: stored sequentially, starting at base address

e offset, calculated with a scale factor (dep. on size/type
of elements)

o for example: for a[i+1] (with C-style array
implementation)°®

a + (i+1l) = sizeof (int)

a here directly stands for the base address

®In C, arrays start at a 0-offset as the first array index is 0. Details
may differ in other languages.

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex
o

Array accesses in 3Al code

® one possible way: assume 2 additional 3AIC instructions

® remember: 3AIC can be seen as intermediate code, not
as instruction set of a particular HW!

® 2 new instructions’

t2 = a[tl] ; fetch value of array element
a[t2] = tl ; assign to the address of an array element
tl =j *x 2
t2 = a[tl]
ali+1] = a[j=*2] + 3; t3 =t2 + 3
t4 =i+1
a[td] = t3

7Still in 3AIC format. Apart from the “readable” notation, it's just
two op-codes, say =[] and []=.

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Or “expanded’:

(2)

Expanding t2=a[t1]

array accesses in 3Al code

Expanding a[t2]=t1

INF5110 —
Compiler
Construction

t3 = tl * elem_size(a) t3 = t2 % elem_size(a)
t4 = &a + t3 t4 = &a + t3 Targets
t2 = *t4 xt4 = tl Targets & Outline
Intro
e “expanded” result for a[i+1] = a[j*2] + 3 Intermediate code
Three-address
) (intermediate)
tl = j *x 2 code
t2 = tl * elem_size(a) Pocode
t3 = &a + t2
t4 = xt3 Generating P-code
th = t4 43 Generation of
t6 =i +1 three-address
t7 = t6 x elem size (a) intermediate code
t8 = &a + t7 B From P-code to
*t8 = tb 3A-Code and
- back: static
imulation &

macro expansiun

More complex

Array accessses in P-code

Expanding t2=a[t1]

Ida
Ida
lod
ixa
ind
sto

t2
a
tl

elem_size(a)

0

Expanding a[t2]=t1

Ida a

lod t2

ixa elem_size(a)
lod t1

sto

Ida
lod
ldc
adi
ixa
Ida
lod
ldc
mpi
ixa
ind
Idc
adi
sto

e “expanded” result for a[i+1] = a[j*x2] + 3

a
i
1

elem_size(a)
a
j
2
elem_size(a)
0
3

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Extending grammar & data structures

® extending the previous grammar

exp
aerp
factor
subs

L1Lld

subs = expy | aexp
aexp + factor | factor
(exp) | num | subs
id | id[exp]

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

=

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

P-code generation: arrays (1): op

void genCode (SyntaxTree t, int isAddr) {
char codestr [CODESIZE];
/* CODESIZE = max length of 1 line of P—code x/
if (t != NULL) {
switch (t—kind) {
case OpKind:
{ switch (t—op) {
case Plus:
if (isAddress) emitCode("Error"); // new check
else { // unchanged
genCode (t—>Ichild ,FALSE);
genCode (t—>rchild ,FALSE);

emitCode("adi"); // addition
}
break ;
case Assign:
genCode(t—>Ichild ,TRUE); /) l—value'!
genCode(t—>rchild ,FALSE); /) ‘r—value'!

emitCode("stn");

Listing 9: Code generation 3AIC (arrays)

P-code generation: arrays (2): “subs”

® new code, of course

case Subs:

sprintf(codestring ,"%s %s", "lda",t—>strval);
emitCode(codestring);
genCode(t—>Ilchild. FALSE);
sprintf(codestring ,"%s %s %s",

"ixa elem_size(", t—>strval ,")");
emitCode(codestring);
if (lisAddr) emitCode("ind 0"); // indirect load
break

default:

emitCode("Error");
break ;

Listing 10: Code generation 3AIC (arrays: "subs")

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

P-code generation: arrays (3): constants
and identifiers

}

}

case ConstKind:

if (isAddr) emitCode("Error");

else {

sprintf(codestr

emitCode(codestr);

}

break ;

case IdKind:

if (isAddr)

sprintf(codestr

else

sprintf(codestr
emitCode(codestr);

break ;

default:

}

emitCode("Error");

break ;

, "%S %S" ,

, "%S %S" ,

,"%s %s","Ids" , t—>strval);

"Ida",t—>strval);

"lod",t—>strval);

Listing 11: Code generation 3AIC (arrays: constants and ids)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code
Generation of
three-address

intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Access to records

typedef struct Rec {

int i; . E
) Konstanter som INF5110 —
char ¢ i
‘ € ' tgmpﬂoa\oren Compiler
int j; s (other memory) jenner Construction
} Rec N Offset of /
x.3
fen memory L
allocated Offset of
oo 77{77”? e Targets
Rec x; - base address of x Targets & Outline
(other memory)

Intro

Listing 12: Sample struct type
declaration

Intermediate code
Three-address

(intermediate)

e fields with (statically known) offsets from base address

code
note: P-code
° goal: intermediate code generation platform Generating P-code
’ndependent X X . X) X Generation of
® another way of seeing it: it's still IR, not final machine three-address
intermediate code
code yet.
. . . . From P-code to
® thus: introduce function field_offset (x, J) 3A-Code and
back: static
® calculates the offset. simulation &

macro expansiun

¢ can be looked up (by the code-generator) in the symbol
ahlA

More complex

Records/structs in 3AIC

® note: typically, records are implicitly references (as for

objects)

® in (our version of a) 3AIC: we can just use &x and xx

simple record access x. j

tl = &x +

field_offset(x,])

left

tl
t2
*tl

and right: x.j := x.i

&x + field_offset(x,])
&x + field_offset(x,i)
*t2

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Field selection and pointer indirection in

3AIC

lchild = p;
= p—>rchild;

p—>
typedef struct treeNode { p
int val; |
struct treeNode * Ichild ,
* rchild;

} treeNode

Treenode x*p;

Listing 13: Some sam-| t1

ple record type declara- 1‘;1
tion (binary trees) 5

3AIC

p + field_offset(*p,lchild)

p + field_offset(*p,rchild)
*t2

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro

Intermediate code
Three-address
(intermediate)
code

P-code
Generating P-code

Generation of

thra ddress
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

Structs and pointers in P-code

INF5110 —
Compiler
Construction

® basically same basic “trick”

® make use of field_offset (x, Jj)

p —> lchild = p; Targets
p = p—>rchild; Targets & Outline
L Intro
lod p Intermediate code
Idc field_offset(*xp, lIchild) Three-address
. 1 (intermediate)
1xa code
lod p
sto P-code
Ida P Generating P-code
! od p . . Generation of
ind field_offset(*xp, rchild) three-address
sto intermediate code
L From P-code to
3A-Code and
back: static

simulation &
macro expansion

More complex

Section

Control statements and logical ex-
pressions

Chapter 9 “Intermediate code generation”
Course “Compiler Construction”

Martin Steffen

Spring 2021

Control statements

® so far: basically straight-line code

* general (intra-procedural) control more complex thanks
to control-statements

¢ conditionals, switch/case
® loops (while, repeat, for ...)
® breaks, gotos, exceptions ...

important “technical” device: labels

® symbolic representation of addresses in static memory

* specifically named (= labelled) control flow points

nodes in the control flow graph

* generation of labels (cf. also temporaries)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Loops and conditionals: linear code
arrangement

if-stmt — if (exp) stmt else stmt
while-stmt — while (exp) stmt

® challenge:
® high-level syntax (AST) well-structured (= tree) which
implicitly (via its structure) determines complex
control-flow beyond SLC
® low-level syntax (3AIC/P-code): rather flat, linear
structure, ultimately just a sequence of commands

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

L

Arrangement of code blocks and cond.

jumps

code before
if-statement

FALSE

«code for TRUE

unconditional jump:

code for FALSE
case
]

code after
if-statement

code before
while-statement

code for body
of while

uncenditional jump

code after
while-statement

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Jumps and labels: conditionals

if (E) then S; else Sy

P-code for conditional

<code to evaluate E>
fip L1
// got false branch

3AIC for conditional Lcode for Si>

// fall through to true branch
<code to eval E to tl> ujp L2
if_false tl goto L1 // hop over false branch
// goto false branch lab L1
<code for Si> <code for S2>
// fall through to true brand |ah L2
goto L2 |

// hop over false branch

label L1 3 new op-codes:
<code for S>> ® 113m- fng .
label L2 ujp: unconditional jump

(“goto)

e fjp: jump on false

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Jumps and labels: while

while (E) S

3AIC for while

label L1

// label the loop header
<code to evaluate E to tl>
if_false tl goto L2

// jump to after the loop
<code for S>

goto L1

// jump back

label L2

// label the loop exit

P-code for while

lab L1

// label the loop header
<code to evaluate E>

fip L2

// jump to after the loop
<code for S>

ujp L1

// jump back

lab L2

// label the loop exit

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Boolean expressions

two alternatives for treatment

1. as ordinary expressions
2. via short-circuiting

ultimate representation in HW:

® no built-in booleans (HW is generally untyped)
® but “arithmetic” 0, 1 work equivalently & fast
® bitwise ops which corresponds to logical A and V etc

® comparison on “booleans”: 0 < 17

boolean values vs. jump conditions

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Short circuiting boolean expressions

: INF5110 —
if ((p!=NULL) && p —> val==0)) ... lod x Compiler
Ide O Construction
neq /] x1=0 7?
fip L1

® done in C, for example Targets

// jump, if x=0

® semantics must fix evaluation order || lod vy Targets & Outline

.) lod x Intro
® note: logically equivalent equ /] % =2 Y| ntermediate code
a /\ b = b /\ a ;:ip I;?/er// Three-address
. P (intermediate)
e cf. to conditional lab L1 code
. Idc FALSE
expressions/statements (also b Lo P-code
|ef‘t—to— rlght) | Generating P-code
Generation of
® new Op—COdes three-address
intermediate code
A . ® equ
aand b = if a then b else false * neq From Pcode to
A . 0%e 2
aorb = if g then true else b e istatic

simulation &
macro expansion

More complex

.

Grammar for loops and conditionals

stmt — if-stmt | while-stmt | break | other
if-stmt — if (exp) stmt else stmt
while-stmt — while (exp) stmt
exp — true | false

® note: simplistic expressions, only true and false

typedef enum {ExpKind, Ifkind , Whilekind,
BreakKind , OtherKind} NodeKind;

typedef struct streenode {
NodeKind kind ;
struct streenode * child [3];
int val; /* used with ExpKind x/
/* used for true vs. false x*/
} STreeNode;

type STreeNode *x SyntaxTree;

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
imulation &

Listing 14: C data structures for AST (control flow structures)

macro expansiun

More complex

.

Translation to P-code

if (true) while (true) if (false) break else other INF5110 —
l Compiler
Construction
T t
Idc true EiE
fip L1 Targets & Outline
lab L2 Intro
it lde true Intermediate code
fip L3 ntermedi
~ Idc false Three-address
true whil fi L4 (intermediate)
e J. P L3 code
u
/ sz L5 P-code
true if lab L4 Generating P-code
/ \\\ Other Generation of
e lab L5 three-address
false break other ujp L2 intermediate code
lab L3 From P-code to
lab L1 3A-Code and
| back: static
i ion &

macro expansiun

More complex

.

Code generation

® extend/adapt genCode
® break statement:

® absolute jump to place afterwards
® new argument: label to jump-to when hitting a break

® assume: label generator genLabel ()
® case for if-then-else

® has to deal with one-armed if-then as well: test for
NULL-ness

* side remark: control-flow graph (see also later)
® labels can (also) be seen as nodes in the control-flow
graph
® genCode generates labels while traversing the AST
= implict generation of the CFG

® also possible:
® separately generate a CFG first
® as (just another) IR
® generate code from there

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Code generation procedure for P-code (old)

void genCode(SyntaxTree t, char * label)
{ char codestr[CODESIZE];
char * labl, * lab2;
if (t != NULL) switch (t->kind)
{ case ExpKind:
if (t->val==0) emitCode("
else emitCode("ldc true"
break;
case IfKind:
genCode (t->child[0],1
labl = genLabel();
sprintf (codestr, "%s %
[emltcade(codestr);
genCode (t->child[1], label);
if (t->child[2] != NULL)
{ lab2 = genLabel();
sprintf (codestr, "%s %s","ujp",lab2j;
[emitcade{codastr);}
[sprintf(codestr,'%a %s", "1,

case WhileKind:
= genLabel();
str,"%s %s","lab",labl);

=

»— Kodefor S
genCode(t¥child[1],1lab2); Rek. kall

%q", "lab", lab2);

break; Labe
case BreakKind:

sprintf(codestr, "%s %s", "ujp",label);
emitCode (codestr);

break;
case OtherKind:
emitCode("Other");

",labl);

emitCode (codestr);
if (t-»>child[2] != NULL)

{ genCode(t-»child[2],label); Rek. kall break;
i default:
sprintf (codestr, "%s %s","lab",lab2); -
emitCode (codestr);} Al
oAk break;
i }
Mo

.

INF5110 —
Compiler
“onstruction

zets

sets & Outline
o

rmediate code

ee-address
ermediate)

i e
t av denne while-setn

rde
erating P-code

eration of
:e-address
rmediate code

n P-code to
Code and

< static
ilation &

:ro expansion

re complex

More on short-circuiting (now in 3AIC)

® boolean expressions contain only two (official) values:
true and false

® as stated: boolean expressions are often treated special:

via short-circuiting
® short-circuiting especially for boolean expressions in
conditionals and while-loops and similar
® treat boolean expressions different from ordinary
expressions
® avoid (if possible) to calculate boolean value “till the
end”

* short-circuiting: specified in the language definition (or
not)

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

Example for short-circuiting

Source

if a<b ||
(c > d && e >= f)
then

x = 8
else

y =5
endif

3AIC

tl = a<b

if_true tl goto 1 // short circuit
t2 =c>d

if_false goto 2

// short circuit

t3 = e >=
if_false t3 goto 2

label
x = 8
goto 3
label
y =5
label

1

2

3

f

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

L

Code generation for conditional (short
circuit)

case IfKind:
lab_t = genLabel ();
lab_f = genLabel ();
genBoolCode(t—>child [0],lab_t,lab_f); // boolean colndition
sprintf(codestr ,"%s %s", "lab", lab_t); // if—branch
emitCode(codestr);
genCode(t—>child [1], label);
lab_x = genLabel ();

if (t—=child[2]!=NULL) { // does there| exists an els
sprintf(codestr,"%s %s", "ujp", lab_x);
emitCode(codestr);

sprintf(codestr,"%s %s", "lab", lab_f); // else—branch

emitCode(codestr);

if (t—child[2]!=NULL) { // does there| exists an els
genCode(t—>child [2] , label);
sprintf(codestr,"%s %s", "lab", lab_x);// post—statement label (.
emitCode(codestr);

}

break ;

Listing 15: Alternative code generation for p-code (condition-
als)

Code generation for bools (short circuit)
void genBoolCode (string lab_t, lab_f) =

switch
case "|[|" :
String lab_x = genlLabel ();
left .genBoolCode(lab_t, lab_x);
sprintf(codestr,"%s %s", "lab", lab_x);
emitCode(codestr);
right .genBoolCode(lab_t, lab_f);

}

case "&&" : {
String lab_x = genlLabel ();
left .genBoolCode(lab_x, lab_f);
sprintf(codestr,"%s %s", "lab", lab_x);
emitCode (codestr);
right .genBoolCode(lab_t, lab_f);

}

case "not" : { // here just a left tree
left.genBoolCode(lab_f, lab_t);

}

case "<" : { // example for a binary relation

String t_1, t_2, t_3; //

2 1 1l ~ L& D BN o R R 20 Y

Or case

Figure: Short circuiting booleans, case "or"

INF5110 —
Compiler
Construction

Targets

Targets & Outline
Intro
Intermediate code

Three-address
(intermediate)
code

P-code
Generating P-code

Generation of
three-address
intermediate code

From P-code to
3A-Code and
back: static
simulation &
macro expansion

More complex

.

References |

INF5110 —
Compiler
Construction

References |1

INF5110 —
Compiler
Construction

Chapter 10

*

Hl')lain,t]

Course “Compiler Construction” 101

R A . ~

	Intermediate code generation
	Targets
	Targets & Outline
	Intro
	Intermediate code
	Three-address (intermediate) code
	P-code
	Generating P-code
	Generation of three-address intermediate code
	From P-code to 3A-Code and back: static simulation & macro expansion
	More complex data types
	Control statements and logical expressions

	*

