Course Script

INF 5110: Compiler con-
struction

INF5110, spring 2021

Martin Steffen

http://www.ifi.uio.no/~msteffen

1

Contents

10 Code generation 1
10.1 Intro o o e e e e 1
10.2 2AC and costs of instructions oL L oL 11
10.3 Basic blocks and control-flow graphs 000000 17
10.4 Liveness analysis (general) 0oL 29
10.5 Local liveness: dead or alive L L. 35
10.6 Local liveness™: Dependence graph 39
10.7 Global analysis 48

10.8

Code generation algo L 61

10 Code generation

Chapter
Code generation

What
Learning Targets of this Chapter Contents ti)s it7
about?
;' 2AS del 10.1 Intro 1
3' o5} ino Tl " 10.2 2AC and costs of instructions 11
-+ Tegister allocation 10.3 Basic blocks and control-
4. control-flow graph
5 local I lvsis (data fl flow graphs 17
- local liveness analysis (data flow 10.4 Liveness analysis (general) . . 29

analysis)

. . 10.5 Local liveness: dead or alive . 35
6. “global” liveness analysis

10.6 Local liveness™: Depen-

dence graph 39
10.7 Global analysis 48
10.8 Code generation algo 61

10.1 Intro

Overview

This chapter does the last step, the “real” code generation. Much of the material is based
on the (old) dragon book [2]. The book is a classic in compiler construction. The principles
on which the code generation are discussed are still fine. Technically, the code generation
is done for two-adddress machine code, i.e., the code generation will go from 3AIC to
2AC, i.e., to an architecture with 2A instruction set, instructions with a 2-address format.
For intermediate code, the two-address format (which we did not cover), is typically not
used. If one does not use a “stack-oriented” virtual machine architecture, 3AIC is more
convenient, especially when it comes to analysis (on the intermediate code level).

For hardware architectures, 2AC and 3AC have different strengths and weaknesses, it’s
also a question of the technological state-of-the-art. There are both RISC and CISC-style
designs based on 2AC as well as 3AC. Also whether the processor uses 32-bit or 64-bit
instructions plays a role: 32-bit instructions may simply be too small to accomodate for
3 addresses. These questions, how to design an instruction set that fits to the current
state or generation of chip or processor technology for some specific application domain
belongs to the field of computer architecture. We assume a instruction set as given, and

2 10 Code generation
10.1 Intro

base the code generation on a 2AC instruction set, following Aho et al. [2]. There is also
a new edition of the dragon book [1], where the corresponding chapter has been “ported”
to cover code generation for 3AC in the new version, vs. the 2AC generation of the older
book. The principles don’t change much. One core problem is register allocation, and
the general issues discussed in that chapter would not change, if one would do it for a 2A
instruction set.

Register allocation

Of course, details would change. The register allocation we will do will be on the one hand
actually pretty simple. Simple in the sense that the code generator does not make a huge
effort of optimization. One focus will be on code generation of “straight-line intermediate
code”, i.e. code inside one node of a control-flow graph. Those code-blocks are also known
as basic blocks. Anyway, the register allocation method walks through one basic block,
keeping track on which variable and which temporary currently contains which value, resp.
keeping track for values, in which variables and/or register they reside. This book-keeping
is done via so-called register descriptors and address descriptors. As said, the allocation is
conceptually simple: focusing on not-very agressive allocation inside one basic block. The
presentation also ignores the more complex addressing modes we discussed in the previous
chapter. Still, the details will look, well, already detailed and thus complicated. Those
details would, obviously change, if we would use a 3AC instruction set, but the notions
of address and register descriptors would remain. Also the way, the code is generated,
walking through the instructions of the basic block, could remain. The way it’s done is
“analogous” on a very high level to what had been called static simulation in the previous
chapter. “Mentally” the code generator goes line by line through the 3AIC, and keeps
track of where is what (using address and register descriptors). That information useful
to make use of register, i.e., generating instructions that, when executed, reuse registers,
etc.

That also includes making “decisions” which registers to reuse. We don’t go much into that
one (like asking: if a register is “full”, contains a variable, is it profitable to swap out the
value?). By swapping, I mean, saving back the value to main memory, and loading another
value to the register. If the new value is more “popular” in the future, being needed more
often etc, and the old value maybe less, then it is a good idea to swap them out, in case
all registers are filled already. If there is still registers free, the simple strategy will not
bother to store anything back (inside one basic block), it would simply load variables to
registers as long as there is still space for it.

Optimization (and “super-optimization”), local and global aspects

Focusing on straightline code, we are dealing with a finite problem (similar to the setting
when translating p-code to 3AIC in the previous chapter), so there is no issue with non-
termination and undecidability. One could try therefore to make an “absolutely optimal”
translation of the 3AIC. The chapter will discuss some measures how to estimate the
quality of the code in the form of a simple cost model in Section 10.2. One could use that
cost model or other, more refined ones, to define what optimal means, and then produce
optimal code for that. Optimizations that are ambitious in that way are sometimes called

10 Code generation 3
10.1 Intro

“super-optimization” [5] and compiler phases that do that are super-optimizers. Super-
optmization may not only target register usage or cost-models like the one used here, it’s
a general (but slighty weird) terminology for transforming code into one which genuinely
and demonstrably optimal (according to a given criterion). In general, that’s of course
fundamentally impossible, but for straight-line code it can be done.

The code generation here does mot do that. Actually, super-optimization is not often
attempted outside this lecture, as well. One reason should be clear: it’s costly. For long
pieces of staight-line code (i.e., big basic blocks) it may take too much time. There is also
the effect of reducing marginal utility. A relatively modest and simple “optimization” may
lead to initially drastic improvement, compared to not doing anything at all. However, to
get the last 10% of speed-up or improvement pushes up the effort disproportionally.

A related reason is: super-optimization can be achieved at all only for parts of the code
(like straightline code and basic blocks). One can push the boundaries there, as long as
it remains a finite problem, for instance, allowing branching (but leaving out loops). that
will make the problem a more complicated and targets larger chunk of code, which drives
up the effort, as well. As a side remark: Symbolic execution is an established terminology
and technique addressing also conditionals, but typically not loops. It also can be seen as
some form of “static simulation” but

Generally, even if we are target larger chunks of code or are more aggressive in the goals of
optimization, there are boundaries of what can be done. If we stick to our setting, where
we currently generate code per basic block, super-optimization may be costly but doable.
But it would be only locally optimal, per one block. Especially when having a code, where
local blocks are small, that would have the positive effect that locally super-optimized
code may be done without too much effort. But what good would that do, if the non-
local quality is bad? Focusing all optimization effort onto the local blocks and ignoring
the global situation may be a an unbalanced use of resources. It may be better to do a
decent (but not super-optimal) local optimization that, with a low-effort approach achieves
already drastic improvments, and also invests in a simple global analysis and optimization
(perhaps approximative), to also reap there low-effort but good initial gains.

That’s also the route the lecture takes: now we are doing a simple register allocation,
without much optimization or strategy to find the best register usage (and we discuss also
one global aspect of program, across the boundaries of one elementary block. That global
aspect will be live variable analysis, that will come later in Section 10.7, because first
let’s discuss local live variable analysis which is used for the local code generation. We
can remark already here, that live variable analysis can be done locally or globally; the
generation just uses live variable information for its task, whether that information is local
or global. So the code generation is, in that way, independent form whether one invests
on local or on global live variable analysis. It’s just produces better code, i.e., makes
better use of registers, when being based on better information (like using live variable
information coming from a global live variable analysis). Indeed, the code generation
would produce semantically correct code, without any live variable analysis! In that way,
the analysis and the code generation are separate problems (but not independent, as the
register allocation in the code generation makes use of the information from live variable
analysis).

https://en.wikipedia.org/wiki/Superoptimization

4 10 Code generation
10.1 Intro

Concerning the “degree of locality” of the code generation. The algorithm works super-
locally, insofar that it generates 2AC and makes decisions on registers line by line: every
line of 3AIC is translated onto 2 (or sometimes one) line of 2AC. There is no attempt
afterwards to go through the 2AC again, getting some more global perspective and them
optimize it further, for instance rearranging the lines, or obtaining a register usage better
that the one that had been arranged for by the line-by-line code generation. The code
generation steps through the 3AC line-by-line but is not completely local, it does some
book-keeping about registers used, i.e., allocated in the past. And, not to forget, the code
generator has access to liveness information, which is information about the future use
of registers. In the previous chapter, the macro expansion was really line-by-line local,
where 3AIC was translated to 1AIC (i.e., p-code): each 3AIC line was expanded into
some lines of p-case in a completely “context-free” manner, focusing on each individual,
line independent from in which context the line is used. That simplistic expansion ignored
the past, i.e., what happened before, and it ignored the future, i.e., what will happen
afterwars. The code generation here takes care for both aspects, in a simple manner, .
What has happened in the past is kept tracked by the register and address descriptors.
Aspects of the future are taken care of by the liveness analysis. Depending on whether
one does as block-local liveness analysis or a global analysis just changed how “far into the
future” the analysis looks. As far as the past in concerned: that one is (in our presentation)
just block-local. The book-keeping with the register and address descriptor starts fresh
with each block, there is here no memory of what potentially had happened in some earlier
block.

Live variable analysis

Now, what is live variable analysis anyway, if we mention it here already, and what role
does it play here? Actually, being alive means a simple thing for a variable: it means the
variable “will” be used in the future. One could dually also say, a variable is dead, if that is
not the case. Only that one normally talks about variables being live, not so much about
their death. “Death analysis” would not sound appealing. ... At any rate, it’s important
information, especially for register allocation: if it so happens that the value of a variable
is stored in a register and if one figures additionally out, that the variable is dead (i.e., not
used in the future), the register may be used otherwise. What that involves, we elaborate
on further below, in first approximation we can think that the register is simply “free”
and can just be used when needed otherwise.

Now, the “definition” for a variable of being live is a bit unprecise, and we wrote that the
variable “will be used in the future” using quotation marks. What’s the problem? The
problem is that the future may be unknown, and in general it’s impossible to know the ex-
act future. There can be different reasons for that. One is, depending how which language
one targets for the analysis, fundamental principles like undecidablity may prevent the the
future behavior from exactly be known. There can be actually another reason, namely if
one analyzes not a global program but only a fragment (maybe one basic block, one loop
body, one procedure body). That means, the program fragment being analyzed is “open”
insofar its behavior may depend on data coming from outside. In particular, the program
fragment’s behavior depends on that outside data or “input”, when conditionals or condi-
tional jumps are used. Even if the possible input is finite, maybe just a single bit, i.e., a

10 Code generation 5
10.1 Intro

single input of “boolean type”, that may influence the behavior. One behavior where, at a
given point a variable will be used, and another behavior, where that variable will not be
used. In one future behavior, the variable is live, in the other future, it is dead. Without
knowing whether the input is true of false, one cannot say that the variable “will” be used
or not, it simply depends. This obstacle is a different one than the principle undecidability
of general programs, which applies to closed programs already. For finite possible inputs
(and without loops) the problem is still finite: an analysis can just “statically simulate” all
runs one by one for each input, and for each individual behavior it is exactly known at each
point, whether a variable will be used or not, assuming that the program is deterministic.
But overall, without the input known, the program behavior is unknown.

Coming back to the “definition” of liveness. The long discussion hopefully clarified, that
in a general setting, when analyzing a (piece of a) program it cannot be about whether a
variable will be used. The question is whether the variable may be used. We want to use
the liveness information in particular to see if one can consider a register as free again.
If there exists a possible future where the variable may be used, then the code generator
cannot risk reusing the register. That means, the notion of (static) liveness is a question
of a condition that “may-in-the-future” apply. There are other interesting conditions of
that sort. Some would be characterized by “must” instead of “may”. And some may refer
to the past, not the future. That would lead to the area of data-flow analysis (or more
ambitiously, abstract interpretation). We won’t go deep there, we stick to live-variable
analysis (for the purpose of code generation). That will be done in Section 10.7. However,
if one understands live variable analysis, especially the global live variable analysis covered
later, one has understood core principles of many other flavors of data flow analysis (may
or must, forward or backward).

4

Talking about conditions applying to the “past”, perhaps we should defuse a possible
misconception. Liveness of a variable refers to the future, and we said, there are reasons
why one cannot know the future. Everyone knows, it’s hard do predictions, in particular
those concerning the future. So one may come to believe that analyzing the past would
not face the same problems. When running a (closed) program that may be true: we
cannot know the future, but we can record the past (“logging”), so the past is known.
But here we are still inside the compiler, doing static analysis and we may deal with open
program fragments. For concretness sake, let’s use some particular question for illustration:
“undefined variables” (or nil-pointer analysis). That refers to some condition in the past,
at some point, a variable is not initialized, perhaps containing a nil-pointer, and the reason
is that there was not point in the past run where the variable were initialized. Statically, a
compiler warning about “uninitalized variables” typically means, the variable is potentially
uninitalized (“may”), namely there may exist a run, where there is no initialization of a
variable. Or dually, a variable is properly initialized at some point, when for all pasts
that lead to that point the variable has been initialized. But for open programs (and/or
working with abstractions), there may statically be more than one possible past and we
cannot be sure which one will concretely be taken. Maybe indeed all or some of them
will be taken at run time, when the code fragment being under scrutiny is executed more
than once. That is the case when the analyzed code is part of a loop, or correspond to
a function body called variously with different arguments. In summary, the discinction
between “may” and “must” applies also to statically analysizing properties concerning the
past.

10 Code generation
10.1 Intro

Reusing and “freeing” a register

We said that the liveness status of a variable is very important for register usage. That’s
understable: a variable being dead does not need to occupy precious register space, and
the register can be “freed”. We promised in the previous paragaph that we would elaborate
on that a bit, as it involves some fine points that we will see in the algo later, which may
not be immediately obvious from reading the code.

First of all, as far as the hardware platform is concerned, there is no such thing as a full,
non-free or empty or free register. A register is just some fast and small piece of specific
memory in hardware in some physical state, which corresponds to a bit pattern or binary
representation. The latter one is a simplification or abstraction, insofar the registers may
be in some “intermediate, instable” state in (very short) periods of time between “ticks” of
the hardware clock. So, the binary illusion is an abstraction maintained typically with the
help of a clock, and compilers rely on that: registers contain bit strings or words consisting
of bits. But it’s not the case that 0000 “means” empty, for course. But when is a register
empty then? As said, as far as the hardware is concered, the hardware executes for instance
the 2AC we are now about to generate, fullness and emptyness of registers simply does not
exists. It only consists conceptually inside the compiler and code generator, which has to
keep track of the status and “picturing” registers as full and empty. If the code generator
wants to reuse a register (in that it generates a command that loads the relevant piece of
data into the chosen register) the generator prefers to use an “empty” one, for instance
one that so far has not been used at all. Initially, it will rate all registers as empty (though
certainly some bit pattern is contained in them in electric form, so to say). Now in case
a register contains the value for a variable, but the variable is known to be dead, doesn’t
that qualify for the register being free? So isn’t it as easy as the following?

A register is free if it contains dead data (or “no data” insfoar as the register
has not been used before)?

Sure enough, that’s indeed also why liveness analysis is so crucial for register allocation.
However, one has to keep in mind another aspect. Just because the value of a register
is connected to a variable that is dead does not mean one can “forget” about it and, by
reusing the register, overwrite it. So, why not, isn’t that the definition of being dead? In a
way, yes. But there are two aspects of why that’s not enough. One is, that the content of
a variable is kept in two copies, one in main memory and one in the register. And it may
well be the case that the one in main memory “is out of sync”. After all, the code generator
loaded the variable to register to faster manipulate the “variable”, therefore it is a good
sign, so to say, that it’s out of sync. Keeping main memory and registers always 100%
in sync is meaningless; then we would be better off without registers at all. Still, if the
variable is really dead, what does this inconsistency matter? That’s the second point we
need to consider: the concrete code generator later will make a “local” life analysis, only.
So it can only knows what’s going whether in the current block the variable is life or dead
(respectively, all variables are “assumed” to be live at the end of a block. That’s different
from temporaries, that are assumed to be dead. That means, “one” has to store the value
back to main memory. Actually, “one” needs to store that value back, if “one” suspects
the values disagrees, if there is an inconsistency between them. Who is the “one” that
needs to store them value back? Of course that’s the code generator, that has to generate,
in case of need, a corresponding store command, and it has to consult the register and

10 Code generation 7
10.1 Intro

address descriptors to make the right decision. After “synchronizing” the register with the
main memory, the register can be considered as “free”.

Local liveness analysis here

That was a slightly panoramic view about topics we will touch upon in this chapter, but
really only slightly panoramic, since register allocation in general is a complex and much
addressed problem. But the chapter will be more focused and concrete: code generation
from 3AIC to 2AC, making use of liveness analysis which is mainly done locally, per
basic block. We so far discussed live variable analysis and problems broader than we
actually need for what is called local analysis here (local in the sense per basic block
local). For basic blocks, which is straight-line code, there is neither looping (via jumps)
nor is there branching (which would lead to "don’t-know" non-determinism in the way
described). That’s the reason why techniques similar to what has been earlier called
“static simulation” will be used. The live variable analyzer steps through the code line
by line, and that may be called simulation (the terms simulation or static simulation are,
however, not too widely used in that context).

There are two aspects worth noting in that context. One is, when talking about “simu-
lation” it’s not that the analysis procedure does exactly what the program will do. Since
we are doing local analysis of only a fragement of a program, a basic block, we don’t
know the concrete values, that’s not easily done (one could do it symbolically, though).
But we don’t need to pre-calculate the outcome, as we are not interested in what the
program exactly does, we are interested in one particular aspect of the program, namely
the question of the liveness-status of variables. In other words, we can get away with by
working with an abstraction of the actual program behavior. In the setting here, for local
liveness, even given the fact that the basic block is “open”, that allows exact analysis, in
particular we know exactly whether the variable is live or is not. So the “may” aspect we
discussed above is irrelevant, locally. The fact that we don’t use the exact values of the
variables (coming potentially from “outside” the basic block under consideration) does not
influence the question of liveness, it’s independent from concrete values. If we would have
conditionals, that would change, because values would influence the control-flow. So, in
that way it’s not a “static simulation” of actual behavior, it’s more simulation stepping
through the progam but working with an abstract representation of the involved data. As
said, the concrete values can be abstracted away, in this case without loosing precision.

There is a second aspect we would like to mention in connection with calling the analysis
some form of “static simulation”. Actually, the live analysis that comes before the code
generation, steps through the program in a backward manner. In that sense, the term
“simulation” may be dubious (actually, the term static simulation is not widely used
anyway). But actually, in a more general setting of general data flow analysis, there are
many useful backward analyses (live variable analysis being one prominent example) as
well as many useful forward analyses (undefined variable analysis would be one).

Therefore, in our setting of code generation: the code generation will “step” though the
3AIC in a forward manner, generating 2AIC, keeping track of book-keeping information
known as register descriptors and address destriptors. In that process, the code generation
makes use of information whether a variable is locally live or is not locally live (or on

10 Code generation
10.1 Intro

whether a variable may be globally live or not when having global liveness info at hand).
That means, prior to the code generation, there is a liveness analysis phase, which works
backwardly.

Exactness of local liveness analysis (some finer points) To avoid saying something
incorrect, let’s qualify the claim from above that stipulated: for straight-line 3AIC, exact
liveness calculation is possible (and that what we will do). That’s pretty close to the
truth. ..

However, we look at the code generation ignoring complicating factors, like more complex
addressing modes, and “pointers”. We stated above: liveness status of a variable does not
depend on the actual value in the variable, and that’s the reason why exact calculation
can be done. Unfortunately, in the presence of pointers, aliasing enter the picture, and
the actual content of the pointer variable plays a role. Similar complications for other
more complex addressing modes. We don’t cover those complications though. We focus
on the most basic 3AIC instructions, but when dealing with a more advanced addressing
modes (as done in realistic settings), the exact future liveness status would be known, not
even for straight-line code. [2] covers also that, but it’s left-out from the slides and the
pensum.

There is another fine point. The assumption that in straight-line code, we know what each
line is executed exactly once is actually not true! In case our instruction set would contain
operations like division, there may be division-by-zero exceptions raised by the (floating
point) hardware. Similarly, there may be overflows or underflows by other hardware-
triggered errors. Whether or not such an exception occurs depends on the concete data.
So, it’s not strictly true that we know whether a variable is live or is not. It may be,
that an exception derails the control flow, and, from the point of the exception, the code
execution in that block stops (something else may continue to happen, but at least not
in this block). One may say: well, if such a low-level error occurs, probably trashing
the program, who cares if the live variable analysis was not predicting the exact future
100%7

That’s a standpoint, but a better one is: the analysis actually did not do anything in-
correct. The liveness analysis is a “may” analysis, and that even applies to straight-line
code. The analysis says a variable in that block may be used in the future, but in the
unlikely event of some intervening catastrophe, it actually may not be used. And that’s
fine: considering a variable live, when in fact it turns out not to be the case is to err on
the safe side. Inacceptable would would be the opposite case: an exception would trick
the code generator to rate variables as dead, when, in an exception, they are not. But
fortunately that’s not the case, so all is fine.

Code generation

e note: code generation so far: AST™T to intermediate code
— three address intermediate code (3AIC)
— P-code

o = intermediate code generation

10 Code generation
10.1 Intro

e i.e., we are still not there ...
 material here: based on the (old) dragon book [2] (but principles still ok)
o there is also a new edition [1]

In this section we work with 2AC as machine code (as from the older, classical “dragon
book”). An alternative would be 3AC also on code level (not just for intermediate code);
details would change, but the principles could be comparable. Note: the message of the
chapter is not: in the last translation and code generation step, one has to find a way to
translate 3-address code two 2-address code. If one assumed machine code in a 3-address
format, code generation would face similar problems. The core of the code generation is
the (here rather simple) treatment of registers. The code generation and register allocation
presented here is rather straightforward; it may look “detailed” and “complicated”, but it’s
not very complex in that the optimization puts very much computational effort into the
code generation. One optimization done is is based on liveness analysis. An occurrence
of a variable is “dead”, if the variable will not be read in the future (unless it’s first
overwritten). The opposite concept is that the occurrence of a variable is live. It should
be obvious that this is essential for making good decisions for register allocation. The
general problem there is: we have typically less registers than variables and temps. So the
compiler must make a selection: which data should be in a register and which not not?

A scheme like “the first variables in, say, alphabetical order, should be in registers as
long as there is space, the others not” is not worth being called optimization... First-
come-first-serve like “if I need a variable, I load it to a registers, if there is still some
free, otherwise not” is not much better. Basically, what is missing is taking into account
information when a variable is no longer used (when no longer live), thereby figuring out,
at which point a register can be considered free again. Note that we are not talking about
run-time, we are talking about code generation, i.e., compile time. The code generator
must generate instructions that loads variables to registers it has figured out to be free
(again). The code generator therefore needs to keep track over the free and occupied
registers; more precisely, it needs to keep track of which variable is contained in which
register, resp. which register contains which variable. Actually, in the code generation
later, it can even happen that one register contains the values of more than one variable
(in case two variables at some point are know to contain the same value). Based on such
a book-keeping the code generation must also make decisions like the following: if a value
needs to be read from main memory and is intended to be in a register but all of them
are full, which register should be “purged”. As far as the last question is concerned, the
lecture will not drill deep. We will concentrate on liveness analysis and we will do that in
two stages: a block-local one and a global one in a later section. the local one concentrates
on one basic block, i.e., one block of straight-line code. That makes the code generation
kind of like what had been called “static simulation” before. In particular, the liveness
information is precise (inside the block): the code generator knows at each point which
variables are live (i.e., will be used in the rest of the block) and which not (but remember
the remarks at the beginning of the chapter, spelling out in which way that this may not
be a 100% true statement). When going to a global liveness analysis, that precision is no
longer doable, and one goes for an approximative approach. The treatment there is typical
for data flow analysis. There are many data flow analyses, for different purposes, but we
only have a look at liveness analysis with the purpose of optimizing register allocation.

10 10 Code generation
10.1 Intro

Intro: code generation

o goal: translate intermediate code (= 3AI-code) to machine language
» machine language/assembler:
— even more restricted
— here: 2 address code
« limited number of registers
o different address modes with different costs (registers vs. main memory)

Goals

o efficient code
« small code size also desirable
e but first of all: correct code

When not said otherwise: efficiency refers in the following to efficiency (or quality) of
the generated code. Fastness of compilation, or with a limited memory footprint may be
important, as well (likewise may the code size of the compiler itself be an issue, as opposed
to the size of the generated code). Obviously, there are trade-offs to be made.

But note: even if we compile for a memory-restricted platform, it does not mean that
we have to compile on that platform and therefore need a “small” compiler. One can, of
course, do cross-compilation.

Code “optimization”

o often conflicting goals

e code generation: prime arena for achieving efficiency

« optimal code: undecidable anyhow (and: don’t forget there’s trade-offs).
e even for many more clearly defined subproblems: untractable

“optimization”

interpreted as: heuristics to achieve “good code” (without hope for optimal code)

e due to importance of optimization at code generation
— time to bring out the “heavy artillery”
— so far: all techniques (parsing, lexing, even sometimes type checking) are com-
putationally “easy”
— at code generation/optimization: perhaps invest in aggressive, computationally
complex and rather advanced techniques
— many different techniques used

The above statement on the slides that everything so far was computationally simple is
perhaps an over-simplificcation. For example, type inference, aka type reconstruction, is
typically computationally heavy, at least in the worst case and in languages not too simple.
There are indeed technically advanced type systems around (including undecidable ones,

10 Code generation 11
10.2 2AC and costs of instructions

like the one for C++...). Nonetheless, it’s often a valuable goal not to spend too much
time in type checking and furthermore, as far as later optimization is concerned one could
give the user the option how much time he is willing to invest and consequently, how
agressive the optimization is done. For our coverage of type systems in the lecture and the
oblig: that one is rather simple and elementary, and poses no problems wrt. efficiency.

The word “untractable” on the slides refers to computational complexity; untractable are
those for which there is no efficient algorithm to solve them. Tractable refers convention-
ally to polynomial time efficiency. Note that it does not say how “bad” the polynomial is,
so being tractable in that sense still might not mean practically useful. For non-tractable
problems, it’s often guaranteed that they don’t scale.

10.2 2AC and costs of instructions

Here we look at the instruction set of the 2AC. Well, actually only a small subset of it.
In particular, we look at it from the perspective of a “cost model”. Later, we want to at
least get a feeling that the code we are generating is “good” but then we need a feeling
what the “cost” is of the generated code, i.e., the cost of instructions.

When talking about 2AC, it’s actually not a concrete instruction set of a concrete platform.
Concrete chips have complicated inststruction sets, so it’s more that we focus on a (very
small) subset of what could be an instruction set of a 2A platform. Now, isn’t that another
“intermediate code”? We will see that the code now (independent from the fact that its
2AC) is more low-level than before. In that way, it could be a real instruction set of some
hardware. The intermediate code from before could not. One could tell the same story
we are doing here, translating from 3AIC to 2AC also by doing a translation from 3AIC
to 3AC. Still that would pose equivalent problems (register allocation, cost model, etc.),
but the presentation here happens to make use of a 2AC.

2-address machine code used here

e “typical” op-codes, but not a instruction set of a concrete machine
e two address instructions
e Note: cf. 3-address-code intermediate representation vs. 2-address machine code
— machine code is not lower-level/closer to HW because it has one argument less
than 3AC
— it’s just one illustrative choice
— the new Dragon book: uses 3-address-machine code
« translation task from IR to 3AC or 2AC: comparable challenge

2-address instructions format
Format

OP source dest

12 10 Code generation
10.2 2AC and costs of instructions

o note: order of arguments here (esp. for minus)
e restrictions on source and target

— register or memory cell

— source: can additionally be a constant

ADDab // b:=Db+ a
SUBab // b:=Db-—a
MULab // b:=Db % a
GOTO i // unconditional jump

« further opcodes for conditional jumps, procedure calls

Also the book Louden [4] uses 2AC. In the 2A machine code there for instance on page
12 or the introductory slides, the order of the arguments is the opposite.

Side remarks: 3A machine code

Possible format

OP sourcel source2 dest

e but: what’s the difference to 3A intermediate code?
e apart from a more restricted instruction set:
e restriction on the operands, for example:
— only one of the arguments allowed to be a memory access
— no fancy addressing modes (indirect, indexed ... see later) for memory cells,
only for registers
e not “too much” memory-register traffic back and forth per machine instruction
e example:

&x = &y t+ *z

may be 3A-intermediate code, but not 3A-machine code

As we said, the code generation could analogously be done for 3AC instead of 2AC. But
what’s the difference then between 3AIC and 3AC, would the translation not be trivial?
Not quite, there is a gap between intermediate code and code using the instruction set.
The most important difference is the use of registers. Related to that, 3AC instructions
typically impose restrictions on the operands of the instructions. In the purest form, one
may allow instructions only of the form r1 := r2 + r3 (here addition as an example),
where all arguments, sources and target, must all be in registers. That would result in a
pure load-store architecture: before doing any operation at all, the code generator must
issue appropriate load-commands, and the result needs to be stored back explicitly. That
obviously leads at least to longer machine code, measured in number of instructions (but
perhaps the instructions themselvelse may be represented shorter). Analogous restrictions
may concern the indirect addressing modes. Instruction sets with a load-store design are
often used in RISC architectures.

https://en.wikipedia.org/wiki/Load%E2%80%93store_architecture

10 Code generation 13
10.2 2AC and costs of instructions

Cost model

e “optimization”: need some well-defined “measure” of the “quality” of the produced
code

e interested here in erecution time

e not all instructions take the same time

e estimation of execution

o factors outside our control/not part of the cost model: effect of caching

cost factors:

e size of instruction
— it’s here not about code size, but
— instructions need to be loaded
— longer instructions = perhaps longer load
o address modes (as additional costs: see later)
— registers vs. main memory vs. constants
— direct vs. indirect, or indexed access

The cost model (like the one here) is intended to model relevant aspects of the code,
that influence the efficiency, in a proper and useful manner. The goal is not a 100%
realistic representation of the timings of the processor. It will be based on assigning rule-
of-thumb numerical costs to different instructions. Actually, it’s very simple. The main
observation is: accessing a register is “very much” faster than accessing main memory. But
the model does not use realistic figures (maybe by consulting the specs of the machine or
doing measurements). Indeed, “main memory” access may not have a uniform access cost
(in terms of access time). There are factors outside the control of the code generation,
which have to do with the memory hierarchy. The code is generated as if there are
only two levels: registers and main memory. But, of course, that’s not realistic: there
is caching (actually a whole hierarchy of caches may be used). Furthermore, data may
even be stored in the background memory, being swapped in and out under the control
of an operating system. Being not under the control of the code generator, those are
stochastic influences. The compiler is not completely helpless facing caches and other
memory hierarchy effects. Based on assumptions how caching and paging typically works,
the code generator could try to generate code that has good characterisics concerning
“locality” of data. Locality means that in general it’s a good idea to store data items “than
belong together” in close vicinity, and not sprinkle them randomly across the address space
(whatever “belonging together” means). That’s because the designer of the code generator
knows that this suites chaching or swapping algorithms, that perhaps swap out cache lines,
banks of adjacent addresses, whole memory pages etc. As far as caches is concerned, that’s
simply a rational hardware design. But one can also turn the argument around: hardware
designers know, that it’s “natural” that data structures coming from a high-level data
structure of a structured programming language (and which contain conceptually data
“that belongs together) will be generated in a way being “localized”. Even if the compiler
writer has never thought of efficiency and memory hierarchies, it’s simply natural to place
different fields of a record side by side. Also for more complex, dynamic data structures,
such principles are often observed: the nodes of a tree are all placed into the same area

14 10 Code generation
10.2 2AC and costs of instructions

and not randomly. More tricky maybe the the presence of a garbage collector, that could
mess that up, if done mindlessness. But also the garbage collector can maken an effort
to preserve locality. So, in a way, it all hangs together: well-designed memory placement
will be rewarded by standard ways managing the memory hierarchy, and well-designed
memory management will run standard memory layout by compilers faster. It’s almost a
situation of co-evolution.

But all that is more a topic for how the compiler arranges memory (beyond the general
principles we discussed in connection with memory layout and the run-time environments).
Here we are looking more focused on the code generation and trying to attribute costs on
individual instruction (so questions of locality cannot be considered, as they are about the
global arrangement, neither are questions of caching, etc., as one individual instruction
and the instruction set is not aware of caching, let alone the influence of the operating
system. So, how can we express the very rough observation “registers are very much
fast than memory accesses”? That’s easy, register access costs “nothing”, it will have a
zero costs. Main memory accesses will have cost of 1. Mathematically it means, memory
access is infinitely most costly than registers, but as said, it’s a model that may be use to
generate efficient code, not as a realistic prediction of actual running time in the physical
world. Also, the cost of 0 vs. the cost of 1, it’s about time additional to the load and
execution time to the operation. So doing ADD rl r2, and addition involving 2 registers,
is not infinitely fast, it costs 1 (say, one load cycle), only the register accesses don’t add
to the costs, their access and carrying out the addition are done within one single load
cycle. Even if we had realistic figures from somewhere (via profiling and measuring average
execution times under typical conditions or similar), the use would be limited: as stressed a
few times, genuine and absolute optimal performance is (and cannot be) the goal (super-
optimization aside). The goal is getting good or excellent performance with a decent
amount of effort. We are content to use the cost model as a rough guideline (for the code
generator) on decisions like

when translating one line of 3AIC, shall I use a register right now or rather not?

We will see that this is the way the code generator will work. One might not even call it
“optimization”, at least not in the sense the first some code is generated which afterwards
is improved (optimized). The code generator takes the cost model into account on-the-fly,
while spitting out the code. Actually, it does not even consults the cost model (by invoking
a function, comparing different alternatives for the next lines, and then choosing the best).
It simply compiles line after line, and the decisions are plausible, and one convince oneself
of the plausibility by looking at the cost model. Actually, one can convince oneself of the
plausibility even without looking at the cost model, just knowing that registers should
be preferred when possible. But actually that’s one of two important pieces of common
knowledge the cost model captures.

What’s the second piece then? The other piece is that executing one command costs also
something. So, each “line” costs 1. In that sense, the 0-costs of register access is realistic,
insofar registers access is typically done in one processor cycle, i.e., in the same time slice
than the loading and executing the instruction as a whole. So, in that sense, register
accesses really don’t cost anything additional. Other accesses incur additional costs, and
since we don’t aim at absolute realism, all the non-register accesses costs 1.

10 Code generation 15
10.2 2AC and costs of instructions

’op

mode (s)

mode (d) | source address | destination address ‘

4 bytes 4 bytes 4 bytes

Figure 10.1: Instruction format

Instruction modes and additional costs

mode abbr. address ddded cost
absolute M M 1
register R R 0
indexed c(R) ¢+ cont(R) 1
indirect register ~ *R cont(R) 0
indirect indexed *c(R) cont(c+ cont(R)) 1
literal #M the value M 1 only for source

Table 10.1: Cost model

o indirect: useful for elements in “records” with known off-set
e indexed: useful for slots in arrays

The instruction format is shown in Figure 10.1. In the most general case, for our 2AC and
for instructions with 2 arguments, an instruction is split into 3 parts each 4 bytes or 4 octets
long. 4 bytes are also called one word in that architecture. The first word represents the
op-code including information how to interpret the following two words, namely the source
and the destination address; as mentioned, the destination address is also the address of
a source, in a binary operation. The content of the source and destination arguments can
be interpreted differently, that called their mode in the corresponding op-code. The mode
of the two instruction arguments can be specified independantly and the various modes
are summarized in Table 10.1 (in the right-hand column).

We see that there are no real restictions when and when not memory access are allowed
and when registers. Earlier we mentioned something like “load-store” architectures, where
binary operations may only work on registers, or other restrictions. That is not the case
here.

The format here corresponds to a 32-bit architecture, which is a popular format (actually,
it’s pretty old, there had been 32-bit machines early on, likewise also 64-bit (not micro-
processors at that time). There are 16-bit microprocessors (in the past), and there are
64-bit processors as well. Of course, having 4 bytes for the op-code does not mean all
codes are actually used for actual instructions (that would be way too many). But we
have to keep in mind (or at least in the back of our mind, as that’s no longer the concern
of a compiler writer): the instructions need to be handled by the given hardware with
a given size of the “bus”, there is no longer the freedom and flexibility of software. In
particular, it’s not “byte code” (more like 4-bytes code. ..) And actually, it’s nice to think
of a binary code as to represent “addition” or “jump”, but the 0 and 1’s in the code
actually are connected to hardware, the slots in the 32-bit word are “wired up” connecting
them to logical gates that open and close and trigger other bits/electrons to flow from

16 10 Code generation
10.2 2AC and costs of instructions

here to there that ultimatly result in another bit pattern that can be interpreted as that
an addition has happened (on our level of abstraction). So the actual bit-codes for the
logical machine instructions are are “sparcely” distributed, and some bit-pattern are not
simply unused (“undefined”) but would open and close the “logic gates” of the chip in a
weird, meaningless manner. As said, all that is not the concern of a compiler writer, who
can see an add-code as addition, but it’s interesting that the story does not end there,
there are complex layers of abstraction below that and also, that we are leaving the world
of “anything goes” of software: the compiler writer can design any form of intermediate
representations in intermediate codes and translate between them etc. But below that,
things get more restricted by the physics and the laws of nature.

We can also compare that to byte codes, for instance the one for the mandatory assignment.
Byte codes are called like that because the first part of an instruction, the opcode, is byte-
size. Unlike the instruction set here, where the opcode part 4 bytes. But otherwise, the
byte code from the mandatory assignments resembles the instruction set here to some
extent. The byte code is, on the one hand, a p-code-style instruction set that works with
a stack; that’s of course not the case here. Hovever, the byte code operations sometimes
also expect (additional) arguments which are not on the stack but kept in follow-up data.
The size of the data there it is not 4 bytes, but the size of a short (a short or short integer
is typically 2 bytes, also for the mandatory assignment). Another difference is, of course,
the byte code is intermediate code, the 2AC represents actual instructions. That’s also
the reason why the instructions here take 4 bytes to represent the opcodes, as explained
above.

Examplesa := b + ¢

The following examples are not breathtakingly interesting. They show different possible
translations and their costs. The first pair of examples shows two equivalent ways of
translating the given assignment, one operating directly on the main memory, one partly
loading the arguments to a register and then using that. Both versions have the same
cost, in our cost model (despite the fact that the first program executes 3 commands and
the second only 2).

The other two examples calculate the same command, but under a different assumption,
namely: the arguments are already loaded in some registers. That drives down the costs.
But that should be pretty clear, that’s why one has registers, after all.

We also see that it to profit from the use of registers, the code generator needs to know
which variables are stored in the registers already. That will be done by so-called address
descriptors and register destriptors.

Also, especially the second example shows, that sometime the generated code is a bit
strange: Since we have only 2AC, one argument is source, the other one is source and
destination. That means, 2AC like addition “destroy” one argument. That means, in
general we need to temporarily copy that argument somewhere else, otherwise it get lost.
In the second example, since a is updated anyway, the first step uses a for that temporary
copy of b. That’s a general pattern of this form of code.

10 Code generation 17
10.3 Basic blocks and control-flow graphs

Using registers

MOV b, RO // RO =bh
ADD ¢, RO // RO = ¢ + RO
MOV RO, a // a = RO

cost = 6

Memory-memory ops

MOV b, a // a=b
ADD ¢, a // a=c¢c+ a

cost = 6

Addresses in registers

MOV «R1, *RO // *R0 = xRl
ADD xR2, *R1 // *R1 = xR2 + xRl

cost = 2

Assume RO, R1, and R2 contain addresses for a, b, and ¢

Storing back to memory

ADD R2, R1 // Rl = R2 + Rl
MOV RL, a // a =Rl

cost = 3

Assume R1 and R2 contain values for b, and ¢

10.3 Basic blocks and control-flow graphs

We have mentioned (in the introductory overview of this chapter and elsewhere) the con-
cepts of basic blocks and control-flow graphs already. Before we continue we introduce
those concepts more robustly. The notion of control flow graph is in this lecture used
at the level of IC (maybe 3AIC), resp. also machine code. The notion of CFG makes
also sense on highler levels of abstractions, i.e., one can do a control-flow graph also for
abstract syntax . In our setting, there would be not much difference between to control-
flow graphs from intermediate code and machine code. Both representations make use of
jumps and conditional jumps and labels (resp. addresses), and that determines the edges
of the graph.

18 10 Code generation
10.3 Basic blocks and control-flow graphs

In this section, we work with 3AIC, generated from some AST probably with higher-level
control-flow constructs like two-armed conditionals and loops. Now we “reconstruct” a
more high-level representation of the code by figuring out the CFG (at that level). It is
not uncommon to do a CFG first, and use the CFG assisting in the (intermediate) code
generation.

Anyway, the general concept of CFG works analogously at all levels, same for basic blocks,
at least when working with a standard procedural language. The notion of control-flow
graph is less applicable to languages with higher-order functions or more specific-purpose
languages like constraint-solving notations or logic languages.

Basic blocks

e machine code level equivalent of straight-line code
o (a largest possible) sequence of instructions without
— jump out
— jump in
« elementary unit of code analysis/optimization®
o amenable to analysis techniques like
— static simulation/symbolic evaluation
— abstract interpretation
e basic unit of code generation

Control-flow graphs
CFG

basically: graph with

e nodes = basic blocks
o edges = (potential) jumps (and “fall-throughs”)

o here (as often): CFG on 3AIC (linear intermediate code)
« also possible CFG on low-level code,
e or also:
— CFG extracted from AST?
— here: the opposite: synthesizing a CFG from the linear code
o explicit data structure (as another intermediate representation) or implicit only.

When saying, a CFG is “basically” a graph, we mean that, apart from some fundamentals
which makes them graphs, details may vary. In particular, it may well be the case in a
compiler, that cfg’s are some accessible intermediate representation, i.e., a specific concrete
data structure, with concrete choices for representation. For example, we present here
control-flow graphs as directed graphs: nodes are connected to other nodes via edges
(depicted as arrows), which represent potential successors in terms of the control flow of
the program. Concretely, the data structure may additionally (for reasons of efficiency)

! Those techniques can also be used across basic blocks, but then they become more costly and challenging.
2See also the exam 2016.

10 Code generation 19
10.3 Basic blocks and control-flow graphs

also represent arrows from successor nodes to predecessor nodes, similar to the way, that
linked lists may be implemented in a doubly-linked fashion. Such a representation would
be useful when dealing with data flow analyses that work “backwards”. As a matter of
fact: the one data flow analysis we cover in this lecture (live variable analysis) is of that
“backward” kind. Other bells and whistles may be part of the concrete representation,
like dedicated start and end nodes. For the purpose of the lecture, when don’t go into
much concrete details, for us, cfg’s are: nodes (corresponding to basic blocks) and edges.
This general setting is the most conventional view of cfg’s.

From 3AC to CFG: “partitioning algo”

o remember: 3AIC contains labels and (conditional) jumps
= algo rather straightforward

e the only complication: some labels can be ignored

o we ignore procedure/method calls here

o concept: “leader” representing the nodes/basic blocks

Leader

o first line is a leader
¢ GOTO:: line labelled 7 is a leader
« instruction after a GOTO is a leader

Basic block

instruction sequence from (and including) one leader to (but excluding) the next leader
or to the end of code

The CFG is determined by something that is called here “partitioning algorithm”. That’s
a big name for something rather simple. We have learned in the context of minimization
of DFAs the so-called partitioning refinement approach, which is a clever thing. The
partitioning here is really not fancy at all, it hardly deserves being called an algorithm.
The task is to find in the linear IC largest stretches of straight-line code, which will be
the nodes of the CFG. Those blockes are demarkated by labels and gotos (and of course
the overall beginning and end of the code.) There is only one small addition to that: an
unused label, i.e., a label not being the target of some jump, does not demarkate the border
between to blocks, obviously. An unused label might as well be not there, anyway.

Partitioning algo

e note: no line jumps to Lo

20 10 Code generation
10.3 Basic blocks and control-flow graphs

Figure 10.2: Partitioning (illustration)

The partitioning is illustrated in Listing 10.2. The read lines show the demarcations
between the code of the basic blocks. The lines at the same time correspond to what we
called leaders: the leaders are the lines following the the red lines and they indicate the
first line of a basic block.

Threre is one exception, that’s the red line at the end of the program. That one, obviously,
does not correspond to a leader or the beginning of some bacic block. It demarcates,
however, the end of the last basic block.

Note also that the line labelled Lo is not a leader. The reason is that in the sketched
program, this label is not used as jump target, unconditional or otherwise.

It may be worth thinking about what would happen if we considered Lo a header nonethe-
less. In that case, the basic blocks would no longer be the largest sequences of straight-line
code not jumped into. In this example, we would end up with 6 basic blocks instead of
5.

That should, however, not affect the correctness of the generated code. As mentioned,
basic blocks are the elementary level of optimizations and code generation. Cutting the
basic blocks smaller than necessary will lead to smaller stretches of code targeted by
local analysis. An example would be the local liveness analysis covered later. If one uses
liveness analysis only on the local level, i.e., only inside basic blocks, then the smaller than
necessary basic blocks would lead to a less precise analysis. Liveness analysis (like others)
can be precise within basic block, but typically resorts to approximation more globally, like
doing analysis for a whole control-flow graph. In Section 10.7, we will look into that kind
of global analysis. But when doing only a local one, the analysis ignores what happens
outside the current basic block, and thus, to play it safe and assumes variables at the end
of a basic block potentially used later. It assumes a variable at the end of a block to be
live, though a global analysis may reveal that it is not. This safe overapproximation is
typical for many forms of analyses, in particular data flow analyses, but also type checking.
As a consequence, unnessessarily small blocks of straight-line code lead loss of precision,
an overapproximation still safe safe but needlessly approximative.

10 Code generation 27
10.3 Basic blocks and control-flow graphs

Indirectly therefore, also register allocation is affected by a too finegrained block structure.
As long as the lifeness approximation is correct or safe, the register allocator will lead
to correct code as well, though presumably slower code compared to more presise (but
correct) liveness information.

This describes what happens to liveness analysis and register allocation if the straight-line
code blocks are needlessly small, if one assumes local analysis only. The situation for other
kinds of analyses would be similar.

What would happen using small straight-line blocks if one employed a global analysis? In
this case, one typically would not loose precision. The global analysis anyway looks at
the whole control-flow graph. Unlike for local liveness analysis, to stick with this form of
analysis, a global analysis will not of course assume that a variable at the end of a basic
block is live, just to be safe. It will investigate to figure out if the variable may be used in
the future or if it’s sure it’s dead. That’s what the global analysis is good for, after all.

Does it mean, if one is doing a global analysis anyway, the size of the blocks of straight-line
code does not matter? In a way yes. As said, one will not loose precision by being to
finegrained. In an extremal case, one could use every instruction line as one elementary
block. Why would one still work with the largest possible stretches of straigh-line code,
i.e., with basic blocks of the form introduced?

The reason is mostly that the global analysis can be done if not more precisely, but more
efficiently. Global analysis typically involves the analysis of loops or cycles, something that,
by definition, is not needed for straight-line code. The analysis of cycles in the control-flow
graph entails that one does analysis steps repeatedly for nodes participating in a cycle. If
one has a large basic block as part of a cycle, one can anayse relevant information (for
instance concerning the liveness status of variables) one in summarized form. For instance,
let’s assume the first usage of a a variable, say x in a given basic block is that it’s assigned
to like in a line of the form x := e, where e does not refer to . That means, x actually is
dead at the beginning of said basic block. A local analysis of the block will find that out,
and one can use the information in summarizing corresponding information for the basic
block for all variables. Resp. one could do that summary information for all basic block,
which form the nodes of the control flow graph. What good would that do? The local
analysis, needed for the summary information steps through the lines of the basic block.
As we will see (resp., one single pass through the lines is enought). Actually, it should be
even intuitively clear, that one pass should be enough to see locally, for each variable, if
it’s used or not. Anyway, the basic block, as said, may be part of a cycle in the graph,
and this need repeatedly be treated. But with the summary information precomputed by
local analyses, one at least need to step through the individual ones over and over again,
to (re-)discover the liveness status of the involved variables, like rediscovering that z is
dead at the entrance of the basic; that information is remembered in the symmary. In
this way, working with basic block may not increase precision of the analysis and thereby
increase the quality of the produced code, but the analysis itself may become faster.

Let’s have a look at some more concrete example. Listing 10.1 shows 3AIC for the faculty
function from the previous chapter, and Figure 10.3 shows the corresponding control-
flow graph. The code contains 5 basic block and thus the illustration of the control-flow
graph 5 nodes. The first line in each node is the corresponding header. Unlike in the
schematic example from Figure 10.2, all labels in the code are jump targets. Typically,

2 10 Code generation
10.3 Basic blocks and control-flow graphs

the (intermediate) code generator would not generate labels not being used as jump-target,
though they are not “harmful”; the partitioning algo does not treat them as leaders and
the label instructions from the 3AC are pseudo-intructions, i.e., the don’t correspond
ultimately lead actual machine-code instructions.

3AIC for faculty (from previous chapter)

read x

tl = x>0

if false tl1 goto L1
fact =1

label L2

t2 = fact * x

fact = t2

t3 =x — 1

x = t3

td = x =0

if false t4 goto L2
write fact

label L1

halt

Listing 10.1: Faculty (3AIC)

Faculty: CFG

Figure 10.3: Control-flow graph (faculty)

» goto/conditional goto: never inside block
e not every block
— ends in a goto
— starts with a label
o ignored here: function/method calls, i.e., focus on
e intra-procedural cfg

Intra-procedural refers to “inside” one procedure. For example, Figure 10.3 contains the
control-flow graph of the faculty procedured, resp. the graph for a main procedure of a
program that realizes the faculty function. Note that the program does not do procedure

10 Code generation 23
10.3 Basic blocks and control-flow graphs

calls; the faculty is calculated using a while-look in the source language and not the
recursive faculty solution, one often finds.

The opposite of intra-procedural analysis is inter-procedural. Inter-procedural analyses and
the corresponding optimizations are quite harder than intra-procedural. In this lecture,
we don’t cover inter-procedural considerations. Except that call sequences and parameter
passing has to do of course with relating different procedures and in that case deal with
inter-procedural aspects. But that was in connection with the run-time environments, not
what to do now in connection with analysis, register allocation, or optimization. So, in this
lecture resp. this chapter, “local” refers to inside one basic block, “global” refers to across
many blocks (but inside one procedure). Later, we have a short look at “global” liveness
analysis. As mentioned, we dont’ cover analyses across procedures, in the terminology used
here, they would be even “more global”. Actually, in the more general literature, global
program analysis would typically refer to analysis spanning more than one procedure.
Indeed, one should avoid talking about local analysis without further qualifications; it’s
better to speak of block-local analysis, procedure-local, method-local, or thread-local, to
make clear which level of locality is addressed. We are doing block-local analysis resp.
procedure-local analysis (the latter we will also call “global”).

Levels of analysis

o here: three levels where to apply code analysis / optimizations
1. local: per basic block (block-level)
2. global: per function body/intra-procedural CFG
3. inter-procedural: really global, whole-program analysis

o the “more global”, the more costly the analysis and, especially the optimization (if
done at all)

These three levels are the conventional hierarchy of analyses. But there might be further
distinctions, for example. in concurrent programs, one can distinguish between a thread-
local (and inter-procedural) analysis and a global analysis, that takes multiple threads into
account. Techniques to analyse programs in the presence of concurrency can become much
more challenging and also, concurrency analysis requires other techniques that the notion
of control-flow graphs resp. further techniques on top of that. Control-flow graph are an
inherently sequential concept, capturing the structure of sequential control-constructs like
conditionals and loops on the source-language levels. We don’t look into analysis in the
presence of parallism or concurrency.

Loops in CFGs

e loop optimization: “loops” are thankful places for optimizations
o important for analysis to detect loops (in the cfg)
e importance of loop discovery: not too important any longer in modern languages.

24 10 Code generation
10.3 Basic blocks and control-flow graphs

Loops in a CFG vs. graph cycles

e concept of loops in CFGs not identical with cycles in a graph
o all loops are graph cycles but not vice versa

o intuitively: loops are cycles originating from source-level looping constructs (“while”)

e goto’s may lead to non-loop cycles in the CFG

o importance of loops: loops are “well-behaved” when considering certain optimiza-
tions/code transformations (goto’s can destroy that. ..)

Cycles in a graph are well-known. The definition of loops here, while closely related, is
not identical with that. So, loop-detection is not the same as cycle-detection. Otherwise
there’d be no much point discussing it, since cycle detection in graphs is well known, for in-
stance covered in standard algorithms and data structures courses like INF2220/IN2010.

Loops are considered for specific graphs, namely CFGs. They are those kinds of cycles
which come from high-level looping constructs (while, for, repeat-until).

Loops in CFGs
Loop

Loop L in a CFG: set of nodes, including header node h € L:

1. any node in L: a path in L to h
2. a path in L from h to any node in L
3. no edge in the graph goes into h from outside L

often additional assumption/condition: “root” node of a CFG (there’s only one) is not
itself an entry of a loop

The definition is taken basically from [3], and corresponds also to the one from Aho
et al. [1], which calles the loop header loop entry instead. Sometimes one also finds the
definition, that the header or entry of a loop is reachable from the CFG’s initial node
exactly via one edge (in the last step) from outside the loop. The definition given here
does not mention reachability here, but there is no real difference, in particular, since
all nodes in a control-flow graph are typically reachable from the initial nodes. That in
particular holds for a control-flow graph coming from a program written in source code
(and potentially compiled to intermediate code or machine code, depending at which level
one generates the control-flow graph). More precisely, if the source language allows goto’s
and conditional jumps to labels, then the CFG can contain unreachable nodes. The same
applies when considering intermediate or machine code written by hand, not coming from
conventional source code.

The first two points from above make the nodes of a loop strongly connected: every
node in a loop can reach each other. From the algorithm and data structure lecture
INF2220/IN2010, one may have encountered the notion of strongly connected component
and the corresponding algorithm. A strongly connected component adds “maximality”
to the requirement of being strongly connected; i.e., a strongly connected component is a
maximal set of strongly connected nodes. This maximality is not required for loops.

10 Code generation 25
10.3 Basic blocks and control-flow graphs

/N

Figure 10.4: Loop example

Loops are strongly connected sets of nodes with a unique header node

For instance in the graph from Figure 10.4, the inner loop {Bs, B4} is strongly connected
(and a loop), but not strongly connected, since one could enlarge it to { By, Ba, ..., Bs} and
still stay strongly connected. The notion of stronly connnectd components corresponds to
outermost loops (including all nested loops within).

Loop

The definition is best understood in a small example.

CFG
e Loops:
— {Bs;, B4} (nested)
- {B47B37B1aB5)BQ}
e Non-loop:

- {Bb BQv B5}
e unique entry marked red

The additional assumption mentioned on the slide about the special role of the root node
of a control-flow graph is reminiscent, for example, of the condition we assumed for the
start-symbol of context-free grammars in the LR(0)-DFA construction: the start symbol
must not be mentioned on the right-hand side of any production (and if so, one simply
added another start symbol S”). The reasons for the assumption here are similar: assuming
that the root node is not itself part of a loop is not a fundamental thing, it just avoids (in
some degenerate cases) a special case treatment. The assumption about the form of the
control-flow graph is sometime called “isolated entry”. A corresponding restriction for the
“end” of a control-flow graph is “isolated exit”.

10 Code generation
10.3 Basic blocks and control-flow graphs

Figure 10.5: Non-loops

Loop non-examples

Figure 10.5

We don’t need to explore loops further, actually for the way we do global analysis later
(in the form of global liveness analysis) that will work for non-loop cycles (“unstructured”
programs) as well as for loop-only graphs, at least in the version we present it. If one
knows that there are loops-only, one could improve the analysis (and others). Not in
making the result of the analysis more precise, but making the analysis algorithm more
efficient. That could be done by exploiting the structure of the graph better, for instance
exploiting that loops are nested, for instance targeting inner-loops first. In the examples
here, such “tricks” would not work. They violate that each loop is supposed to have a
well-defined, unique entrance node. Since we don’t exploit the presence of loops, we don’t
dig deeper here. It should be noted that the definition of loops (with unique entry points)
is classical in CFG and program analysis, one may find material where the notion of “loop”
is used more loosely (ignoring the traditional definition) where loop and cycle is basically
used interchangably.

One is interested in loops not necessarily as a concept in itself, but in the larger context
of optimization. We called loops a fertile ground of optimizations, which is of course also
true for general cycles: both involve (potential) repetition of code snippets, and shaving
off execution time there, that’s a good idea. Often, the optimization is about moving
things outside of the loop, typically “in front” of the loop. That’s when a unique entrance
of a loop comes in handy (sometimes called a loop-header). The non-loop examples don’t
have a single loop-header.

In the more or less distant past, loop detection (and cycle detection) would be a task
a compiler would engage it. Now, that most programs are written following structured
progamming, there a no non-loop cycles. Additially, when compiled from source code, the
program structure contains all the information where the loops are, so there not need to
make an analyis (for instance for the intermediate code) to (re-)discover them at the lower
level. However, the partitioning algorithm we discussed is a bit in that spirit. The control
flow structure is (re-)discovered from (intermediate) code, in the form of the control flow
graph.

10 Code generation 27
10.3 Basic blocks and control-flow graphs

Loops as fertile ground for optimizations

while (i < n) {i++; A[i] = 3xk }

e possible optimizations
— move 3xk “out” of the loop
— put frequently used variables into registers while in the loop (like 7)
e when moving out computation from the loop:
e put it “right in front of the loop”
= add extra node/basic block in front of the entry of the loop?

Data flow analysis in general

o general analysis technique working on CFGs
e many concrete forms of analyses
« such analyses: basis for (many) optimizations
o data: info stored in memory/temporaries/registers etc.
e control:
— movement of the instruction pointer
— abstractly represented by the CFG
* inside elementary blocks: increment of the instruction pointer
x edges of the CFG: (conditional) jumps
* jumps together with RTE and calling convention

Data flowing from (a) to (b)

Given the control flow (normally as CFG): is it possible or is it guaranteed (“may” vs.
“must” analysis) that some “data” originating at one control-flow point (a) reaches control
flow point (b).

The characterization of data flow may sound plausible: some data is “created” at some
point of origin and then “flows” through the graph. In case of branching, one does not
know if the data “flows left” or “flows right”, so one approximates by taking both cases into
account. The “origin” of data seems also clear, for instance, an assignment “creates” or
defines some piece of data (as l-value), and one may ask if that piece of data is (potentially
or necessarily) used someplace else (as r-value), without knowing resp. being interesting in
its exact value that is being used. This is sometimes also called def-use analysis. Later we
will discuss definitions and uses. Another illustration of that picture may be the following
question: assuming one has an data-base program with user interaction. The user can
interact by inputting data via some (web)-interface or similar. That information is then
processed and forwarded to some SQL-data base. Now, the inputs are points of origin,
and one may ask if this data may reach the SQL database without being “sanitized” first
(i.e., checked for compliance and whether the user did inject into the input some escapes
and SQL-commands).

3That’s one of the motivations for unique entry.

28 10 Code generation
10.3 Basic blocks and control-flow graphs

Anyway, this picture of (user) data originating somewhere in a CFG and then flowing
through it is plausible and not wrong per se, but is too narrow in some way. It sounds
as if every data flow analysis traces (in an abstract, approximative manner) the flow of
pieces of data through the graph.

Not all data flow analyses are like that. Actually, the live variable analysis will be an
example for that. So more generally, it’s more like that “information of interest” is traced
through the graph. For liveness analysis, the piece of information being traced is future
usage. Since the information of interests may not be an abstract version of real data,
it may also not necessarily be traced in a forward manner. For liveness analysis, one
is interested in whether a variable may be used in the future. So the information of
interest is the locations of usage. That are the points of origin of that information one
is interested in. And from those points on, the information is traced backwards through
the graph. So, this is an example of a backward analysis (there are others). Of course,
when the program runs, real data always “flows” forwardly, as the program runs forwardly:
first data orignates and later is may be consumed. But for some analysis (like liveness
analysis), one changes perspective: instead of asking: where will information originating
here (potentially or necessarily) flows to in the future, one asks:

where did information or data arriving here orignate (potentially or necessarily)
from in the past.

Data flow as abstraction

o data flow analysis DFA: fundamental and important static analysis technique
e it’s impossible to decide statically if data from (a) actually “flows to” (b)
= approximative (= abstraction)
o therefore: work on the CFG: if there are two options/outgoing edges: consider both
o Data-flow answers therefore approximatively
— if it’s possible that the data flows from (a) to (b)
— it’s neccessary or unavoidable that data flows from (a) to (b)
o for basic blocks: exact answers possible

Treatment of basic blocks

Basic blocks are “maximal” sequences of straight-line code. We encountered a treatment of
straight-line code also in the chapter about intermediate code generation. The technique
there was called static simulation (or simple symbolic execution). Static simulation was
done for basic blocks only and for the purpose of translation. The translation of course
needs to be exact, non-approximative. Symbolic evaluation also exist (also for other
purposes) in more general forms, especially also working on conditionals.

In summary, the general message is: for SLC and basic blocks, ezact analyses are possi-
ble, it’s for the global analysis, when one (necessarily) resorts to overapproximation and
abstraction. We cover liveness analysis in basic blocks in Section 10.4, and global liveness
analysis in Section 10.7.

10 Code generation 29
10.4 Liveness analysis (general)

10.4 Liveness analysis (general)

Introductory remarks

Liveness analysis is a classical data flow analysis. The introductory remarks of this chapter
already introduced what liveness of a variable means, and why that is important for register
allocation. This section covers block-local liveness analysis; analysis whole control-flow
graphs will be introduced in Section 10.7. There are many different data flow analyses,
and liveness anaysis is only one typical example of that form of semantics analysis (but a
very important one). It’s typical insofar that the ideas and technique for liveness analysis
apply analogously to other data flow analyses. Of course, details what kind in information
is traced by data-flow analysis techniques are different for each analysis -here we are tracing
liveness information- but the underlying principles remain. By the underlying principles,
we mean mostly the way the global analaysis is approached in Section 10.7 and the way
the approximation is done in an iterative manner. That approach is characteristic for a
large rage of analyses.

But in this section here, we first tackle basic blocks. The question is to figure out at
each point in a given block, whether a variable is live or not. Live at least as far as the
current block is concerned. Focusing locally one single block means, the analysis does not
have information about what will happen after that block. As a consequence, the analysis
assumes that variables are live at the end of a basic block. This assumption is done in
the spirit of safe approximation. If, seen globally, a variable would actually not be live
(statically or dynamically), the register allocation would at least make no error. On the
other hand, if a variable would be judged dead in contrast to the real situation, that could
lead to wrong code in that the content of the variable may get lost, even if it still needed
in the future.

In the live variable analysis, variables and temporaries (i.e., temporary variables) are
treated analogously, with one except, an that the mentioned assumption at the of a block:
proper variables are assumed live, as explained. For temporaries, the liveness analysis
exploits knowledge about how temporaries have been generated in the intermediate code
generated. For each intermediate results, for instance for compound expressions, a new
temporary variable is created to hold that intermediate value temporarily. The way that
works also implies that temporary variables are never (re-)used across the boundaries of
a basic block. So that means, at the end of a basic block, temporaries are assumed to
be dead, and that is more than an assumption; it reflects reality, at least as long as the
intermediate code is generated the way described.

In the following, when we say “variable” we mean proper variables as well as temporary
variables.

The question whether a variable is live or not refers to "points" in the program. So it’s
not about “is variable x live or dead?”, it’s about “is variable = live here”. Obviously, at
some points in the program, x may be used in the future, and, at other points, it may no
longer be used. If held in a register, when a variable’s status turns from live to dead, the
register allocator may decide to re-use the register, which may involve to save the register
back to main memory. But that will the register allocator’s task in Section 10.8, here we
are just figuring out the liveness information the allocator can make use of.

30 10 Code generation
10.4 Liveness analysis (general)

The "points" in the program here refers to “lines” in the straight-line code. Actually, it’s
not actually that variable live in a given line, that is too imprecise. It’s actually question,
whether a variable is live right before a given line, or right after it. One has to make
that distinction, since obviously, the liveness status of a given variable can change at a
given line. For example, for a statement x := 4, variable x is definitely dead before that
statement, but may well be live afterwards.

Of course, the liveness status right after a line number n is identical to the live status right
in front of line n + 1. This distinction between “right-in-front-of” and “right-afterwards”
can also be applied to whole basic blocks. One can figure out, what is the liveness status
of a variable right in from of a basic block, which means right in front of its first line,
and right-afterwards. One cannot do that for a single basic block in isolation. For the
same reason, one cannot for instance, figure out for a single line inside a basic block in
isolation, say for x := 4 from above, whether x is live or not afterwards inside. That’s
also the reason why for local blocks and local liveness analysis only, proper variables are
assumed live at the end; when doing only local analysis, one simply does not know what is
the case. So when lifting the “right-in-front-of” and “right-afterwards” considerations to
the level to whole basic blocks, that will be done for the global level, analysing a complete
control-flow graph in Section 10.7. The corresponding information will be called "in\ e "
and "out\ ;e -

Coming back to the local analysis of this section: it should be intuitively clear that it’s
quite straightforward to do the liveness analysis, i.e. to determine the liveness status for
each each variables and for each point after resp. before each line in block. A variable
is live at a given point, if it is used later, but without being overwritten in the means.
The situation where a proper variable is neither used nor overwritten for the rest of the
block is not much different; same the assumption that temporaries are assumed dead at
the end.

So to check if a variable, say x is live at a given point, one may be tempted to proceed
forwardly and check for the following lines if x will be used in the future inside this
block without being overwritten first (then it’s live), or the first thing that happens in
the future is being overwritten (then it’s dead), or nothing happens the future inside this
block, neither reading from it nor overwriting it, in which case the variable is assumed live
resp. dead, depening on whether we are speaking about a proper variable or a temporary
variable.

One can do that for all points in the straight-line code and for all variables, and that con-
siderations shows that the determining the lifeness status inside a basic block is decidable.
However looking for future uses of variables in the sketched way, checking each point in
the program independently is absurdly inefficient.

The reason why it’s inefficient is that an independent checking partly obtains the same
information over and over again. As part of the problem, one needs to determine the
liveness status for a variable at a point say at beginning of line n (or for all variables at
that point, it does not matter for the argument). For instance in Figure 10.6, assume
we want to determine the liveness status for x for all lines. For instance, if one wants to
determine it at the end of line 2, one can search forward. Assuming that the lines of the
form have nothing to do with z, then the first use of x is discover in line 7, at
which point it becomes clear that z is not live at the end of line 2.

10 Code generation 31
10.4 Liveness analysis (general)

Figure 10.6: Local liveness

To do local liveness analysis means we need to do similar considerations for all points in
the basic block. For instance for the end of 3 and line 4 etc, as illustrated by the other
two arrows in the figure. Of course, figuring out the liveness information for the end of
line 3 and 4 simply repeats the search done for the end of line 2 already. So, the different
lines are better not treated as independent problems; one better reuses the information
obtained for one line when doing another line. And the best way to do that is to proceed
backwardly

Figure 10.7: Local liveness: backward analysis

That is illustrated in Figure 10.7, again for variable z. Of course, the analysis that steps
through the program in the sketched backward manner will treat all variables at the same
time, not doing the same backward scan over an over for each variable. Anyway, proceeding
backwards means, the analysis starts at the very end of the basic block. Assuming that x is
a proper variable, it means, the x is assumed live at the end of the block. That’s indicated
by the green arrow. Stepping thought the code backwards, it remembers right in front of
the assignment in line 7, resp. at the end of line 6, that variable z is dead now, indicated
by the black arrows. Continuing the backward scan, this information is propagated though
the lines with decreasing number, since nothing happens wrt. to variable x, until at the
beginning of line 2 resp. end of line 1. At this point, the variable is live again, indicated
the green arrow. The being live information is then propaged further on backwards, in
the example till the beginning of the program. Actually, the liveness algo later will not
just propagate the binary liveness information live vs. dead (here green vs. black), but it
also indicates for live variable, the location of the next use.

32 10 Code generation
10.4 Liveness analysis (general)

That’s an information that could be exploited by the code generator resp. register allo-
cator. When it has to make the decision which of two live variables to keep in a register,
preference could go to the one whose next use is nearer in the future. The actual code
generator we look at in Section 10.8, does not actually make use of that information, resp.
we don’t go so deep into the details of the decision making process of the code generator
to see in which way that next-use information of life variables can be used.

Figure 10.7 sketches how the “data” is propagated through the lines of the basic block,
resp. information of interest about the data. The real data, integers in the example, is
handled in the programs via assigning it to variables (“defs”) an reading the variable later
(“uses”). In this way, the data “flows” forward in an execution. After all, an execution
does so in a forward manner. Here, the information of interested is not the data itself,
but information about when corresponding variables are assigned to resp. read. This
(information about the) data flows backwards. For straight-line code as in this section,
that leads to a single pass through the code. In that sense the information “flows” through
the code exactly ones, here backwardly (which corresponds to the fact, that the lines of a
piece of straight-line code in isolation execute exactly onces, as well, though in a forward
manner, of course.)

Going beyond straight-line code, there will be edges of the control flow graph to be con-
sidered. In case of multiple edges connected to a node, the information of the analysis will
flow equally “both ways” (or more in case of more than two edges). In the more general
setting, the basic blocks are then part of a control flow graph, which typically contains
cycles. Thus, a single-pass of analysis is no longer sufficient, and the “data flow ” circulates
through the graph. That will be covered in Section 10.7.

This treatment, single pass for straight-line code resp. circulating data flow in a whole
control-flow graph is characteristic for data-flow analysis. What is not characteristic for
all of them is that the analysis data flows backwards through the straight-line code as in
10.7, resp. backwards through the graph as discussed later. Liveness is information about
the future, i.e. whether there will be (or might be) a place where a variable is used. As
explained, instead of seaching forward as illustrated in Figure 10.6, one arranges for a
backward propagation of the relevant information. In other situations, one is interested in
information about the past instead. For instance, analyzing wheher all variables have been
properly initialized previously. This reverses the picture, and the corresponding analysis
works by forward data flow.

Data flow analysis: Liveness

o prototypical / important data flow analysis
o especially important for register allocation

Basic question

When (at which control-flow point) can I be sure that I don’t need a specific variable
(temporary, register) any more?

o optimization: if not needed for sure in the future: register can be used otherwise

10 Code generation
10.4 Liveness analysis (general)
Live

A “variable” is live at a given control-flow point if there exists an execution starting from
there (given the level of abstraction), where the variable is used in the future.

Static liveness

The notion of liveness given in the slides corresponds to static liveness (the notion that
static liveness analysis deals with). That is hidden in the condition “given the level of
abstraction” for example, using the given control-flow graph. A variable in a given concrete
actual execution of a program is dynamically live if in the future, it is still needed (or,
for non-deterministic programs: if there exists a future, where it’s still used.) Dynamic
liveness is undecidable, obviously. We are concerned here with static liveness.

Definitions and uses of variables

o talking about “variables”: also temporary variables are meant.

« basic notions underlying most data-flow analyses (including liveness analysis)

o here: def’s and uses of variables (or temporaries etc.)

o all data, including intermediate results, has to be stored somewhere, in variables,
temporaries, etc.

Def’s and uses

o a “definition” of x = assignment to x (store to x)
o a “use” of x: read content of z (load x)

e variables can occur more than once, so

o a definition/use refers to instances or occurrences of variables (“use of x in line [”
or “use of x in block b)
o same for liveness: “zx is live here, but not there”

Defs, uses, and liveness

CFG

o z is “defined” (= assigned to) in 0, 3, and 4

o w is live “in” (= at the end of) block 2, as it may be used in 3

e a non-live variable at some point: “dead”, which means: the corresponding memory
can be reclaimed

o note: here, liveness across block-boundaries = “global” (but blocks contain only one
instruction here)

34 10 Code generation
10.4 Liveness analysis (general)

(-9 |Ex=r)

Y
5b:d=x+y

Figure 10.8: Defs and uses in a CFG

Def-use or use-def analysis

o use-def: given a “use”: determine all possible “definitions”

o def-use: given a “def”: determine all possible “uses”

for straight-line-code/inside one basic block

— deterministic: each line has has exactly one place where a given variable has

been assigned to last (or else not assigned to in the block). Equivalently for
uses.

o for whole CFG:
— approximative (“may be used in the future”)
— more advanced techiques (caused by presence of loops/cycles)

o def-use analysis:
— closely connected to liveness analysis (basically the same)
— prototypical data-flow question (same for use-def analysis), related to many data-

flow analyses (but not all)

Side-remark: SSA

Side remark: Static single-assignment (SSA) format:
o at most one assignment per variable.
o “definition” (place of assignment) for each variable thus clear from its name

We don’t go into SSA, but we shortly mention it here, as it’s a very inportant intermediate
representation, which is related to the issues we are discussing here (data flow analysis, def-
use and use-def). As we hinted at: there are many data-flow analyses (not just liveness),
many of them quite similar concerning the underlying principles. Transforming code into
SSA is an effort, i.e., involves some data-flow techniques itself. However, once in SSA
format, many data-flow analysis become more efficient. Which means, investing one time
in SSA may pay off multiple times, if one does more than just liveness analysis.

10 Code generation 35
10.5 Local liveness: dead or alive

As a final remark: temporaries in our 3AIC within one elementary block follows the
“single-assignment” principle. Each one is assigned to not more than once. The user
variables, though can be assigned to more than once. For straight-line code, i.e., local
per elementary block, having also the other variables follow the single-assignment scheme
would be very easy. Instead of assigning to the same variable a multiple times, one simply
renames the variables into al, a2, a3 etc. each time the original a is updated (and keeping
track of the new names). So, for SLC, SSA is not a big deal. It becomes more interesting
and tricky to figure out how to deal with branching and loops, but, as said, we don’t go
there.

Calculation of def/uses (or liveness ...)

e three levels of complication
1. inside basic block
2. branching (but no loops)
3. Loops
4. [even more complex: inter-procedural analysis]

For SLC/inside basic block

e deterministic result

e simple “one-pass” treatment enough
e similar to “static simulation”

o [Remember also AG’s]

For whole CFG

o iterative algo needed

e dealing with non-determinism: over-approximation

e “closure” algorithms, similar to the way e.g., dealing with first and follow sets
e = fix-point algorithms

We encountered a closure or saturation algorithm in other contexts, for instance when
calculating the first and follow sets (potentially using a worklist algo). Also the calculation
of the e-closure is an example, and there are others.

10.5 Local liveness: dead or alive

After having discussed different aspects concerning data-flow analysis, including aspects
of global analysis which comes later. Let’s turn back to the more focused task of local

36 10 Code generation
10.5 Local liveness: dead or alive

liveness analysis. We start first with a plain version, which does liveness analysis the way
explained, but nothing more. The algo calculates, for each point in the basic block and for
each variable, calculates whether the binary information whether the variable at a given
point is variables is live or not, dead or alive, so to say.

That’s straightforward and should be reasonably clear already from the informal discussion
so far, in particular in connection with Figure 10.7, motivating the backward-scan idea.
Later, we extend that version and introduce the concept of dependence graph in Section
10.6.

Inside one block: optimizing use of temporaries

« simple setting: intra-block analysis & optimization, only

e temporaries:
— symbolic representations to hold intermediate results
— generated on request, assuming unbounded numbers
— intention: use registers

o limited about of register available (platform dependent)

Assumption about temps (here)

o temp’s don’t transfer data across blocks (# program var’s)
= temp’s dead at the beginning and at the end of a block

o but: variables have to be assumed live at the end of a block (block-local analysis,
only)

Intra-block liveness

We use the 3AIC from Listing 10.2 to illustrate the backward scan more conretely. The
example will be reused also when extending later in Section 10.6 the current liveness algo
which works with binary “dead-or-alive” information.

tl := a — b

t2 = t1l % a
a = tl =x t2
tl = t1 — ¢
a = tl % a

Listing 10.2: 3AIC code example

e neither temp’s nor vars in the example are “single assignment”,

o but first occurrence of a temp in a block: a definition (but for temps it would often
be the case, anyhow)

o let’s call operand: variables or temp’s

o uses of operands: on the rhs’s, definitions on the lhs’s

o not good enough to say “t; is live in line 4”7 (why?)

10 Code generation 37
10.5 Local liveness: dead or alive

Note: the 3AIC may allow also literal constants as operator arguments; they don’t play a
role for liveness analysis.

In intermediate code generated the way disucssed in the previous chapter: temporaries
are always generated new for each intermediate result, so t; in the example is “unrealistic”
for generated intermediate code. But also that is not important for liveness analysis. It
works for variables and temporaries alike, re-assigned or not.

Single step per line: transfer function

o liveness-status of an operand: different from lhs vs. rhs in a given instruction
o informal definition: an operand is live at some occurrence, if it’s used some place in
the future

consider statement x; := x2 0p T3

e A variable x is live at the beginning of x1 := x2 op x3, if
1. if x is &2 or x3, or
2. if x live at its end, if x and z1 are different variables
e A variable x is live at the end of an instruction,
— if it’s live at beginning of the next instruction
— if no next instruction
* temp’s are dead
* user-level variables are (assumed) live

The definition explains for each line, how the liveness status in front of the live depends on
the lifeness status at the end of the line. It does so for lines of the given form z; := x2 op 3;
for other forms of lines, like x1 := op 3, the definition needs to be adapted in the obivous
manner. Of course, statemens line jump 3 need not to be considered for a block-local
analysis. Jumps transfer control between different basic blocks.

Back to the 3 address assignment statement: as said, the definition explains the depen-
dence of the flow information before the statement on the status of the information at the
end of the statement. This dependence is a function from the exit of the statement to the
entry of it. This functional dependency is called the transfer function (of that line, resp.
the statement in a given line). Note that the liveness information of the entry point of a
line is expressed as function of the corresponding information at the ezit, not the other
way around. This is of course characteristic for backwards analyses like liveness analysis.

//

initialise T
for all entries: T[i,x] := D
except: for all variables a // but not temps
T[n,a] := L,
//—— backward pass
for instruction i = n—1 down to 0
let current instruction at i+4+1: xz:=yop z;

T[i,o] := T[i+1,0] (for all other vars o)

T[i,x] := D // note order; x can "‘“equal'' y or z
T[i,y] =1L

T[i,z] = L

end

38 10 Code generation
10.5 Local liveness: dead or alive

Listing 10.3: Local liveness (dead or alive)

o Data structure T table, mapping for each line/instruction i and variable: boolean
status of “live”/“dead”

« represents liveness status per variable at the end (i.e. rhs) of that line

e basic block: n instructions, from 1 until n, where “line 0” represents the “sentry”
imaginary line “before” the first line (no instruction in line 0)

o backward scan through instructions/lines from n to 0

The table is a two dimensional, there is one slot per variable and per line. Each line
can change the liveness information for one or more variables (that what conteptually the
transfer function is doing) so the liveness information at the end of each line is different
from that in front of a line. The entries in the table or two-dimensional array represent
the information at the end of the corresponding line. That’s of course the same as at the
beginning of the next line. It’s assumed that the line numbers go from 1 to n (not from 0
to n). The loop steps down to determine the effect of all lines numbered n to 1: note that
what is called "current instruction" in the loop refers to the line with ¢ + 1 in the code.
Even of there is no instruction with line number 0, the corresponding entry representing
the “end of line 0” respresents the liveness information at the beginning of the first line,
i.e., at the beginning of the whole block.

Earlier we mentioned in passing the notion of transfer functions, without going into details.
The code of Listing 10.3, stepping backwards through the lines does not explicitly make
use of a separately defined transfer function. Implicitly, the transfer function is executed
in the body of the loop, updating the entries of the table.

The result of the run for the code from Listing 10.3 is given in Table 10.2.

line | a b C tl tQ
0 [ZL L L D D
1 |L L L L D
2 |D L L L L
3 |L L L L D
4 |L L L L D
5 |L L L D D

Table 10.2: Liveness analysis example: result of the analysis

The analysis operaters with binary information and thus the table contains binary infor-
mation (dead or alive). Later in Section 10.6 we will extend that information and (mildly)
extend the algorithm. Revisiting the same example means that we get a (mildly) extended
version of this table. The extension is the following: for live variables, one does not report
the fact that the variable is live, but also point to the line where it is used next.

10 Code generation 39
10.6 Local livenesst: Dependence graph

10.6 Local liveness™": Dependence graph

In this section we revisit the dead-or-alive algorithm from Listing 10.3. The previous
version was binary, determining for every point in the straight-line code the liveness status
for each variable. It needs only a minor extension to obtain better information. Instead of
determining whether a variable is dead or alive inside the current block (resp. assumed live
in case of a proper variable at the end of the block), one can determine for live variables,
where resp. when they are used in the future. This is done below in Listing 10.4, a mild
extension indeed of the one from Listing 10.3.

So, the extended algo keeps track of where the next use each variables will be. That’s
done here by tracking the line number of the next use. That’s usually precise enough. One
might also track where a variable is used inside a line, as the first argument of a operation
or the second argument (or both). Anyway, we track the line only. I.e., the analysis works
not with the binary information L and D, but for liveness, the information is L(n), where
n is the line number where the variable or temporary in question is used next. That next
usage refers to a line inside the basic block. As explained, proper variables can also be
assumed live at the end of a block (unlike temporaries, which are rated as dead). Of
course, in such a situation, the analysis can’t determine the line of the next use. We are
currently doing a block-local analysis, so we have no information about subsequent blocks;
that’s why we just assume variables to be potentially live. Besides that, on a more global
level, it makes no real sense of talking about the next use of a variable. Due to branching,
there may be multiple next uses. If one wanted a next-use information, that would be a
set of next-use points in the general case.

Anyway, here the situation where are variable is assumed live is captured by the notation
L(L1).

// initialise T
for all entries: T[i,x] := D
except: for all variables a // but not temps
T[n,a] := L(1),
//—— backward pass
for instruction i = n—1 down to 0
let current instruction at i+41: z: =y op z;
T[i,o] := T[i+1,0] (for all other vars o)
T[i,x] := D // note order; x can “‘equal'' y or z
T(i,y] i= L+ 1)
T[i,z] := L(i+1)
end

Listing 10.4: Local liveness (with next use information)

The result of applying the algo on the 3AI code of Listing 10.2 is shown in Table 10.3.
Since the algorithm is a straightforward generalization of the previous binary version,
the new table is a straightforward generalization of the previous Table 10.2 (on the same
example).

So, we see the next-use extension is really straighforward. We mentioned already in the
discussions at the beginning of Section 10.4, in which way register allocation can profit
from the extra next-use information and we could leave it at that. However, the next-use
information that one can calculate by doing liveness analysis is closely related to another

40 10 Code generation
10.6 Local livenesst: Dependence graph

line a b c 11 to
[0] | L(1) L(1) L#4) D D
1 | L(2) L(L) LM4) L(2) D
2 D L(L) L(4) L(3) L(3)
3 | L(b) L(L) L(4) L(4) D
4 | L(5) L(L) L(L) L(5 D
5 | L(L) L(L) L(L) D D

Table 10.3: Liveness analysis example: result of the analysis

important concept resp. another intermediate representation. So we take the opportunity
to discuss that shortly here as well.

The intermediate representation is known as dependence graph. We will (shortly)
discuss it for basic blocks since we are currently doing local liveness. One can also generalize
it to whole control-flow graph analogous to the fact that one can do liveness on a whole
control-flow graph. But let’s stick to the local level for now.

Let’s assume we have a 3A code, like the 3AIC from example from Listing 10.2. 3A code
instead of intermediate code would work similarly; likewise one could do a dependence
analysis for forms of 2-address codes.

At any rate: a typical line in the 3-address code consists of a left-hand side and a right-
hand side, as in instructions z1 := x2 op x3. In such a line, 1 on the left-hand side is
“defined” and z9 and x3 are “used”. The next-use form of liveness analysis figures out
where inside a block for each point and for each variable, the next use will occur (resp.
assumed somewhere outside the block).

One can generalize that even more, and track all usages in the future (inside the block,
reps. somewhere outside the block). That’s not a big extension. The register allocator
may perhaps also profit from this more detailed information about the use of variables.
But something else is more important.

If we track all future usages of a variable at different points in the basic block, we in
particular have information in a line of like x1 := x2 op x3 about the next usages of the
variable defined in that line, i.e. 1.

This information thus connects the definition of x; with all its future uses. Normally, one
contents oneself to connect definition and usages per line (as we did with the next-use
information). There is anyway only one variable on the left-hand side of each line, and
whether this variable “definition” is later used as first operand or second operand in some
line is not really important (though one could take that into account as well, if one feels
the need).

Keeping it on the per-line level, it means one connects a line like x1 := x2 op x3 with all
lines later that use x; (without that x; is being overwritten in the meantime, of course).
The later lines (resp. the uses in that later lines) then are said to depend on said line
(resp. depend on the definition of x; on the right-hand side of that line).

10 Code generation 41
10.6 Local livenesst: Dependence graph

So, that’s a def-use situation, and an analysis that figures it out is a def-use analysis.
We mentioned earlier, that def-use analysis is closely related to liveness analysis, and here
we see more clearly how.

If one tracks the dependencies of the described kind (i.e., def-use connections) that results
in a graph, the mentioned dependence graph. This is another well-known intermediate
representation (different from control-flow graphs, ASTs, 3AIC, etc. and maybe used
alongside those other representations).

Inside a basic block, the dependence graph is acyclic. In other words, the corresponding
graph is a directed acyclic graph (DAG) with the lines as nodes and the (direct) depen-
dencies as edges. Typically from the “defining” line to the “using” lines, where one says
the using lines (resp. the right-hand side variables therein) depend on the defining one
(resp. depending on the left-hand variable defined in that line).

Instead of viewing the lines and dependencies as DAG, one can equivalently view the lines
as partially ordered. That is so, since each DAG corresponds to a partial order, and vice
versa.

Why is that def-use information, i.e. the dependency graph relevant? It expresses ordering
constraints, making clear which lines of the code (here 3AIC) needs to be executed before
others, since the latter depend on the former. This dependency is only a partial order
on the lines of a basic block, not a total or linear order. In other words, some lines
are independent: there is no dependence directly or indirectly in either direction. Being
independent means, the order or execution is irrelevant. In other words, the line-wise
linearization in the 3AIC (or later 3AC or 2AC etc.) is a particular linear arrangement,
more strict than actually necessary given the partial order of dependencies.

A dependency analysis could reveal the looser partial order and thus reveal whether 2
statements need necessarly be executed in the order as listed in the code, the latter one
depending or the earlier one, or whether the compiler could reorder then. That is known
as out-of-order execution. Figuring out a good order of execution, in case of indepen-
dent instructions is known as instruction scheduling. Actually, also the processor can
have facilities of out-of-order execution of machine code instruction, but that’s outside
the control of the compiler. However, knowing the rules and conditions under which a
processor does out-of-order or overlapping execution could be exploited by a code genera-
tor “scheduling” the instructions in a way that suits well to the platform’s corresponding
capabilities. For that, the compiler needs to figure out dependencies of the data (and
registers, etc.).

This explanation analyzes the linear IR of, say, 3AC or 3AIC to determine which orders in
the sequential arrangment of lines of instructions are real and which are spurious. With
that help, one can rearrange the linear code, if deemed profitable. An alternative view
is not to take the linear instruction sequence as primary intermediate representation, for
instance inside a basic block. One would use DAG-based representation instead, i.e., the
dependence graph and linearize the DAG in a subsequent stage. These alternatives are
comparable to the situation with control-flow graphs. One can use them as intermedate
representation to a lower level intermediate representation. Or, analyze a lower-level
representation like the machine code or intermediate code to “reconstruct” from the linear

10 Code generation
10.6 Local liveness™ : Dependence graph

i
ol

Figure 10.9: DAG for the 3AIC code block

representation the control-flow graph (as done by the simple partitioning algorithm in
Section 10.3).

Revisiting the example

So much about motivating dependency graphs and what they represent. To get a clearer
pictures let’s look an example, and let’s look a Listing 10.2 again. The result of the next-
use analysis from Table 10.3 leads to a dependence graph of Figure 10.9. We see that
the temporary defined in line 1 has three uses, namely in the lines 2, 3, and 4. In the
linear code arrangement, the next use of the definition ¢; in line 1 is by the subsequent
line 2. The DAG also makes clear that those lines 2, 3, and 4 are independent and could
be executed in any order (or in parallel). These three edges correspond to the fact that in
Table 10.3, the definition or assignment to ¢; in line one is marked as L(2), L(3), L(4) in
lines 1, 2, and 3.

In line 4, ¢; is “re-defined”, i.e., assigned to again. Therefore, the entry L(5) in the table
does not refer to the first assignment to ¢; in line one, but the assignment in line 4.
Remember, in Table 10.2, the stored information corresponds to the next-use or liveness
information at the end of the corresponding code line.

ASTs and DAGs

Let’s have a last look at the DAG, and explore the connection with ASTs. In principle,
this is not new information, we have introduced both concepts, but perhaps it worthwile
to spell it out more explicitly, looking at a few more examples. Let start with the 3AIC
from z := (z + 2% z) — (a+ b) in Listing 10.5.

tl = 2 % z
t2 = x + tl1
t3 := a + b

10 Code generation 43
10.6 Local livenesst: Dependence graph

x = t2 — t3

Listing 10.5: 3AIC for z := (x + 2% z) — (a + b)

The corresponding dependence graph is shown in Figure 10.10. As inner nodes of the
DAG, we use the line numbers from 1 to 4. The inner nodes in the picture are also
labelled with the variable or temporary being “defined” in the node. The first three lines
calculate the side-effect free expression on the right-hand side of source code assignment,
and the “numbers” of the temporaries ¢1, ..., t3 correspond to the line number; that’s the
way the intermediate codegenerator works (if we assume "numbered" temporaries starting
from 1). The DAG shows also a node correspond to the constant 2. Normally one would
not bother to include the node and the corresponding edge into a DAG. The outcome or
value of t1, which is “defined” by the right-hand side 2 x z does not depend on 2 insofar
it is a constant anyway, it depends on z though.

e

131
to
/G)) ’53
O
Figure 10.10: DAG of the code example

It should not come as a complete surprise that the dependence graph from Figure 10.10 is
basically nothing else the abstract syntax tree of the right-hand side (z +2 % z) — (a +b)
upside down; Normally, ASTs are written, like trees often are, with the root node on top.
For the DAG, I choose to write it the other way around, so that the "def'-nodes come
before the "use"-node, i.e., higher-up, as in the code and the dependency edges go down.
An AST is shown in Figure 10.11.

So, determining the DAG from a piece of 3AIC reconstructs in some way the AST. At
least conceptually and in this example. Of course, the AST as concrete data structure is
most probably represented differently from the DAG, and the two structures, if a compiler
uses them both, serve different purposes. That the AST and the DAG are basically the
same in this example is also caused by the fact that the code example is very simple:
just an assignment to a variable with a pure, side-effect free expression on the right-
hand side. As seen in the corresponding chapter, the intermediate code generator simply
traverses the abstract syntax tree, generates a fresh temporary for each intermediate result,
i.e. or each inner node of the AST. So we obtain three temporaries t1, ts,t3, which are
defined i.e., assigned-to, in the corresponding lines of the 3AIC in Listing 10.5. These

10 Code generation
10.6 Local livenesst: Dependence graph

@x
/N
n [

Figure 10.11: The AST of the assignment

lines or temporaries are the source nodes of the DAG, the soucre node of an edge is
always the "def", the target node(s) are the "use(s)". In the simple example, each defined
temporary has exactly one use, which correspond to the parent node. That makes the
DAG in the example a tree (the syntax tree of the expression on the right-hand side of
the assignment).

The connection between AST and dependency graph is less close in more general situations,
like the DAG for a basic block and even less for a complete procedure; actually in the
presence of loops in the code or cycles in the CFG, also the def-use dependencies may no
longer be acyclic, i.e., the dependence graph is no longer a DAG.

In the simple situation of the DAG from Figure 10.10, the tree structure illustrates a fact
which we knew all along: in a pure, side-effect free expression, it does not matter in which
subexpressions are executed. The nodes or the different subtrees are indepdendent in the
DAG, i.e., unconnected by dependence edges.

In general, there could be additional reasons why the DAG does not resemble the AST, not
even in a simple situation like that. Here, for expressions and basic blocks, the connection
between AST and code, here 3AIC, is very direct. For expressions, the connection is so
direct and close, that we can effectively revert the translation, so to say, decompile the
code from Listing 10.5 back to the AST. The connection may not be so direct. The 3AIC
may have undergone some optimization. Same for the AST from the source code. If we
look not at 3AIC, but at machine code (for which one could likewise do a dependency
analysis), the distance is even larger, end additional optimization may have done.

The compiler resp. compiler related tools could even make effort to make decompilation
harder resp. harder to understand the result of a decompilation. Often, that is done,
however, at the source-code level. In that case, it’s known as source-code obsfuscation or
code hardening or encryption.

To conclude, let’s have a look at another, slightly more complex example (z := = + 3) + 4.
The corresponding code is given Listing 10.6; We have seen a quite similar example and

10 Code generation 45
10.6 Local livenesst*: Dependence graph

the code already in the chapter about intermediate code generation. It’s an "expression"
containing side effects.

tl = x 4+ 3
x = t1
t2 = t1 4+ x

Listing 10.6: 3AIC for (z:=x+3) +x

The corresponding dependence graph is shown in Figure 10.12. This time, it’s not a tree,
but still a DAG. Note also, the order of evaluation in the expression now does matter,
unlike before. The generated code assumes that the arguments of a binary operator like
+ are to be evaluated from left to right. The generated 3AIC does exactly that, the code
of the left operand comes first. In the top-level addition, the x on the right-hand side uses
the incremented value of x. That’s also visible in the dependence graph in the edge from
2 to 3. The lines of the code cannot be reordered of course. Corresponding, changing the
source code to z + (z := x + 3) will change the meaning of the program.

@)\ 3

t1

G-

Figure 10.12: DAG of an expression with side effects

Connection to SSA

Starting from intra-block liveness analysis, we took the opportunity to introduce next-
use information resp. introduced def-use analysis and the notion of dependency graphs,
here DAGs. We take another opportunity and discuss to some extent another important
concept used in intermediate representations, and that’s the notion of single assignment
formats.

We can stratch only the surface of it. In particular, since we focus on basic blocks. If
generalizing to whole control flow graphs, additional complications would enter the picture,
which we don’t cover here.

Nonetheless, the conceptual core of single-assignment format can be understood here.
Actually, focusing on on straigh-line code it’s almost trivial, and is also connected to the
def-use analysis and thus live variable analysis. So here is a good place to introduce some
ideas behind the single assignment format.

46 10 Code generation
10.6 Local livenesst: Dependence graph

The section header mentioned static single assignment or SSA. For straightline code, there
is no difference btween static single assignment and (general) single assignment. Statically,
a variable is “single-assignment” in a piece of code, if there is at most one assginment to it
mentioned in the code. In the terminology here, there is statically at most one definition
of a variable. We can exclude the degenerated case of variables that are defined but not
used. Those are useless, they are never live at all. If we exclude that, the requirement
for static single assignment is that all variables are defined exactly once resp. assigned to
exactly one. Of course there are in general more than one use per definition.

In the presence of loops and procedures, the fact that there is exactly one place in the
code where a variable is defined, that does not guarantee that, at run-time, that variables
is assigned-to only once. A program that assigns every variable only once at run-time is
single-assignment, which is (much) more restrictive than to be in static single assignment
or SSA format. For blocks of straight-line code, like we are discussing here, there is no
difference in SSA and single-assignment. Being defined textually once in a basic block
means, it’s assigned-to exactly once per execution of that block (if no “exceptions” derail
the execution and prevent the assignment).

Actually, the same could be said about acyclic control-flow graphs; those could originate
from a program using conditionals, but not loops. See for instance the one from Figure
10.8. Also for code of that shape, assigning every variable once implies single assignment.
But let’s stick to basic blocks.

Looking at Listing 10.2, that one is not in single-assignment format. Both variable a
an temporary t; are assigned to twice. As mentioned earlier, the code from that listing
cannot be the result of the intermediate code generator we discussed, at least not directly.
Maybe indirectly via some optimization or other, or manually give, but it does not matter:
it’s anyway a good idea that liveness analysis or dependency analysis works not just for
some particular way of generating (intermediate) code.

But, the code generator would indeed not reuse t1 in the second assignment but would use
t3 instead. Of course, the use in the last line of what is now ¢; would then refer consistely
to t3 when using the definition of t3 in line 5. In other words, the intermediate code
generator already generates temporaries that follow the single-assignment pattern. If a
global counter is used for the temporaries, it’s even in single-assignment format globally;
in particular and additionally, temporaries don’t transfer data between blocks.

So far so good, but what about proper variables, not temporaries. In the code example
also the proper variable a is assigned to more than once. Such a “re-definition” would
come from situations, where a source code level, a variable is assigned to more than once
in one piece of straight-like code, and the code generator dutifully generates code that
does the anologous thing at (intermediate) code level.

But is straightforward to obtain intermediate code that avoids that. Instead of reusing a,
one simply uses different variable as shown in Listing 10.7. Typically that’s done by first
generating code without adhering the the single assignment format, which is then trans-
lated into the format afterward. That is done by consistently renaming or “re-indexing”
variables like a in the example. In the code, we assume that ag, by and ¢y refer to the
versions resp. the values of the three variables coming from at the beginning. It’s like the
input values to the basic block.

10 Code generation 47
10.6 Local livenesst: Dependence graph

tl := a0 — b0
t2 := tl1 * a0
al = t1 * t2
t3 = t1 — c0
a2 := t3 x al

Listing 10.7: 3AIC code example (single assignment)

For basic blocks, one can easily achieve that in one pass, directly doing single-assignment.
The reason why it’s mostly done in a 2-stage manner is, that, while for straight-line code,
(static) single assignment is trivial, the generalization to branching code (including code
with loops) requires additional insight and tricks. Only then one would even speak of “the
compiler uses SSA as intermediate format”.

Terminology aside, the appropriately renamed code leads to the dependence graph of

Figure 10.13.
ty
ai

P

Figure 10.13: DAG for the 3AIC code block

One could get the impression, that’s all fine and good, and actually pretty straightforward,
in particular for straigh-line code. So, what’s the big deal with SSA as intermediate
format?

In a way, it’s another angle or elaboration of the liveness-analysis, next-use analysis, and
dependency or def-use analysis. After transforming a block into single assignment format,
the uses of a variable being defined at some point are directly visible from the code: it’s
all the mentionings of the particular variable after the point of definition. Analogously,
live span of a variables is directly visible from the code: from the point of being defined
until the last mentioning, at least on a general level. Inside a basic block, as we assume
variables to be live at the end, the local live span of each variables starts at the point of
their definition and lasts till the end of the block. That should be plausible: if variables
are never overwritten because of single-assignment, they never become dead (if we assume
live at the end). Basically, local liveness becomes pretty trivial: for variables “defined”
in a local block, they are dead before the (unique) defining line, and live afterwards. For

48 10 Code generation
10.7 Global analysis

variables defined (or assumed defined) outside the block, like the ag, by, and ¢p in the last
single-assignment example, they are live throughout the block.

Also in a more global setting of control-flow graphs, the connection of defs and uses of
variables is clear from the names of the variables and temporaries: all other mentionings of
a variable defined in one line must be uses. So, the variables carry the def-use information
and most of the (global) liveness information in their name.

Of course, that’s not for free. As discussed coming up with that format actually requires
to do basically something like liveness analysis, not in it’s binary form we started out
with, but more refined, but still analogous, and additionally following a proper renaming
scheme. For fairness sake, for the global level, there are additional complications, beyond
straightforwardly generalizing the binary liveness information and some easy renaming,
but we don’t go there in this lecture.

To have SSA as a format that makes liveness analysis quite simple does not in itself
breathtakingly useful. After all, one could do liveness analysis straightforwardly without
doing that intermediate format (which, as said, gives additional challenges to overcome
not discussed here focusing on the local level). The importance and popularity of SSA
comes from the following:: the format does not only help for live variable analysis. As
hinted at, there are many data flow analyses one might want to do, which serve different
purposes as liveness analysis, but using similar techniques, and many of them similarly
profit from that format. So the effort to transform the code into SSA may pay off multiple
time, in case the compiler employs multiple analyses, not just liveness analysis, on the
given level of abstraction.

We don’t look at other analyses, we focus on liveness later when talking about global
analysis.

10.7 Global analysis

We have discussed general ideas behind liveness analysis earlier and covered local liveness
in Section 10.5. Additionally, in Section 10.6, we discussed closely related concepts, like
next-use analysis, def-use analysis and the concept of dependency graphs. We did so
mostly focusing on the local level, i.e., on basic blocks, only hinting at that some things
change or get more involved when doing analysis for a whole control-flow graph.

Here we fill in a few more details on this, but without also covering explicitly extensions
like dependency analysis again.

There are basically 2 complications to deal with, namely branching of the control flow and
cycles. Both originate from control-flow constructs in the source code, like conditionals
and loops.

Branching is conceptually the simpler problem, though if one has loops in the source
language one invariably also has to face branching. Indeed, on the 3A(I)C level, there are
no loops, there are just jumps and conditional jumps. Conditional jumps obviosly leads
to branching, the true-case and the fall-through alternative, so the block a conditional
jump at the end has two successor blocks or successor nodes in the control-flow graph-

10 Code generation 49
10.7 Global analysis

But also jumps typically may involve branching: the block jumped to, which is stared with
the corresponding jump label, may be entered also otherwise, for instance with by a fall-
through or being the jump target from different sites. though in a “backward” manner:
the node starting with a jump label may have more then one predecessor node in the
control-flow graph.

Let’s start with branching and let’s dicuss it for liveness of variables. Conceptually, with
branching, one does no longer tries to find out if a variable, at a point is live or is not
live, at least not exactly. We mentioned earlier that approximation is characteristic and
crucial for all kinds of semantic analysis, and in particular for data-flow analyses, like live
variable analysis.

Dynamically, i.e., at run-time, at one given point in a program execution, the liveness
information is still binary: a variable will be used in the future, or it will be not. At
lest it’s binary when we are dealing with deterministic programs and if we ignore external
influences, like that the operating system crashes etc. (but that can be seen as a form
of non-determinism as well, some external and unforseeable factors outside of the control
of running program). Whether or not a variable (or address) will be used in the future
at a given point in the executing is the question of dynamic liveness. That’s of course
undecidable in general and that’s not what data-flow analysis aims at.

It gives an approximative answer, using the control-flow graph as level of abstraction. As
far as branching is concered, data-flow does not try to find out which branch is taken. Not
knowing which branch is actually taken. the approximation explore both, combining the
information. Indeed, a running program will often explores both branches, though at each
given point in time, the program either turns left or else turns right. That’s in partcular
the case for loops (unless they run forever or they are never entered): for some number of
iteration, the body is entered, and when the termination criterion finally is satified, the
exit-edge is followed.

For static liveness, we have to keep in mind what we need the information for. The
intention is to support register allocation. In particular the code generator will consider
a register containing a dead variable’s value as “free” and reusable for other values. That
means, if we mistake a live variable for being dead, that easily can lead to erroneous code;
the compiler is incorrect. The opposite mistake, rating a actually dead variable to be
live may lead to a missed oportunity of reusing a corresponding register, but that’s not
an error. The code may just been slower than it could have been without making that
misjudgment.

For live variable analysis it means, when in doubt count a variable as live. We did the
same at the local level, when judging variables live at the end of a block (since locally one
does not know what actually is the case). Same principle here: when facing a situation in
a graph with two alternatives, one where the variables is used in the future, further down
the graph, and another where it’s not used, the variable needs to be rated as live.

So, the approximation for liveness is about whether the variable may be used in the
future, not that it’s guaranteed that it will be used (must). There are different data
flow analyses that work with a must-kind of approximation instead of may-type. It’s the
difference between over-approximation and under-approximation. Which one is the right
choice depends on what the compiler does with this information, the intended usage. For

50 10 Code generation
10.7 Global analysis

live variable analysis used for register allocation, it has to be over-approximative (may be
live). We don’t look at other data flow analyses for other purposes, so we don’t cover in
the lecture must analyses, though if one knows how to do a may analysis like liveness, it’s
straightforward to do a must analysis.

One may even say, indirectly we do a must-analysis. If we would prefer to call what we
are /dead-variable analysis instead of a live-variable analysis, and looking for situations
where variables are dead, then, what we need are situations when it’s guaranteed that the
variable is dead. In that sense, it’s a matter of perspective anyway.

Now, approximation of relevant information, like “may the variable be used in the future”
is the way to deal with branching. As described earlier, for straight-line code, the way the
liveness algorithm propages this information is backwards. That will also be done for the
global liveness analysis, i.e., the information flows in the reverse direction of the edges of
control-flow graph: from suceesor nodes to predecessors.

Now, what about cycles in a graph? That is a different problem and makes the problem
harder. That refers the complexity of the problem, but also the required theoretical
background. We don’t go into the latter here, we just hint at why it’s harder and what to
do about it, without explainging why it actually works, resp. under which circumstances
it works. For us it’s enough to know that for live variable analysis the sketched approach
does indeed work. Same as we did for many other algorithms in this lecture.

As explained, the local liveness analysis “walks” through the code in a single pass, namely
in a backward manner. The same can be done if one had a branching structure without
loop, like for instance in the CFG from Figure 10.8. The only thing that is more complex
compared to local analysis is that one has to treat the liveness information approximative.
In the graph of that figure, that would concern the treatment of node 2, where the three
“flows” coming from below merge.

In the presences of cycles, one cannot expect to propagate the information one time along
each edge and through each node and be done. Information propagadge through the graph,
say in tendency “upwards” in a picture, will in a loop also be propagaged back down again
to a place already explored.

In that way the information, for instance about liveness status of variables, circulates
through the graph, sometimes “going” through a cycle multiple times. That directly makes
that task computationally more complex than the single-pass approach that suffices to deal
with acyclic structures. Also termination of the data-flow analysis may be of concern,
though actually for live variable analysis in our setting (and similar data flow analysis)
termination is guaranteed. It’s only not 100% immeadiate as for acyclic structures, where
the analysis stops after having treated evey line or node exactly once.

The characteristics of the core data flow algorithm (for liveness and others) is captured
by fixing 3 aspects:

Firstly, with wich (liveness) information should the data flow start. Secondly,
how to repeatedly propagate the (liveness) information during the analysis.
“Repetion” there will be a loop whose body “lets the data flow”. Finally, when
to terminate, i.e., exit the loop.

10 Code generation 51
10.7 Global analysis

These three aspects shape the general skeleton of the data flow algorithm. There will be
an initialization, a loop, and the loop has an exit condition. Actually, the simpler liveness
analysis for basic blocks from Listing 10.3 is of that shape.

The difference to the global setting is that the termination condition is more complex. The
straight line code version simply stops after having treated the first line in its backward
pass through the code. The second difference is that the traversal for the graph is not so
rigid, like backwards. In the presence of loops, when following the edges, there is no single
possible plausible strategy, and one generally has to treat the nodes of the cycle multiple
times anyway.

So far the general picture of how the algorithm is shaped. We won’t give pseudo-code for
it, we mainly explain by way of examples how it works. But still we fill in some details
of the skeleton, sketching what actually is done during initialization, what step(s) are
iterated, and when actually to stop.

We discuss it without makeing a difference between temporaries and variables. The algo
treats them analogously. That’s different than for the local anlysis only, which assumed
temporaries dead at the end of the block. We don’t need to assume that here, like we don’t
need to assume that variables are live at the end of a block. With the control-flow graph
at hand, the global analysis (approximatively) figures out which variables are statically
live and which not, and for the temporaries it will figure out that indeed they are all
dead (for temporaries generated the way described). No need to “assume” anything. At
the very end of the whole program, all variables are dead for sure, proper variables and
temporaries alike.

initialisation: minimal information all variables are assumed dead.

increase repeatedly the body of the loop treats one element of the graph, like one node
or one edge and updates the current liveness information. The update works in a
monotone, increasing manner: a variable previously still considered dead is flipped
to be rated live, but never in the other direction.

termination by stabilization when no more information can be added, so no more live
variables at some places are detected, the algorithm stops.

We can picture it as follow: the algorithms starts with no knowledge about liveness status,
and considers for a start all variables dead at all places. The same was done for the liveness
analysis for basic blocks from Listing 10.3 (except that for the last line, the proper variables
were assumed live). We can see that starting point as absolute minimal information and
discovering more variables at more places live during the analysis can be considered to
increase the information. It’s not so much that there is a larger set of live variables detected
at some point. It’s not so much that the sets (of live variables) grow larger (though they
do). It’s more that the amount of confirmed information about the liveness status at
different places increases. If, at some place, the current status in the algo of a variable
switches from dead to live means that the algo has explored and confirmed that there is
a potential path to a future use of the variables. Once established, further exploration
may find further statically live variables at other places, but the liveness information added
right now never has to be revered back, once establed by new information discover later.

52 10 Code generation
10.7 Global analysis

In that sense, the liveness information steadily grows and never shrinks, i.e., monotonously
increases during the iteration of the algo. This is crucial and characteristic for data flow
analysis.

It also makes clear when to stop, namely when the information cannot be increased any
more. The algorithm reaches stabilization or it saturates or a “closure”.

Indeed, one finds this “monotonously adding information until stabilization” idea not
just for data flow analyses. For instance, the first- and follow-set calculations worked
similarly. Also there, one basically explored a graph, namely the way the non-terminals
of the grammars hang together. Since context-free grammars use recursive definitions,
the corresponding “graph” contains cycles (we never drew the grammars as graphs, we
noted them in BNF...) So, for instance, the set of terminals (or €) confirmed to be in
the first-set of various non-terminals increases until no more such information is added, at
which point the first-set saturation procedure terminates.

Basic blocks and live-in and live-out

Before presenting the liveness mainly by way of examples, we explain an practical aspect,
namely the treatment of basic blocks. We mentioned that in passing earlier. For efficiency,
it’s best to analyse basic blocks, the nodes or the control flow graph first and summarize
the corresponding information. That will allow the global analysis to treat them effectively
as if they were single lines.

This summarizing local analysis is not identical to the local liveness information we did,
but it basically works the same (like steping backwards through the lines). Here, it’s not
about whether a variable is (assumed or factually) live of dead in the different lines of the
basic block. For some variables one cannot determine that locally (for some one can). It’s
about changes to the liveness status of all the variables. It’s much like looking to one line
as in the local analysis. Consider one single line of the form x1 := z2 op 3 as they were
treated in the local analysis and let’s assume all three variables are all different).

For that line, it’s clear that at the beginning of the line, z; is dead and x5 and x3 are live.
Considering that as a change of information from the situation after the line to that before
that line, it’s as following. The situation for xo and x3 will be set to live, and z; to dead,
independent from how it there status is (currently) afterward. For all other variables, the
information from after the line is left unchanged.

Basically, one can do the same for basic blocks, only more than just 3 variables may change
their status. We will not show code how do calculate that, it’s easy enough.

At any rate, relevant for the global analysis is not what happens line by line in the
basic blocks, relevant is only the situation right in front of each basic block, resp. right
afterwards. This is also called inLive (in front) and outLive (afterward). What the global
analysis needs to know how the inLive and outLive information hang together. Doing a
backward analysis, in particular how, for a given block, the inLive information is calculated
for a given outLive information, not the other way around.

And therein lies the improvement: having precomputed the block-local effect on the flow
of lifeness information per block, the global analysis can just use that, and avoid stepping

10 Code generation
10.7 Global analysis

through the individual lines of the bloks over and over. When occuring as part of a
cycles in a graph, blocks will have to be evaluated more than once in general, and it’s to
be expected that the precomputation will make the analysis more efficient. Blocks not
occurring in a loop would not profit from a pre-computation.

Anyway, pre-computing the effect or not will not influence the result of the analysis, only
perhaps the running time.

In the examples later, we don’t precompute anything explicitly, the figures illustrated the
inLive and outLive information and whether this is the result of being smart and having
precomputed some bits or whether one does it over and over again, is not visible, and the
outcome, as said, is the same anyway.

From “local” to “global” data flow analysis

data stored in variables, and “flows from definitions to uses”
e liveness analysis
— one prototypical (and important) data flow analysis
— so far: intra-block = straight-line code
related to
— def-use analysis: given a “definition” of a variable at some place, where it is
(potentially) used
— use-def: (the inverse question, “reaching definitions”
e other similar questions:
— has a value of an expression been calculated before (“available expressions”)
— will an expression be used in all possible branches (“very busy expressions”)

Global data flow analysis

e block-local
— block-local analysis (here liveness): ezact information possible
— block-local liveness: 1 backward scan
— important use of liveness: register allocation, temporaries typically don’t survive
blocks anyway
e global: working on complete CFG

2 complications

e branching: non-determinism, unclear which branch is taken
« loops in the program (loops/cycles in the graph): simple one pass through the graph
does not cut it any longer

o ezact answers no longer possible (undecidable)
= work with safe approximations
o this is: general characteristic of DFA

54 10 Code generation
10.7 Global analysis
Generalizing block-local liveness analysis

o assumptions for block-local analysis
— all program variables (assumed) live at the end of each basic block
— all temps are assumed dead there.

e now: we do better, info across blocks

at the end of each block:

which variables may be used in subsequent block(s).

e now: re-use of temporaries (and thus corresponding registers) across blocks possible
o remember local liveness algo: determined liveness status per var/temp at the end of
each “line/instruction”

We said that “now” a re-use of temporaries is possible. That is in contrast to the block local
analysis we did earlier, before the code generation. Since we had a local analysis only, we
had to work with assumptions converning the variables and temporaries at the end of each
block, and the assumptions were “worst-case”, to be on the safe side. Assuming variables
live, even if actually they are not, is safe, the opposite may be unsafe. For temporaries,
we assumed “deadness”. So the code generator therefore, under this assumption, must not
reuse temporaries across blocks.

One might also make a parallel to the “local” liveness algorithm from before. The problem
to be solved for liveness is to determined the status for each variable at the end of each
block. In the local case, the question was analogous, but for the “end of each line”. For
sake of making a parallel one could consider each line as individual block. Actually, the
global analysis would give identical results also there. The fact that one “lumps together”
maximal sequences of straight-line code into the so-called basic blocks and thereby distin-
guishing between local and global levels is a matter of efficiency, not a principle, theoretical
distinction. Remember that basic blocks can be treated in one single path, whereas the
whole control-flow graph cannot: do to the possibility of loops or cycles there, one will
have to treat “members” of such a loop potentially more than one (later we will see the
corresponding algorithm). So, before addressing the global level with its loops, its a good
idea to “pre-calculate” the data-flow situation per block, where such treatment requies one
pass for each individual block to get an exact solution. That avoid potential line-by-line
recomputation in case a basic block neeeds to be treated multiple times.

Connecting blocks in the CFG: inLive and outLive

« CFG:
— pretty conventional graph (nodes and edges, often designated start and end
node)
— nodes = basic blocks = contain straight-line code (here 3AIC)
— being conventional graphs:
* conventional representations possible

10 Code generation
10.7 Global analysis

* E.g. nodes with lists/sets/collections of immediate successor nodes plus
immediate predecessor nodes
e remember: local liveness status
— can be different before and after one single instruction
— liveness status before expressed as dependent on status after
= backward scan
e Now per block: inLive and outLive

Loops vs. cycles

As a side remark. Earlier we remarked that loops are closely related to cycles in a graph,
but not 100% the same. Some forms of analyses resp. algos assume that the only cycles
in the graph are loops. However, the techniques presented here work generally, i.e., the
worklist algorithm in the form presented here works just fine also in the presence of general
cycles. If one had no cycles, no loops. special strategies or variations of the worklist algo
could exploit that to achieve better efficiency. We don’t pursue that issue here. In that
connection it might also be mentioned: if one had a program without loops, the best
strategy would be backwards. If one had straight-line code (no loops and no branching),
the algo corresponds directly to “local” liveness, explained earlier.

inLive and outLive

e tracing / approximating set of live variables? at the beginning and end per basic
block
e inLive of a block: depends on
— outLive of that block and
— the SLC inside that block
e outLive of a block: depends on inLive of the successor blocks

Approximation: To err on the safe side

Judging a variable (statically) live: always safe. Judging wrongly a variable dead (which
actually will be used): unsafe

o goal: smallest (but safe) possible sets for outLive (and inLive)

4To stress “approximation” inLive and outLive contain sets of statically live variables. If those are
dynamically live or not is undecidable.

56 10 Code generation
10.7 Global analysis

Example: Faculty CFG

CFG picture

&

Bl |read x

tl = x > 0
if_falge tl
Ll

82 fact = 1

label L2

tZ = fact * x
fact = t2

£t3 =32 — 1

x = t3

td = ® ==0
if false t4d
goto L2

$ _

write fact

A4

B3

Explanation
e inLive and outLive

o picture shows arrows as successor nodes
o needed predecessor nodes (reverse arrows)

node/block predecessors

By)

By {B1}

Bs {B2, B3}
B, {Bs3}

Bs {B1, B4}

Block local info for global liveness/data flow analysis

o 1 CFG per procedure/function/method
« as for SLC: algo works backwards

10 Code generation
10.7 Global analysis

for each block: underlying block-local liveness analysis

3-valued block local status per variable

result of block-local live variable analysis

1.
2.
3.

locally live on entry: variable used (before overwritten or not)
locally dead on entry: variable overwritten (before used or not)
status not locally determined: variable neither assigned to nor read locally

for efficiency: precompute this info, before starting the global iteration = avoid
recomputation for blocks in loops

Precomputation

We mentioned that, for efficiency, it’s good to precompute the local data flow per local
block. In the smallish examples we look at in the lecture or exercises etc.: we don’t
pre-compute, we often do it simply on-the-fly by “looking at” the blocks’ of SLC.

Global DFA as iterative “completion algorithm”

different names for the general approach
— closure algorithm, saturation algo
— fizpoint iteration
basically: a big loop with
— iterating a step approaching an intended solution by making current approxi-
mation of the solution larger
— until the solution stabilizes
similar (for example): calculation of first- and follow-sets
often: realized as worklist algo
— named after central data-structure containing the “work-still-to-be-done”
— here possible: worklist containing nodes untreated wrt. liveness analysis (or
DFA in general)

Example
a =5
Ll1: x := 8
y = a + x
if true x=0 goto L4
z = a + X // B3
a =y + z
if false a=0 goto L1
a = a + 1 // B2
y = 3 + x
L5 a = x4y
result = a + z
return result // B6
L4: a y + 8

58 10 Code generation
10.7 Global analysis

|| goto L5
L

CFG: initialization

Picture

a:=x+y
result:=atz

Y

%]
BS' return result l
%]

o inLive and outLive: initialized to () everywere
o note: start with (most) unsafe estimation

o extra (return) node

e but: analysis here local per procedure, only

Iterative algo
General schema

Initialization start with the “minimal” estimation () everywhere)

Loop pick one node & update (= enlarge) liveness estimation in connection with that
node

Until finish upon stabilization (= no further enlargement)

« order of treatment of nodes: in princple arbitrary®
« in tendency: following edges backwards
o comparison: for linear graphs (like inside a block):
— no repeat-until-stabilize loop needed
— 1 simple backward scan enough

5There may be more efficient and less efficient orders of treatment.

10 Code generation 59
10.7 Global analysis

Liveness: run

a:=x+y
result:=a+z

Bs

{r}
Bg' return result '
%

Liveness example: remarks

o the shown traversal strategy is (cleverly) backwards
e example resp. example run simplistic:
o the loop (and the choice of “evaluation” order):

“harmless loop”

after having updated the outLive info for By following the edge from B3 to By backwards
(propagating flow from B; back to Bs) does not increase the current solution for
B3

e 1o need (in this particular order) for continuing the iterative search for stabilization

e in other examples: loop iteration cannot be avoided

o note also: end result (after stabilization) independent from evaluation order!
(only some strategies may stabilize faster. . .)

In the script, the figure shows the end-result of the global liveness analysis. In the slides,
there is a “slide-show” which shows step-by-step how the liveness-information propagates
(= “flows”) through the graph. These step-by-step overlays, also for other examples, are
not reproduced in the script.

10 Code generation
10.7 Global analysis

Another, more interesting, example

a:i=x+y

result:=a+l

{r}

:: {r}
Bg return result
%]

Example remarks

e loop: this time leads to updating estimation more than once
¢ evaluation order not chosen ideally

Precomputing the block-local “liveness effects”

o precomputation of the relevant info: efficiency

o traditionally: represented as kill and generate information

o here (for liveness)
1. kill: variable instances, which are overwritten
2. generate: variables used in the block (before overwritten)
3. rests: all other variables won’t change their status

Constraint per basic block (transfer function)

inLive = outLive\kill(B) U generate(B)

e note:

— order of kill and generate in above’s equation

— a variable killed in a block may be “revived” in a block
o simplest (one line) example: x := x +1

10 Code generation 61
10.8 Code generation algo
Order of kill and generate

As just remarked, one should keep in mind the oder of kill and generate in the definition
of transfer functions. In principle, one could also arrange the opposite order (interpreting
kill and generatate slightly differently). One can also define the so-called transfer function
directly, without splitting into kill and generate (but for many (but not all) such a sep-
aration in kill and generate functionality is possible and convenient to do). Indeed using
transfer functions (and kill and generate) works for many other data flow analyses as well,
not just liveness analysis. Therefore, understanding liveness analysis basically amounts to
having understood data flow analysis.

Example once again: kill and gen

Bo {a, 2}
lk: {z,y}, g {a} '

{y,z,a}

{y,z,a}

{z, v}
{z,y}

{z,y}
B5lk: {r,a}, g {=,y} |
{r}

Y

{r}
lek: {} & {r} l
14

10.8 Code generation algo

Finally, we cover the code generation proper. We focus on generating code for straight-
line code and register allocation. Indeed, translating jumps and conditional jumps from
3AIC is not very complicated. The intermediate code is already a linear code from, and
one can expect that the (conditional) jumps have a more or less direct correspondence in
machine code. Ultimately, one will have to get rid of the labels labels. The serve in the
intermediate code as symbolic addresses, and need to be replaced by real addresses, in a
first stage say, relocatable addresses. That involves calculating with the actual byte sizes
of the commands for the instruction set of the target platform. For instance like the size
shown in Figure 10.1 earlier.

Properly accounting with the concrete instruction sizes to obtain concrete (relocatable)
addresses has nothing to do with register usage and is an indepedent problem. As said,
we focus on register allocation for basic blocks, making use of liveness information. This
focus does not mean that the code generator uses only local liveness information. Also
liveness analysis is an independent problem, and the code generator will be correct as long
as the liveness information is correct, i.e., a safe over-approximation of the actual future
use of variables.

62 10 Code generation
10.8 Code generation algo

The code generation will proceed line by line through the 3AIC, and it will forwardly. The
generator will make decisions concerning register usage on the fly, i.e., while generating
the code. To do so, it obviously needs to keep track of which registers are currently in
used and for which variables (resp. which registers will be in use at the different points in
the code once the program will be run, of course.) To do that kind of book-keeping, the
code generator will maintain specific data structures. They are called register descriptors
and address descriptors. This way the code generator has an overview which variable is
stored in which register(s) (if any) and at which address it resides in main memory. That’s
the address descriptors. The register descriptor information records at each point for each
register, which “variable(s)” it contains if any. More precisely, to which value of which
variable(s) the current register content corresponds, if any.

In principle, the address descriptor information would be enough actually: if one has
that information for all variables, the code generator can figure out the register usage
by searching through the corresponding table, in some form of reverse look-up. That is
of course inefficiecent, and the code generate is better of keeping track of the relevant
information in two tables.

Aside: Graph coloring register allocation

As said, the code generator generates 2AC instructions on-the-fly including making deci-
sions on which registers to use. That’s not the only way one can do register allocation. An
well-known and widely used approach is known as register allocation by graph coloring.
We don’t cover that, but since it’s a standard approach, it’s well worth mentioning. The
idea is actually simple and elegant: first get an overview over the live-spans of variables.
Live spans are particular simple for code in SSA format, insofar a particular variable be-
comes live at some point, stays live for some while, and then becomes dead. For non-SSA
usage, a variable may switch from dead to live and back multiple times.

Be it as it may, knowing the live spans is important insofar: two variables with an overlap-
ping live time cannot occupy the same register, they need to be in different ones. If course
one could try to keep a variable in one register for some time, kick it out from the register
for a short while and store it back to main memory, to make room for another one for a
short while, perhaps there is only as short period of overlap, and then, later load it back
again into the same register (or a different one). But there is only so much sophistication
one can do, and juggling values back and forth between registers and memory is costly at
any rate.

So a clear and useful arrangement is the following: if it’s decided to place a particular
variable in a register, the association is fixed. The variable is put into the designated
register at the start of its live span, it’s keep there it there during the live span, and will
be saved back to main memory at the end of the live span, if the value in the register has
changed in the meantime. That is a particularly clear strategy for SSA-style code.

In the sketched strategy, having an overlap in live times has the mentioned consequence:
the register allocator has to select two different registers for the two variables. Variables
with such an overlap are said to be in conflict. One can represent then the conflict
situation via an undirected graph. Variables are the nodes of the graph, and conflicts are
the edges. The number the nodes in the graph corresponds to the number of variables we

10 Code generation 63
10.8 Code generation algo

need to take care of. The register allocation task is to color the nodes with registers in
such a way that two neighboring nodes don’t reside in the same register, i.e. have different
colors. Typically, the number of nodes in the graph exceeds the number of available
registers, otherwise the problem would be trivial.

This is a particilar graph coloring problem, the registers correspond to “colors” (there
are different graph coloring problems). Solving it is a problem of high computational
complexity, i.e., finding an answer to the question: Can the given graph be colored with
the given colors (and if so, how).

So graph coloring register allocation does not attempt to solve the exact graph-coloring;
that would cost too much time. Instead, the allocator would do a decent effort, choosing
colors or registers for the variables avoiding conflicts as long as possible. But when no
non-conflicting choice is possible for the next node, not attempt is made to try again with
a different coloring scheme to see if that turns out to be more successful. Instead, one
simple resorts to the main memory (“spilling”) for the node that cannot be colored right
now, and then the allocator proceeds with coloring the rest.

Details of the register allocation may become involved for practical languages and plat-
forms, starting already with the fact that some platforms put restrictions on what registers
can or have to be used for what, and other complications and fine-tunings. However, the
basic idea is elegant and straightforward and hopefully understandable from the high-level
description. Graph coloring register allocation is widely used. The original proposal is
described in a software patent (by IBM), one quite early software patents. Not everyone
agreed and agrees in which way or to which extent ideas like that can be patented. In this
particular case, the graph coloring idea directly employs a recursive strategy described
over 100 years ago, tackling in a heuristic manner a particular graph coloring problem.

Simple code generation algo

o simple algo: intra-block code generation
e core problem: register use
« register allocation & assignment
e hold calculated values in registers longest possible
e intra-block only = at exit:
— all variables stored back to main memory
— all temps assumed “lost”
e remember: assumptions in the intra-block liveness analysis

Some make a distinction between register allocation: “should the data be held in register
(and how long)” vs. register assignment: “which of the available registers to use for
that”.

Limitations of the code generation

¢ local intra block:
— no analysis across blocks
— no procedure calls, etc.

https://patents.google.com/patent/US4571678A/en
https://en.wikipedia.org/wiki/Software_patent_debate

64 10 Code generation
10.8 Code generation algo

e no complex data structures
— arrays
— pointers

some limitations on how the algo itself works for one block

o for read-only variables: never put in registers, even if variable is repeatedly read
— algo works only with the temps/variables given and does not come up with new
ones
— for instance: DAGs could help
e 1o semantics considered
— like commutativity: a + b equals b+ a

The limitation that read-only variables are not put into registers is not a “design-goal”:
it’s a not so smart side-effect of the way the algorithm works. The algo is a quite straight-
forward way of making use of registers which works block-local. Due to its simplicity, the
treatment of read-only variables leaves room for improvement. The code generation makes
use of liveness information, if available. In case one has invested in some global liveness
analysis (as opposed to a local one discussed so far), the code generation could profit from
that by getting more efficient. But its correctness does not rely on that. Even without
liveness information at all, it is correct, by assuming conservatively or defensively, that all
variables are always live (which is the worst-case assumption).

We decompose the code generation into two parts, discussed separately: the code gen-
eration itself and, afterwards getregq, as auxiliary procedure where to store the result.
One may even say, there is a third ingredient to the code generation, namely the liveness
information, which is however, calculated separately in advance (and we have discussed
that part already). The code generation, though, goes through the straight-line 3AIC
line-by-line and in a forward manner, calling repeatedly getreg as helper function to
determine which register or memory address to use. We start by mentioning the general
purpose of the get reg function, but postpone the realization for afterwards.

As far as the code generation may is concerned: finally there’s no way around the fact
that we need to translate 3-address lines of code to 2-address instructions. Since the two-
address instructions have one source and the second source is, at the same time, also the
destination of the instruction, one operand is “lost”. So, in many cases, the code generation
need to save one of its 3 arguments in a first step somewhere, to avoid that one operand
is really overwritten. We have gotten a taste of that in the simple examples earlier used
to illustrate the cost model. The “saving place” for the otherwise lost argument is, at the
same time the place where the end result is supposed to be and it’s the place determined
by getreg.

Of course, there are situations, when the operand does not need to be moved to the “saving
place”. One is, obviously, when it’s already there. The register and address descriptors
help in determining a situation like that.

We explain the code generation algo in different levels of details, first without updating
the book-keeping, afterwards keeping the books in sync, and finally, also keeping liveness

10 Code generation
10.8 Code generation algo

information into account. Still, even the most detailed version hide some details, for
instance, if there is more than one location to choose from, which one is actually taken.
The same will be the case for the getreg function later: some choice-points are left
unresolved. It’s not a big deal, it’s not a question of correctness, it’s more a question of
how efficient the code (on average) is going to be.

Purpose and “signature” of the getreg function

e one core of the code generation algo
o simple code-generation here = simple getreg

getreg function

available: liveness/next-use info
Input: TAIC-instruction x := y op z
Output: return location where x is to be stored
o location: register (if possible) or memory location

In the 3AIC lines, x, y, and z can also stand for temporaries. Resp. there’s no difference
anyhow, so it does not matter. Temporaries and variables are different, concerning their
treatment for (local) liveness, but that information is available via the liveness information.
For locations (in the 2AC level), we sometimes use [representing registers or memory
addresses.

Coge generation invariant

it should go without saying ... :

Basic safety invariant

At each point, “live” variables (with or without next use in the current block) must exist
in at least one location

e another invariant: the location returned by getreg: the one where the result of a
3AIC assignment ends up

Register and address descriptors

o code generation/getreg: keep track of
1. register contents
2. addresses for names

10 Code generation
10.8 Code generation algo

Register descriptor

o tracking current “content” of reg’s (if any)
e consulted when new reg needed
e as said: at block entry, assume all regs unused

Address descriptor

o tracking location(s) where current value of name can be found
o possible locations: register, stack location, main memory
e > 1 location possible (but not due to overapproximation, exact tracking)

By saying that the register descriptor is needed to track the content of a register, we don’t
mean to track the actual value (which will only be known at run-time). It’s rather keeping
track of the following information: the content of the register correspond to the (current
content of the following) variable(s). Note: there might be situations where a register
corresponds to more than one variable in that sense.

Code generation algo for = := y op 2z

We start with a “textual” version first, followed by one using a little more programming/-
math notation. One can see the general form of the generated code. One 3AIC line is
translated into 2 lines of 2AC or, if lucky, in 1 line of 2AC

1. determine location (preferably register) for result

1 = getreg(“'x := y op z'")
|

2. make sure, that the value of y isin [:
» consult address descriptor for y = current locations [, for y
o choose the best location I, from those (preferably register)
e if value of y mot in [, generate

MOV 1, 1
L

3. generate

OPIl,, 1 // l.: a current location of z (prefer reg's)

« update address descriptor [z — []
e if [is a reg: update reg descriptor [— x
4. exploit liveness/next use info: update register descriptors

Skeleton code generation algo for z :=y op =

l = getreg("x:= y op z''"') // target location for x
if 1¢Ta(y) then let Iy € To(y)) in emit ("MOV Iy, I");
let I, € Te(z) in emit ("OP [.,1");

|

o “skeleton”

10 Code generation 67
10.8 Code generation algo

— non-deterministic: we ignored how to choose [, and [,

— we ignore book-keeping in the name and address descriptor tables (= step 4 also
missing)

— details of getreg hidden.

The let [, € ... notation is meant as pseudo-code notation for non-deterministic choice
for, in this case, location 1_y from some set of possible candidates. Note the invariant
we mentioned: it’s guaranteed, that y is stored somewhere (at least when still live), so it’s
guaranteed that there is at least one [, to pick.

Also note (again), the order of the argument in 2AC. We save y at some location, in the
slide called I. That one is mentioned as second argument in the 2AC. But the second argu-
ment, which at the same time is also the destination location may better be thought of as
first input. For addition, it may not matter much, but for example SUB b a corresponds
to a — b (with the result stored in a). Because of that and thhe way, the translation
works also makes clear that we save y and not z.

Exploit liveness/next use info: recycling registers

 register descriptors: don’t update themselves during code generation
 once set (e.g. as Ry — t), the info stays, unless reset
e thus in step 4 for z := x op ¥:

Code generation algo for = := y op 2

l = getreg("i: x := y op z") // @ for instructions line number/label

g Tuly)

then let Iy = best (T,(y))
in emit ("MOV [, [")

else skip;

let I, = best (Tu(z))

in emit ("OP [.,l");

To =T \(_—1);

To :=Talz — 1];

if [is a register

then T, : =Tl z];

if —Tieli,y] and To(y) =7 then Ty :=T\(r —y)
if —Tiyelt,z] and To(z) =7 then Ty :=T\(r— z)

Updating and exploit liveness info by recycling reg’s

if y and/or z are currently

e not live and are
e in registers,

= “wipe” the info from the corresponding register descriptors

e side remark: for address descriptor

10 Code generation
10.8 Code generation algo

— no such “wipe” needed, because it won’t make a difference (y and/or z are
not-live anyhow)
— their address descriptor wont’ be consulted further in the block

In the pseudo-code we make use of some math-like notation. We write T, and T;. for the
2 tables. They may be implemented as arrays or look-up structures. For updating we use
notations like T,[x + []. This is meant to say: after the update, = is stored in [, the old
information overwritten. Variables can be stored in different locations, but updating x in
such an assignment invalidates all other locations, they become out-of-date or stale. The
only place where x resides in [. By T,\(__ — [) we mean, we remove bindings, namely all
that mention [.

Since there are situations, where one location can contain (the content of) more than
variable, one may also have to suppert operations like 7,[l + x|, meaning that old
information (here for 1) is not overritten, but another “binding” is added: after the update,
location [contains also (the value) of x, without forgetting the old values. This is not
needed in the translation of our 3AIC instruction, but would occur when translating x := y
for instance, i.e., copying values.

We could also check whether x is live and do the corresponding wiping for x as well. In
which case, the whole assignment is meaningless, and (as a consequence, also the liveness
status of y and z could change in turn...).

As an invariant, a variable never resides in more than one register.

getreg algo: x :=y op 2

e goal: return a location for x
 basically: check possibilities of register uses
o starting with the “cheapest” option

Do the following steps, in that order

1. in place: if = is in a register already (and if that’s fine otherwise), then return the
register

2. new register: if there’s an unsused register: return that

3. purge filled register: choose more or less cleverly a filled register and save its content,
if needed, and return that register

4. use main memory: if all else fails

10 Code generation
10.8 Code generation algo
getreg algo: x := y op z in more details

1. if
e y in register R
e R holds no alternative names
e y is not live and has no next use after the 3AIC instruction
e = return R
2. else: if there is an empty register R': return R’
3. else: if
o x has a next use [or operator requires a register| =
— find an occupied register R
— store R into M if needed (MOV R, M))
— don’t forget to update M ’s address descriptor, if needed
— return R
4. else: z not used in the block or no suituable occupied register can be found
e return x as location [

« choice of purged register: heuristics
o remember (for step 3): registers may contain value for > 1 variable = multiple MOV’s

Sample TAIC
d := (a-b) + (a-c) + (a-c)

| t :(= a— b

[fu:=a—c

| v i =t 4+ u

l d = v +au
line a b c d t u v
[0] | L(1) L(1) L(2) D D D D
1 L(2) L(L) L(2) D L) D D
2 | L(L) L(L) L(L) D L(3) L3) D
3 | L(L) L(L) L(1) D D L(4) L(4)
4 | L(L) L(L) L(L) L(L)| D D D

70 10 Code generation
10.8 Code generation algo

Code sequence

3AIC 2AC reg. descr. addr. descriptor
Ro R1 a b C d t u Y
[0] 1 L a b ¢ d t u v
1 | t:=a-b | MOV a, RO [a] [Ro]
SUB b, RO t R Ro
2 u:=a-c MOV a, R1 . [a] [Ro]
SUB ¢, R1 u R R
3 v:=t 4+ u | ADD RL, RO v . RS Ro
4 | d:=v+4+u | ADDRL, RO d Ro R
MOV RO, d
R;: unused all var's in "home position” |

e address descr’s: “home position” not explicitely needed.
o e.g. variable a to be found “at a ” (if not stale), as indicated in line “0”.
o in the table: only changes (from top to bottom) indicated
o after line 3:
— t dead
— t resides in Ry (and nothing else in Ry)
— reuse Ry
o Remark: info in [brackets]: “ephemeral”

Bibliography 71
Bibliography

Bibliography

[1] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles,
Techniques and Tools. Pearson,Addison-Wesley, second edition.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques,
and Tools. Addison-Wesley.

[3] Appel, A. W. (1998). Modern Compiler Implementation in ML. Cambridge University
Press.

[4] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

[5] Massalin, H. (1987). Superoptimizer — a look at the smallest program. In Proceedings
of the Second Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, pages 122-126.

Index

Index

address descriptor, 2 may-analysis, 5

analysis memory hierarchy, 13
global and local, 5 must analysis, 5
inter-procedural, 23 must-analysis, 5

intra-procedural, 23
optimization, 2, 10
backward analysis, 5)
basic block, 2, 18, 19 partial order, 41
partitioning, 19

C++, 11 .
cache, 13 register, 13
7 allocation vs. assignment, 63

free and occupied, 6
register allocation, 2, 7
register descriptor, 2

code generation, 1
complexity, 11

computer architecture, 1
control-flow graph, 17, 18
cost model, 2, 11, 13

7 static liveness, 33
cross-compilation, 10

static single assignment, 45
super-optimization, 2, 3

data flow ! .
backward, 32 symbolic execution, 3
forward, 32 tractable, 11

data flow analysis

forward and backward, 5
def-use analysis, 41
dependence graph, 41 uninitalized variable, 5
dependence graph., 40

type inference, 10
type reconstruction, 10

efficiency, 10

forward analysis, 5
garbarge collector, 14
hardware architecture, 1

instruction scheduling, 35
inta-procedural analysis, 23
inter-procedural analysis, 23
isolated entry, 25

isolated exit, 25

leader, 19, 20

live variable, 4

liveness analysis, 4, 29
local, 8

may analysis, 5

	Contents
	Code generation
	Intro
	2AC and costs of instructions
	Basic blocks and control-flow graphs
	Liveness analysis (general)
	Local liveness: dead or alive
	Local liveness++: Dependence graph
	Global analysis
	Code generation algo

