
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2021

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

1 Introduction 1
1.1 Motivation: What is compiler construction good for? 2
1.2 Compiler architecture & phases . 4

1.2.1 Pre-processor . 5
1.2.2 Scanner or lexer . 7
1.2.3 The parser . 9
1.2.4 Semantical analysis . 11
1.2.5 Optimization . 12
1.2.6 Code generation & optimization . 13
1.2.7 Diverse notions in connection with compilers 14
1.2.8 More recent compiler technologies 15

1.3 Bootstrapping and cross-compilation . 16
1.3.1 Tombstone diagrams . 17
1.3.2 Pulling oneself up on one’s own bootstraps 19
1.3.3 Porting and cross compilation . 20

1 Introduction 1

1
Introduction
Chapter

What
is it

about?Learning Targets of this Chapter
The chapter gives an overview over
different phases of a compiler and
their tasks. It also mentions
organizational things related to the
course.

Contents

1.1 Motivation: What is com-
piler construction good for? . 2

1.2 Compiler architecture &
phases 4

1.3 Bootstrapping and cross-
compilation 16

This is the script version of the material of the lecture. In previous iterations of the
document, it consisted of basically all the slides in the order presented (only layed-out
differently and more compactly and except that gradual overlays were not reproduced in a
step-by-step manner) plus additional remarks. Normally, I try not to overload slides with
written information and rely on speaking and telling a story, with the slides as guidance.
So this document was previously an annotated version of the slides, each slide augmented
by more details and explanations.

In the meantime, the script has emancipated from the slides to some extent. So it’s no
longer the case that each individual slide appears here as subsub-. . . -section with some
surrounding text and remarks added. Instead it has become more like a script rather
than an annotated handout version of the slides. The document also covers background
information, hints to additional sources, and bibliographic references. Some of the links
or other information in the PDF version are clickable hyperrefs.

Course info

One recommended book the course is Cooper and Torczon [7] besides also, as in previous
years, Louden [11].1 We won’t be able to cover the whole book anyway (neither the full
Louden [11] book). In addition the slides will take into account other sources, as well. At
any rate, especially in the first chapters, for the so-called compiler front-end, the material
is so “standard” and established, that it almost does not matter, which book to take.

As far as the exam is concerned: Traditionally, it has been a written exam, and was
“open book”. This year, probably still influence by corona, we go for an oral exam.

1see also errata list at http://www.cs.sjsu.edu/~louden/cmptext/.

http://www.cs.sjsu.edu/~louden/cmptext/

2 1 Introduction
1.1 Motivation: What is compiler construction good for?

Course material

A master-level compiler construction lecture has been given for quite some time at IFI.
The slides are inspired by earlier editions of the lecture, and some graphics have just been
clipped in and not (yet) been ported. The following list contains people designing and/or
giving the lecture over the years, though more probably have been involved, as well.

• Martin Steffen (msteffen@ifi.uio.no)
• Stein Krogdahl (stein@ifi.uio.no)
• Birger Møller-Pedersen (birger@ifi.uio.no)
• Eyvind Wærstad Axelsen (eyvinda@ifi.uio.no)

Course’s web-page

http://www.uio.no/studier/emner/matnat/ifi/INF5110

As usual, the page contains overview over the course, slides, material various an-
nouncements, beskjeder, etc. Watch for updates.

Exam

For spring 2022, we plan for an oral exam, as in the previous two (Corona)
semesters.

1.1 Motivation: What is compiler construction good for?

Compiler construction is a established, classical field in computer science and a core in-
gredient of most, if not all, computer science curricula.

Obviously, not everyone working in IT or in computer science is actually building a full-
blown compiler. Very few people will ever do a significant, industrial strength compiler, if
only for the reason that a mature compiler (and accompagnying technologies) for a general
purpose programming language is a complex piece of software that typically involves many
people, maybe evolving and maturing over years.

But compiler construction builds on many underlying fundamental concepts and tech-
niques. Beside, most, if not basically all, software reads, processes and transforms input
into output. The handled data is always presented in some format, except perhaps when
inputting some raw sensor data, where the first step would be to render it into some
structured format that can be processed further. Those formats are not necessary pro-
gram languages, but anyway, processing them also uses involves techniques central in
compiler construction. Furthermore, understanding the inner workings of compilers can
lead to a deeper understanding of programming language(s). And there are constantly
new languages (domain specific languages, graphical ones, new language paradigms and
constructs. . .), that means compilers and their principles will never be “out-of-fashion”.

http://www.uio.no/studier/emner/matnat/ifi/INF5110

1 Introduction
1.1 Motivation: What is compiler construction good for? 3

Full employment for compiler writers

There is also something known as full employment theorems (FET), for instance for com-
piler writers. That result is basically a consequence of the fact that interesting properties of
programs (in a full-scale programming language) are undecidable in general. “In general”
means, when considered for all programs, and “interesting” means, semantic properties.
For one particular program or some restricted class of programs, semantical properties
may well be decidable. And of course syntactic properties, like whether the letter x occurs
in the source code or not, are decidable.

The most well-known undecidable question is the so-called halting problem: can one de-
cide generally if a program terminates or not (and the answer is: provably no). But that’s
only one particular and well-known instance of the fact, that (basically) all interesting (=
semantical) properties of programs are undecidable (that’s Rice’s theorem). That puts
some limitations on what compilers can do and what not. Still, compilation of general
programming languages is of course possible, and it’s also possible to prove the compila-
tion generally correct; a compiler is just one particular program itself, though probably a
complicated one. What is not possible is to generally prove a property about all programs
(like whether a given program halts or not).

What does that imply for compilers? The limitations concern in particular optimiza-
tions. An important part of compilers is to “optimize” the resulting code (machine code
or otherwise). That means to improve the program’s performance without changing its
meaning otherwise (improvements like using less memory or running faster, etc.) The
full employment theorem does not refer to the fact that targets for optimization are often
contradictory; for example, there is often a trade-off between memory efficiency and speed.
The full employment theorem rests on the fact that it’s provably undecidable how much
memory a program uses or how fast it is: all of those questions are undecidable. Without
being able to (generally) determine such performance indicators, it should be clear that
a fully optimizing compiler is unobtainable. Fully optimizing is a technical term in that
context, and when speaking about optimizing compilers or optimization in a compiler, one
means: do some effort to get better performance than you would get without that effort
(and the improvement could be “always” or “on the average”. An “optimal” compiler is
not possible anyway, but efforts to improve the compilation results are an important part
of any compiler.

More specifically, the FET for compiler writers is often phrased in a slightly refined manner,
namely:

It can be proven that for each “optimizing compiler” there is another one
that beats it (which is therefore “more optimal”).

Since it’s a mathematical fact that there’s always room for improvement for any compiler
no matter how “optimized” and tuned it already is, compiler writers will never be out of
work (even in the unlikely event that no new programming languages or hardwares will
be developed in the future. . .).

The proof of that fact is rather simple (if one assumes the undecidability of the halting
problem as given, whose proof is more involved). However, the proof is not constructive

4 1 Introduction
1.2 Compiler architecture & phases

in that it does not give a concrete construction or algorithm how to actually optimize a
given compiler. Well, of course, if that could be automated, then compiler writers would
again face unemployement. . . But the FET says: don’t worry, it cannot be automated.

1.2 Compiler architecture & phases

Central for the architecture of a compiler is its “layered” structure, consisting of phases. It
basically a “pipeline” of transformations, with a sequence of characters as input (the source
code) and a sequence of bits or bytes as ultimate output at the very end. Conceptually,
each phase analyzes, enriches, transforms, etc. and afterwards hands the result over to
the next phase.

This section give just a taste of general, typical phases of a full-scale compiler. Of course,
there may be compilers in the broad sense, that don’t realize all phases. For instance,
if one chooses to consider a source-to-source transformation as a compiler (known, not
surprisingly as S2S or source-to-source compiler), there would be not machine code gen-
eration (unless of course, it’s a machine code to machine code transformation. . .). Also
domain specific languages may be unconventional compared to classical general purpose
languages and may have consequently an unconventional architecture. Also, the phases
in a compiler may be more fine-grained, i.e., some of the phases from the picture may be
sub-divided further. Still, the picture gives a fairly standard view on the architecture of
a typical compiler for a typical programming language, and similar pictures can be found
in all text books.

Each phase can be seen as one particular module of the compiler with an clearly defined
interface. The phases of the compiler naturally will be used to structure the lecture into
chapters or sections, proceeding “top-down” during the semester. In the introduction here,
we shortly mention some of the phases and their typical functionality.

Scanner

Parser

Semantic analyzer

intermediate code generator

Intermediate code optimizer

Code generator

Target code optimizer

Front end

back end

token stream

syntax tree

annotated tree

intermediate code

opt. intermediate code

target code

opt. target code

literal
table

symbol
table

error
handler

Figure 1.1: Structure of a typical compiler

1 Introduction
1.2 Compiler architecture & phases 5

1.2.1 Pre-processor

The architecture in Figure 1.1 does not mention a pre-processor and one may debate
whether a pre-processor is part of a compiler or not. The word already indicates that a
pre-processor does whatever it’s doing before the real compiler does its job. So, the pre-
processor can be a separe program, independent from the compiler, but invoked before
the compilation start for earnest. So, one may well consider the pre-processors as a
very first phase of the overall compilation. It’s also possible that the pre-processor resp.
pre-processor functionalities are not covered by a separate program, but integrated into
compiler.

Either way, core compilers often ship with very many accompagnying tools, the pre-
processor only one of them. There may be a formatting facility, a degugger, decompilers,
refactoring and very many others. Some could be seens as more part of the compiler, some
less. Is an specific editor part of the programming language? Most would say know in
most cases. But for instance the Visual Basic languages states, that it’s “not a standalone
product”.

Anyway, it’s not really important and in this lecture we won’t even cover pre-processing
except mentioning it here. Likewise, the oblig will not involve programming a pre-
processor.

But then, what is typically the task of a preprocessor? Let’s have a look what for instance
can be done with a C-style preprocessor.

Typical tasks there are file inclusion, macro definition and expansion, and condi-
tional code or conditional compilation.

The C-prepocessor is sometimes seen a “hack” grafted on top of a compiler. But it probably
is considered a useful hack, otherwise it would not be around . . . But it does not naturally
encourage elegant and well-structured code, it just offers fixes for some situations. The
C-style preprocessor has been criticized variously, as it can easily lead to brittle, confusing,
and hard-to-maintain code. By definition, the pre-processor does its work before the real
compiler kicks in: it massages the source code before it hands it over to the compiler.
The compiler is a complicated program and it involves complicated phases that try to
“make sense” of the input source code string. It classifies and segments the input, cuts
it into pieces, builds up intermediate representations like graphs and trees which may be
enriched by “semantical information”. However, not on the original source code but on
the code after the preprocessor has made its rearrangements. Already simple debugging
and error localization questions like “in which line did the error occur” may be tricky,
as the compiler can make its analyses and checks only on the massaged input, it never
even seens the “original” code.

In this lecture, more precisely, in this introductory remarks we talk about C-style pre-
processing and C-style macros. That’s because the C-preprocessor is the most prominent
example of preprocessors. As said, it has it’s limitations, and has been accordingly criti-
cized.

6 1 Introduction
1.2 Compiler architecture & phases

Other languages don’t even have prerpocessors, for example Java. That latter statement
is not 100% correct. Officially, there may not be one. Though if you google around you
will find (not surprisingly) that the lack of a pre-processor let some people not sleep until
they made one. But actually, if one likes “C-style preprocessing”, why would one actually
need one? Preprocessing is massaging a textual file. The behavior is goverened by the
pre-processor syntax (not C-syntax or C++-syntax or whatever). So if one has a file with
Java code, and one misses directives like #ifdefs very much for some reason, one can
just add those to the file and pump it through the C-pre-processor (using for example
flags like gcc -P -E ...). Then that results in a different file. The (gcc) preprocessor
may be written in C, but the language it handles is not C, it’s the particular preprocessor
syntax. Of course, it may be a bad idea, to do C preprocessor directives in Java programs,
it will interfere in not so nice ways if one programs under an IDE (like Eclipse), but there
is no fundamental reason why it’s not possible.

Another remarks concerns macros, not to leave the impression that macro programming
is synonymous with pre-processing. Languages, for instance Rust, may offer more “in-
tegrated” macro facilites. More integrated in that they don’t work on the input file, by
maybe the token stream. If you at that point don’t know what the token streams is, at the
end of the lecture you will. Actually. already half-way through the lecture, as the token
stream is the output of the parsing phase.

Other aspects of pre-processing concerns file inclusion, using, say, #input. See Listing
1.1
#include <fi lename>

Listing 1.1: file inclusion

It’s the single most primitive way of “composing” programs split into separate pieces
into one program. It’s basically that instead of copy-and-paste some code contained in a
file literally, it simply “imports” it via the preprocessor. It’s easy, understandable (and
thereby useful), completely transparent even for a beginner, and is a trivial mechanism
as far as compiler technology is concerned. If used in a disciplined way, it’s helpful, but
it’s not really a decent modularization concept (or: it “moduralizes” the program on the
“character string” level (with support of the operating system’s concept of file abstraction)
but not on any more decent, program language level.

Conditional compilation is illustrated in Listing 1.2
#varde f #a = 5 ; #c = #a+1
. . .

#i f (#a < #b)
. .

#else
. . .

#endif

Listing 1.2: Conditional compilation

Note; #if is not the same as the if-programming-language construct.

Also languages like TEX, LATEX etc, certainly domain-specific languages but with a sup-
porting compiler nonetheless. support conditional compilation. E.g., in TEX (and thus

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://www.rust-lang.org

1 Introduction
1.2 Compiler architecture & phases 7

in LATEX as well), one can write \if<condition> ... \else ... \fi. It’s not,
however, done by a preprocessor outside the TEX-compiler. As a side remark: In previos
semesters the sources for the slides and this script make quite some use of conditional
compilation, compiling from the source code to the target code, for instance PDF: some
text shows up only in the script-version but not the slides-version, pictures are scaled
differently on the slides compared to the script . . .
#macrodef hentdata (#1,#2)

−−− #1−−−−
#2−−−(#1)−−−

#enddef

. . .
#hentdata (kar i , per)

Listing 1.3: Macros

−−− kar i−−−−
per−−−(ka r i)−−−

Note: the code is not really C, it’s used to illustrate macros similar to what can be
done in C. For real C, see https://gcc.gnu.org/onlinedocs/cpp/Macros.html.
There, conditional compilation is done with #if, #ifdef, #ifndef, #else, #elif. and
#endif. Definitions are done with #define.

1.2.2 Scanner or lexer

Ignoring the pre-processor, the lexer is the first compiler phase. The words lexer or scanner
are synonymous, and the lexer perforsm what is called lexicographic analysis (hence the
name). That’s different from syntactic analysis which comes afterwards and which is done
by the parser. The lecture will cover both phases to quite some extent, in particular
parsing.

The input of the lexer is the “program text”. That can be in the form of a string
or a char stream, or similar. And the task is to divide and classify that input
into a stream of tokens handed over to parser. In doing so, it typically also remove
whitespace (blanks, newlines, tabs . . .) and comments. Conceptually, the lexer
is based on finite state automata and regular languages.

Let’s look at the simple code snippet from Listing 1.4. The input code snippet is supposed
to be a sequence of characters (or a string). The blanks (space characters, or white spaces)
are made specially visible in the listijg, not just display as blank spaces.
a [index] ␣=␣4␣+␣2

Listing 1.4: Simple code snippet

The table in Figures 1.2 shows the individual pieces of that string in the left column of the
table. Those pieces are called lexemes Note that the white spaces are ignored in some
way: there is no white-space lexeme (which is typical when do scanning). The column on

https://gcc.gnu.org/onlinedocs/cpp/Macros.html

8 1 Introduction
1.2 Compiler architecture & phases

the right shows a possible (and typical) classification The tokes consists of a token class
and of a token value. Sometimes, there is no token value, only a token class. It’s a Note
that the token values are uniformly strings.

token
lexeme token class value
a identifier "a"
[left bracket
index identifier "index"
] right bracket
= assignment
4 number "4"
+ plus sign
2 number "2"

Figure 1.2: Sample lexemes and tokens

That’s a possible way, but the lexer does a bit more. Take the lexemes 2 or 4 representing
numbers. One can store the corresponding string, as shown, but, having classified them
as numbers, one can already transform them into numbers. All languages have conversion
functions that can do that, for instance in Java there is Integer.parseInt(mystring)
and other methods that can do the job. That is shown in the table in Figure 1.3a. The
alternative treatment does something else on top, concerning the token class of identifiers.
String constants or string literals, as they are also called, are not ideal to work with. Basi-
cally, because they are compound data structures. That would make it costly to compare
strings, maybe representing variable names or other named entities, and the compiler will
certainly have to compare those, probably more than once. So it’s worthwile to think of
a better representing those, for instance storing them in a seprate table and use an index
to the table as value in the token instead. That is shown in Figure 1.3.

token
lexeme token class value
a identifier 2
[left bracket
index identifier 21
] right bracket
= assignment
4 number 4
+ plus sign
2 number 2

(a) alternative

0
1
2 "a"

...

21 "index"
22

...

(b) separate table

Figure 1.3: Sample lexemes and tokens (2)

We said, that white-space characters are typically filtered out by the lexer. That does
not mean white-space is completely “meaningless” in the sense that one could add and
remove white space arbitrarily. Also that is common for most programming languages
nowadays (and most written written languages based on an lettered alphabet, like Western

1 Introduction
1.2 Compiler architecture & phases 9

languages). We will see in the chapter about lexing, that there had for instance versions of
Fortran, which treated white-space as completely meaningless. Here, in the example, as in
basically all programming languages, white space is not completely meaningless: it serves
as a form of separator. Like the string index in the example counts as one lexeme, one
unit of the overall string, which is classified as identifier in the table (the so-called token
class). If it had been written with one white space as in dex, then the scanner would
have returned two identifiers. Presumably that would make the overall string syntactically
wrong, but that’s a question for the parser to decide, not the lexer.

Note also, that index, without the white space, is marked as one identifer, not as two
or maybe 5 individual ones. That implies, that the lexer tries to find the longest stretch
of characters that can be interpreted (e.g.) as identifier, uninterrupted by white space
or other characters that are disallowed for identifiers. All that sounds obvious (because
one is so much used to it), but, as mentioned, there are different ways to interpret white
spaces (meaningless, or as separator, one may even interpret indentation, which is a se-
quence of white spaces or tabs to have some grouping meaning), to have some meaning
beyond looking nice for the programmer). Rules governing lexical aspects of the language
cover all that: what are allowed characters for identifiers, actually; what are overall the
allowed reservoir of characters (called the alphabet), what are white spaces (blanks, tabs,
newlines, carriage returns, others?), what’s a comment?

One may ask: what are then exactly lexical aspects of a language? A non-helpful and
tautological answer is: those that are dealt with by the lexer. A better answer is: those
aspects that can be captured by regular expressions. Lexer generator tools (like lex
and similar ones) are tools which allow to specify lexical aspects of a language by regu-
lar expressions, and they use that specification to generate a lexer or scanner program.
Basically, realizing a finite state automaton that performs the lexing task. What cannot
be covered by regular expressions resp. finite state automata, is handed over to the next
phase(s), the next one being the parser, which is responsible for syntactic aspects. Those
are ascpects that can be covered by some more expressive formalism, known as context-free
grammars.

1.2.3 The parser

The parser is the phase after the lexer. It is responsible for checking syntactic aspects
of the language and hand over to the next phases a intermediate representation that
captures the syntax of a syntactically correct program. This representation is called the
“syntax tree”. Actually, there are two kinds of trees involved when parsing a program,
more precisely parsing a token stream of a lexically correct program generated by the
lexer. The two forms of syntax trees are known as concrete syntax tree or parse tree
on the one hand and abstract syntax tree on the other. We we discuss these extensively
in the corresponding parts of the lecture.

Take as example the expression
a[index] = 4 + 2

again. We use it to illustrate the working of a scanner and lexemes etc. for instance in
Figure 1.2. Corresponding trees are shown in Figure 1.4. In the leaves of the parse tree
are the token that the lexer has produced. So when writing, for instance [in one of the

10 1 Introduction
1.2 Compiler architecture & phases

leaves, it’s not the character or string ‘]‘ from the corresponding lexeme, it’s meant as
the corresponding token (called right bracket in the table of Figure 1.2).

expr

assign-expr

expr

subscript expr

expr

identifier
a

[expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2

(a) Parse tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

(b) Abstract syntax tree

Figure 1.4: Syntax trees

The trees here are mainly for illustration. It’s not meant as “this is how the abstract syntax
tree looks like” for the example. In general, abstract syntax trees are less verbose that
parse trees. The latter are sometimes also called concrete syntax trees. The parse tree(s)
for a given word are fixed by the grammar. One should more precisely say “context-free
grammar” as there are also more expressive grammars, but without further qualification,
the word “grammar” often just means context-free grammar. The abstract syntax tree
is a bit a matter of design. Of course, the grammar is also a matter of design, but once
the grammar is fixed, the form of parse trees are fixed, as well. What is typical in the
illustrative example is: an abstract syntax tree would not bother to add nodes representing
brackets (or parentheses etc.), so those are omitted. In general, ASTs are more compact,
leaving out superfluous information without omitting relevant information.

When saying the grammar fixes the form of the parse-trees, it is not meant that, given
one sequence of tokens, then there is exactly one parse tree. That kind of “fixing” is not
meant, what is fixed is the general format of allowed parse trees. A grammar, where for
each input token stream, there is at most one parse tree is is called unambiguous, some
grammars are and some not. At any rate, ambigous grammars are unwelcome, and parsers
realize typically unambigous grammars. Parser generators (like yacc and similar), when
fed with an ambigous grammar as specification, will indicate so-called conflicts. That
are points where the parser has different options as reaction to an input, which is not a
good thing. The parser would typically make some form of decision (like taking just the
first option and ignoring the alternatives), but it’s not a good sign. It typically indicates
troubles with the grammar.

To avoid misconceptions: an ambiguous grammar will lead to conflicts in such tools, but
the other way around is not true: a parser may indicate conflicting situations even if the
grammar is unambigous. The reason is that parsers typically are not expressive enough
to cover all kinds of context-free grammars, not even all unambiguous ones. They focus
on more restricted classes of context-free grammars (and which class it is depends on the
chosen parser technology and how much one wants to “invest” in so-called look-aheads).
We will encounter different conflicts in the corresponding chapter.

1 Introduction
1.2 Compiler architecture & phases 11

1.2.4 Semantical analysis

The semantical analysis deals with properties more complex than the language’s syntax.
There are very many ingredients to be dealt with beyond syntax, which means, the part
that comes after parsing is often big and complicated, and cover different things. Also
the underlying principles and theories is less “uniform”, it’s more that various different
concepts come into play. One typical phase that often comes directly after parsing and thus
works directly with the AST is type checking. It can be understood as “decorating” the
AST with type information, as illustrated in the following pictures. It may not be that it’s
concretely implemented that one adds information directly into the AST structure. Often,
especially the semantic analysis phase work with some structure called symbol table that
maintains information about syntactic entities for easy consultation during the analysis.

• one standard, general outcome of semantic analysis: “annotated” or “decorated”
AST

• additional info (non context-free):
– bindings for declarations
– (static) type information

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

Figure 1.5: (One typical) result of semantic analysis

• here: identifiers looked up wrt. declaration
• 4, 2: due to their form, basic types.

As far as the assignment is concerned: One needs to check that the types are compatible,
also the resulting type, here indicated with a question mark, depends on the semantics of
the language.

Non-negotionable is, of course, to generate correct code, i.e., code that correctly and
for all program reflects the language’s intended semantics. In particular, it needs to
realize all the fancy programming abstractions the language may offer. Even variables are
abstractions, they may “feel” like changing directly the “memory” of the machines one
runs the program on, but they offer typically are already quite some level of abstraction.
Ultimately, from the perspective of the compiler and machine code, one has to operate with
addresses and perhaps the value is stored temporarily in registers. Not only have variables
symbolic names chosen by the programmer, they are also organized in scopes, there may
be local or global variable etc. Variables may be formal parameters of a procedure. All
those are very convenient abstractions, which need to be realized (by the compiler) by
managing the memory propery. Each variable access must ultimately translated in perhaps
a sequence of machine instructions, which ultimately access the current corresponding

12 1 Introduction
1.2 Compiler architecture & phases

location which holds the value of the variable. All that invisible for the programmer,
who thinks in terms of variables and has an inutive feeling of scopes and locality of the
variable, like: “x is a variable local to procedure p”. Of course, if p is called multiple times,
perhaps recursively, there are multiple instances of x to be managed at run-time. The
corresponding arrangements realized by the compiler is called the run-time environment.
Also, parameter passing needs to be arranged by the compiler, since at the lowest level of
machine code, there’s no such things as variables or “passing them”, it’s just sequences of
cleverly designed machine instructions that realize parameter passing, scoping etc.

So, the non-negotiable correctness requirement for a compiler basically means to maintain
those abstractions: the programmer thinks in terms of parameter passing: the formal
parameters are “replaced” by the actual parameters, but this is broken down to perhaps
many individual, very small steps, perhaps even shuffling around values in registers etc.
which behave, when thinking about a higher level of abstraction, like parameter passing.

Besides correctness of the generated code, there is the question, how efficient the gener-
ated code maintains the abstractions. Optimization addresses efficiency without of course
compromizing correctness. Optimization can be done in various phases of the compiler,
and also repeatedly. We don’t go too much into corresponding issues in connection with
compilers. The examples on the slide illustrate different versions of a code snippet, some
presumably more efficient than others (thus “optimized”). The word, “optimizing” is
anyway a bit of a misnomer, as a compiler that guarantees genuinely optimal code is un-
obtainable (even if one could agree on criteria to measure the quality). Independent from
that, there are influences outside the control of the compiler, which influence the efficiency
of the result. The examples shown here are on the level of source code, but often similar
“optimizations” are done (also) on lower levels, a for instance a a so-called intermediate
code level or at machine code level (or both). The improvements illustrated on the slides
here can be made systemantic with techniques called data-flow analyses. We don’t do too
much systematic data flow analysis or agressive optimization in this lecture, but we will
cover one important such analysis called liveness analysis.

1.2.5 Optimization

Like semantic analysis, optimization is a broad and diverse topic. It refers to efforts in the
compiler to produce not just correct code, but “good” correct code (fast, . . .). It often
goes hand in hand with some semantic analysis. One needs to analyze the program to
determine what if some optimization can be done.

The following example shows a transformation done a the source-code level.

t = 4+2;
a [index] = t ;

t = 6 ;
a [index] = t ;

a [index] = 6 ;

The code examples show three different “variants” of semantically the same program.
The optimizations are not very radical and complicated, but doing corresponding steps
in more complex situations can be challenging. For instance, in the steps here, it’s not
always so trivial to figure out that a value or variable is actually constant (in the example
it’s obvious).

1 Introduction
1.2 Compiler architecture & phases 13

The lecture will not dive too much into optimizations. The ones illustrated here are known
as constant folding and constant propagation. Optimizations can be done and are done
in various phases on the compiler. Here we said, optimization at “source-code level”, and
what is typically meant by that is optimization on the abstract syntax tree (presumably
at the AST after type checking and some semantic analysis). The AST is considered
so close to the actual input that one still thinks of it as “source code” and no one tries
seriously to optimize code a the input-string level. If the compiler (or a compiler-related
tool) “massages” the input string, it’s mostly not seen as optimization, it’s rather (re-
)formatting. There are indeed format-tool that assist the user to have the program is a
certain “standardized” format (standard indentation, new-lines appropriately, etc.) Also
C-style pre-processing, we mentioned before, falls into that category of massaging the
input string.

Concerning optimization, what is also typical is, that there are many different optimiza-
tions building upon each other. First, optimization A is done, then, taking the result,
optimization B, etc. Sometimes even doing A again, and then B again, etc.

1.2.6 Code generation & optimization

MOV R0 , index ; ; va lue o f index −> R0
MUL R0 , 2 ; ; double va lue o f R0
MOV R1 , &a ; ; address o f a −> R1
ADD R1 , R0 ; ; add R0 to R1
MOV ∗R1 , 6 ; ; const 6 −> address in R1

MOV R0 , index ; ; va lue o f index −> R0
SHL R0 ; ; double va lue in R0
MOV &a [R0] , 6 ; ; const 6 −> address a+R0

• many optimizations possible
• potentially difficult to automatize2, based on a formal description of language and

machine
• platform dependent

For now it’s not too important what the code snippets do. It should be said, though, that
it’s not a priori always clear in which way a transformation such as the one shown is an
improvement. One transformation that most probably is an improvement, that’s the “shift
left” for doubling. Another one is that the program is shorter. Program size is something
that one might like to “optmize” in itself. Also: ultimately each machine operation needs
to be loaded to the processor (and that costs time in itself). Note, however, that it’s
generally not the case that “one assembler line costs one unit of time”. Especially, the last
line in the second program could costs more than other simpler operations. In general,
operations on registers are quite faster anyway than those referring to main memory. In
order to make a meaningful statement of the effect of a program transformation, one would
need to have a “cost model” taking register access vs. memory access and other aspects
into account.

2Not that one has much of a choice. Difficult or not, no one wants to optimize generated machine code
by hand

14 1 Introduction
1.2 Compiler architecture & phases

Figure 1.6: Anatonomy of a compiler

The picture illustrates that there are, at the lower end of the compiler or “after” the com-
piler, different low-level representation. For instance, different flavors of “machine code”
or “assembly code”. There is also the notion of relocatable code. Relocatable it not (yet)
absolute code. The difference refers to the addresses. The addresses in relocatable code are
seen as relative. Only in absolute machine code, the addresses refer to actually addresses
in (virtual) memory. The compiler typically does not work with absolute addresses, but
relative. That’s keep open till the very end. Of course, whether using relative addresses
(in relocatable code) or absolute addresses, it’s the same program. Fixing the addresses
does not involve changing a level of abstraction. So it can be seen as a last finishing
touch or deployment after the compiler has done its work. Of course, it’s also completely
independent from the input language and the compiler. So, it’s often done by a separate
tool, known as (linker)/loader. So often, as shown in the picture, the very final stages
don’t just involves fixing absolute adresses, but also tying different pieces of code together
(linking). The story here is more for static linkers and loaders. There are also dynamic
versions and dll’s (dynamically linked libraries) etc.

1.2.7 Diverse notions in connection with compilers

Computers a complicatied (and diverse) machines. Likewise, programming languages or
languages and notations instructing computer systems are very diverse. Consequently,
compilers and related technolgies can be complicated and very diverse. Without being
overly systematic, let’s here just mention some concept in connection with compilers and
their “eco-system”.

In a compiler, one often separates front-end and the back-end. Not everyone might
agree where the dividing line between the front- and the back-end exctly is. One com-
mon separation is that everything that is platform-independent is the front-end, and the
platform-dependent part is the back-end.

One could also align the separation in front- and back-end based on the following ob-
servation. Roughly speaking, a compiler does first analysis and afterwards synthesis.

1 Introduction
1.3 Bootstrapping and cross-compilation 15

In a standard, full-blown compiler, the input is rather unstructured, simply a stream of
characters. So, in the first phases, by doing analysis, the compiler builds up more and
more complex data structures (syntax trees, control-flow graphs, dependency and conflict
graphs and what not, enriched with all kinds of information (types). So the representa-
tion gets more and more structured. In the syntesis part, all the additional structure get’s
through away, until at the end, again a very unstructured stream of bits or words come
out, as result of the synthesis.

Each mature compiler comes along with many assisting tools and infrastructure, e.g. de-
buggers, formatting tools, profiling, project management, editors and integrated develop-
ment environments, build support, etc.

One important distinction is that of compilers vs. interpeters. Some languages are
compiled, some are interpreted, for some one can do both, and often it’s not pure inter-
pretation anyway.

When speaking about compilation, one classically means translating source code to ma-
chine code for given machine. As mentioned, there are different “forms” of machine code
for one machine): executable code, relocatable code, or textual assembler code, which is
(more or less) humanly readable.

In full interpretation, on the other hand, the source code is directly executed. Since
that is rather unpractical, it’s more the syntax tree that are executed (or interpeted);
syntax-trees still count loosely as source code, since they still represent the syntax of the
program. This is often done for command languages, interacting with the OS. Normally full
interpretation is quite slower than machine code produced by a good compiler. Examples
of languagues that commenly counted among the interpreted ones are PHP, Ruby, Python,
and JavaScript.

More often than full interpeted ones, one sees compilation to intermediate code which
is interpreted. Instead of saying the intermediate code is interpreted, one also say,
the intermediate code is executed on a virtual machine. Java and the Java Virtual
Machine is one well-known example for that, but there are many other interpreted language
in that sense. The intermediate code is ideally designed for efficient execution. The
interpreted intermediate code in Java is byte code, i.e., virtual machine is a byte-
code interpreter. To some extent, the remark about a speed applies here as well,
intermediate code execution is slower that direct compilation, but typically faster than
full interpretation.

1.3 Bootstrapping and cross-compilation

Let’s just glance over this section, we will not discuss it much in class. It’s not part of the
pensum, but may be interesting nonetheless.

Bootstrapping refers to a process of “building something out of nothing”, like in the tale
from the guy that used his own bootstraps to pull himself out of a swamp. Of course one
has to “start somewhere”, dragging oneself out of the swamp by one owns bootstrap in this
way without some place to stand on is possible in some funny tale only. Bootstrapping
is also the origin of the term “to boot”, which refers to firing up a computer system by

16 1 Introduction
1.3 Bootstrapping and cross-compilation

starting its OS. That’s a multi-stage process, which gradually “escalates” from hardware,
the master boot record, boot loader etc., until the whole OS is up and running. So it
starts with a very “thin thread”, some “commands” in silicon, pulling up a thicker one,
commands in the master boot record etc. until the whole complex system is showing the
login screen or whatever the computer it is supposed to do when operational.

That sketched booting a computer system. For writing a compiler, one faces (or maybe his-
torically faced) the task: how can I write a compiler from scratch? Well, one can of course
implement the whole thing in assembler ; the hardware certainly has some instruction set,
and one can use that to implement the desired compiler.

Now, that’s a tall order; one would rather avoid using assembler (except perhaps for
carefully selected special tiny subtasks) and make use of a high-level language, with all
its abstractions and other infrastructure, like libraries, editors, configuration and version
management etc.

If such a language is not around, well: That’s the chicken-and-egg problem of bootstrapping
a compiler :

If one had a compiler executable, one could (more) easily write the compiler program
and compile that source code to an executable compiler.

Nowadays, the problem is perhaps not so pressing insofar that there are enough high-level
languages around. Assuming one is happy with C as high-level language and intends to
invent C++, one can write the first C++ compiler in C, of course, and that’s quite more
easy compared to write it in assembler.

But there had been a time, before the era of the PC and the mass-market for electronic
computers, where ordering a computer means ordering a room or cabinet of hardware, with
an instruction set (and no internet to quickly download something useful). Perhaps the
HW came with some operating system, but maybe it was kind of rudimentary compared
to modern situation, barely able to process “jobs” (by reading punchcards perhaps) and
controling other peripherals.

In such a situation, no compiler for a high-level language may be available, or perhaps
not for the particular machine (or maybe not even any high-level language yet, bevause
one is the first one, who not only proposes to use high-level languages, but who actually
tries to implement one). That’s where bootstrapping for compiler comes in: instead of
writing the production-quality compiler from scratch in assembler (which is too tough)
and instead of writing the compiler for the newly design language in the language itself
(which makes no practical sense), one goes gradually. One starts with a simple version of
some relevant aspects of the planned language, leaving out optimizations, etc., until that
rudimentary compiler exists. One then starts writing in that new language better or more
comprehensive versions of that language etc., until one has a decent stable version that is
strong enough to compile itself without much reliance on assembler to rely on.

Historically, the development of the language C went hand-in-hand with the development
of Unix, insofar it was a larger bootstrapping problem than just a compiler. How to develop
a modern and at that time revolutionary operating system together with a compiler that
can compile C programs and can compile the operating system itself, on which then the C

1 Introduction
1.3 Bootstrapping and cross-compilation 17

programs run. . . . Note that the fact that the OS is written (for most part) in a high-level
language is enormously important, as it allows portability (!). If every OS had to be written
totally from scratch, there would be no portability across different hardware platforms.
And, as with compilers and languages, there had been a time where non-portability was
the norm.

1.3.1 Tombstone diagrams

The compilation process is here illustrated with so-called T-diagrams or tombstone dia-
grams which is some “graphical” representation of the compilation process, mentioning the
input language, the output language, and the language in which the compiler is represented
as the three arms of the “T” (see Figure 1.7).

S T

H

Figure 1.7: T-diagram: translating source to target language in a host language

To apply such a setting, the host “H” should be executable, i.e., it represents a compiler
executable for which one has a platform to execute on, either in native code, or a interpreter
or byte code etc. The “S”, the source of the translation is typically given as source code,
i.e., in a format not directly executable. The target format “T” then is then typically an
executable format, like machine code or a format that can be run on an interpreter or
virtual machine, like byte code. But there also exists source-code compilation, translating
perhaps code in one high-level language into source code of another one.

Assuming one has written compiler for a given language A, where the compiler is written
in B, for which one has a executable compiler on some platform H, then that compiler
yields an executable compiler for A, as well. For instance, writing the first C++ compiler
in C, and using an existing C compiler executable to get a executable C++ compiler.

There are two ways to compose those T-digrams (see Figure 1.8).

A B

H

B C

H

A C

H

(a)

A B

H H K

M

A B

K

(b)

Figure 1.8: Composition of T-diagrams

Basically, one can chain the results of a compiler, or compile the compiler code itself.
The first notion of composition is fairly obvious, it’s just functional composition: if one
can translate from A to B and from B to C, all using the host language H or host
machine/platform), then one also can translate from A to C, still written in H (see Figure
1.8a).

18 1 Introduction
1.3 Bootstrapping and cross-compilation

The second form of composition is not much more complex (see Figure 1.8b). One can use
the second compiler to compile H; in this scenario, H is typically not yet an executable,
but the compiler is given in some more high-level format, So one compiles the compiler
source code H. So, given a compiler from A to B in H, obviosly, if one can translate H
to K, provided one has an appropriate compiler for that, say in host-language or platform
M .

For instance, if one has a compiler that translates Java to Java byte-code, and that compiler
is written in C, then obviosly one can a executable byte-code compilator by using a
standard C-compiler and

Java byte code

C C Intel m. code

C compiler exec.

Java byte code

Intel m. code

Figure 1.9: Composition of T-diagrams: compiling compiler code

As mentioned earlier, one very plausible scenario is also to use an existing “old” language
to compiler for a new language and to use the existing language’s compiler executable to
get an executable for the new language (see Figure 1.10.

A H

B B H

H

A H

H

Figure 1.10: Compiler executable for a “new” language

That’s the same diagram as form Figure 1.8b, (“compile-a-compiler”), more precisely a
special case, with the letters shuffled around a bit. The interpretation is that one is given
some platform or language H, for which one likes to implement a compiler of a “new”
language A. To do so, i.e., as language in which the compiler is written, one chooses
an “old” language B. “Old” in the sense that there exists already a compiler on H
and translating to H. Not surprisingly, if you use that compiler (the right-hand “T”) to
compile the newly written one, one get a compiler for the new language on the host H
and compiling to H.

1.3.2 Pulling oneself up on one’s own bootstraps

Now it’s time to look at bootstrapping again. That can be seen as situation from before
in Figure 1.10, except that we replace B by A. In other words, we try to use the “new”
language to write a compiler for itself. That’s some kind of circularity which sounds
suspicious. If you have already a working compiler (on H) for the new language, why
would you use it to compile the compiler for A (and written in A)? And where does the
compiler on H come from in the first place? The whole process however, is very common
and is known as bootstrapping.

1 Introduction
1.3 Bootstrapping and cross-compilation 19

bootstrap (verb, trans.): to promote or develop . . . with little or no
assistance
— Merriam-Webster

A H

A A H

H

A H

H

(a) Compiler for A in A + compiler for
A in machine code

A H

A A H

H

A H

H

(b) Compiler for A in A + compiler for
A produced in the first stage

Figure 1.11: Bootstrapping

There is no magic here (see Figure 1.11). Let’s assume we have desiged a new language
A and we have written a compiler for A in A itself (see the leftmost tombstone in Figure
1.11a). Now the problem is, how to get that compiler up and running on a some given
platform, say H?

We cannot create a compiler out of nothing, we have to start from somewhere. So let’s
assume we have some simplistic, quick-and-dirty (Q&D) compiler for A running on H. So
we need that machine-code compiler (the second tombstone) but it does not mean that we
have to write that Q&D compiler in machine code from scratch. Of course we can use the
approach explained before that we use an existing language with an existing compiler to
create that machine-code version of the Q&D compiler. Only if we are really the pioneers
doing the first high-level language ever, there’s no way around and we need to write it
assembler. But it does not need to be efficient, maybe not even covering all features of A,
only the ones we used in writing our compiler for A.

At any rate, the outcome (the third, light-grey tombstone in Figure 1.11a, is a working
compiler for A, only that it’s not optimized, since the code we used to compile the compiler
was just good enough to produce a correct outcome, without putting much effort on
optimization.

Now, with a working executable compiler available, one can continue with stage 2, see
Figure 1.11b. The outcome of that stage, the third, darker tombstone in Figure 1.11b, is
another compiler executable for A. The compilation process resulting in that version may
be slower than one would expect, but one need to do it only once. The resulting compiler
is now produces fast code and is perhaps itself fact (assuming that when programming the
compiler for A in A itself, one took care to include fancy optimization into the compiler).
Of course there is always a balance: if one includes many agressive the optimizations in
a compiler to produce fast code and/or code with a small memory footprint, then the
compilation itself typically takes longer.

1.3.3 Porting and cross compilation

Assume there is a new platform H1 and we want to get a compiler for our new language
A for H2 (assuming we have one already for the old platform H1). It means that not only
we want to compile onto H1, but also, of course, that our compiler has run on H2. These

http://www.merriam-webster.com/dictionary/bootstrap

20 1 Introduction
1.3 Bootstrapping and cross-compilation

are two requirements: (1) a compiler to H2 and (2) a compiler to run on H2. That leads
to two stages.

A H2

A A H1

H1

A H2

H1

(a) Stage 1

A H2

A A H2

H1

A H2

H2

(b) Stage 2

Figure 1.12: Cross-compilation

In a first stage, we “rewrite” our compiler for A, currently targeted towards H1, to the new
platform H2. If structured properly, it will only require to port or re-target the so-called
back-end from the old platform to the new platform. If we have done that, we can use our
executable compiler on H1 to generate code for the new platform H : 2. That’s known as
cross-compilation: use platform H1 to generate code for platform H2 (see Figure 1.12a).
But now, that we have a (so-called cross-)compiler from A to H2, running on the old
platform H2, we can use it to compile the retargeted compiler again (see Figure 1.12b)!

Not always is one interested in the second stage, porting the executable new compiler to the
new platform. It may be that the new platform is resource restricted like a small embedded
systems chip or part of a special purpose system. In that case it may not be possible or
not part of the intended usage to run a compiler on it. So one simply uses the original
platform H1 to generate code for H2, say some control software the embedded system.
Similary, if such special purpose settings, the source language may likewise be special,
maybe a domain-specific language for control software running on embedded systems, to
stick to the example. In that case, the language may not be ideal to program a compiler,
i.e., instead of implementing the language A in A itself, one would implement A in some
other languge B. Also that would be cross-compilation.

Bibliography
Bibliography 21

Bibliography

[1] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles,
Techniques and Tools. Pearson,Addison-Wesley, second edition.

[2] Appel, A. W. (1998a). Modern Compiler Implementation in Java. Cambridge Univer-
sity Press.

[3] Appel, A. W. (1998b). Modern Compiler Implementation in ML. Cambridge University
Press.

[4] Appel, A. W. (1998c). Modern Compiler Implementation in ML/Java/C. Cambridge
University Press.

[5] Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis,
A. J., Rutishauser, H., Samuelson, K., Wegstein, B. V. J. H., van Wijngaarden, A.,
and Woodger, M. (1963). Revised report on the algorithmic language ALGOL 60.
Communications of the ACM, 6:1–17.

[6] Chomsky, N. (1956). Three models for the description of language. IRE Transactions
on Information Theory, 2(113–124).

[7] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[8] DeRemer, F. L. (1971). Simple lr(k) grammars. Communications of the ACM, 14(7).

[9] Hopcroft, J. E. (1971). An n log n algorithm for minimizing the states in a finite
automaton. In Kohavi, Z., editor, The Theory of Machines and Computations, pages
189–196. Academic Press, New York.

[10] Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In
Automata Studies, pages 3–42. Princeton University Press.

[11] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

[12] Rabin, M. and Scott, D. (1959). Finite automata and their decision problems. IBM
Journal of Research Developments, 3:114–125.

[13] Thompson, K. (1968). Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419.

22 Index
Index

Index

ambiguous grammar, 10
architecture, 4
architecture of a compiler, 4
assembler, 13

back end, 14
back-end, 20
basic type, 11
binding, 11
boot loader, 16
booting, 16
bootstrapping, 16, 17
byte code, 15

C language, 17
C-preprocessor, 5
code generation, 13
command language, 15
compiler

architecture, 4
fully optimizing, 3
phases, 4

constant folding, 12
constant propagation, 12
context-free grammar, 9
cost model, 13
cross compilation, 20
cross-compilation, 20
cross-compiler, 16

debugging, 5, 14

error localization, 5

finite-state automaton, 7
front end, 14
full employment theorem, 3
full employment theorem for compiler writ-

ers, 3
fully optimizing compiler, 3

grammar
ambiguous, 10

Halting problem, 3
halting problem, 3

intermediate code, 15
interpreter, 15

just-in-time compilation, 15

lexer, 7
linker, 14
liveness analysis, 12

macros, 6

object orientation, 15
optimization, 3, 12, 13

code generation, 13

parse tree, 10
parser, 9
phases of a compiler, 4
pre-processor, 6
preprocessor, 5
profiline, 14
program length, 13

register, 13
regular expressions, 9
regular language, 7
Rice’s theorem, 3

S2S compiler, 4
scanner, 7
semantic analysis, 11
semantical analysis, 11
source-to-source compiler, 4
static analysis, 11
syntax tree, 10

T-diagram, 17
tombstone diagram, 17
type, 11

Unix, 17

	Contents
	Introduction
	Motivation: What is compiler construction good for?
	Compiler architecture & phases
	Pre-processor
	Scanner or lexer
	The parser
	Semantical analysis
	Optimization
	Code generation & optimization
	Diverse notions in connection with compilers

	Bootstrapping and cross-compilation
	Tombstone diagrams
	Pulling oneself up on one's own bootstraps
	Porting and cross compilation

