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2.1 Introduction

The scanner or lexer is the first phase of a typical compiler, leaving out preprocess-
ing, which is more seen as something that happens “before” the compiler does its job.
What a lexer does is also called lexical analysis, basically chopping up the input string
into smaller units (so-called lexemes), classifying them according to the lexical rules of
the language being implemented, and handing over the results of that chopping-up-and-
classification to the parser in a stream of so-called tokens.

The theory underlying lexers is that of regular languages. Typically, lexical aspects of a
language are specified using some variant of regular expressions. The lexer program
then has to implement that specification, in that it is able to read in the source program (it
scans it) and the checks it for compliance with the specification. At the same time, it does
the chopping-and-classification task mentioned (it tokenizes the input string). Checking
for compliance with regular expressions is done via finite-state machines. Finite-state
machines are equivalent to regular expressions insofar that they can describe the same
class of languages. Here, “language” is meant as sequence of characters from an alpha-
bet. Regular expressions are declarative in nature (hence more useful for specification),
whereas finite-state automata are more operational in nature, hence used in implementing
a scanner. We discuss how to translate regular expressions to automata. The reverse
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translation is also possible (and easy), but we won’t discuss that, as it’s not needed for a
compiler. The lex tool actually does just that: the users specifies the lexical aspects of
the language to compile and lex generates from that the lexer for that language, based
on the theory of regular expression and finite state automata. Actually, tools like lex do
a bit more, which mostly has to do with with support to generate tokens and to interface
properly with the parser. Parsing will be covered in subsequent chapters.

2.1.1 Scanner section overview

A scanner is the part of a compiler that takes the source code as input and translates this
stream of characters into a stream of tokens (see Figure 2.1). Working with the source
code, it’s the first phase of a compiler (leaving aside possible pre-processing).

Lexer token streamsource code

Figure 2.1: Input and output of a lexer

Characters are typically language-independent, but perhaps the encoding (or its interpre-
tation) may vary, like ASCII, UTF-8, also Windows-vs.-Unix-vs.-Mac newlines etc. In
contrast, tokens are already language-dependent, in particular, specific for the grammar
used to describe the language. There are, however, large commonalities across many lan-
guages. Many languages support, for instance, strings and integers, and consequently, it’s
plausible that the grammar will make use of corresponding tokens (perhaps called INT
and STRING, the names are arbitrary, like variable names, but it is a good idea to call the
token representing strings STRING or similar. . . ). Tokens are not just language-specific
wrt. the language being implemented. They show up in the implementation, i.e., they are
specific to the meta-language used to implement the compiler.

We said the input of a scanner is the source code. That’s a bit unspecific. It’s often a
“character stream” or a “string” (of characters). Practically, the argument of a scanner
is often a file name or an input stream or similar. Or the scanner in its basic form takes
a character stream, but it “alternatively” also accepts a file name as argument (or even
an url). In that case, of course, the string of the file name is not scanned as source code,
but it’s used to access the corresponding file, whose content is then read in in the form
of a string or whatever. As scanner works from left to right to its input. That is not a
theoretical necessity, but that’s how also humans consume or “scan” a “source-code” text.
At least those humans trained in e.g. Western languages.

Other names for a scanner are lexical scanner or lexer for short, or tokenizer.

The scanner reads in the input character stream, and it segments it and classifies the
individual pieces. So it chops up the character stream into small pieces (called lexemes),
it cleassifies lexemes, resulting in tokens, and returns then one after the other, in the form
of a token stream (see again Figure 2.1).

In the introductory chapter, we have seen some typical lexical categories and we will see
further examples later. In general, typical language aspects covered by the scanner are
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• reserved words or key words
• comments
• white space
• Further standard token classes:

– format of identifiers, representing variables, methods, . . .
– format of different numerical representations

The scanner is a piece of software to perform the sketched task. It’s a straightforward
task. We will look at from the outside, namely how to specify the different lexical aspects
of a language. For that, one uses regular expressions (see Section 2.2).

The lexical “rules” often also involve (explicit or implicit) priorities. For instance, given a
lexeme that match the regular expression for identifiers or the one for a keyword, it will be
classified as keyword. Another priority is typically, that the scanner chooses the longest
possible scan that yields a valid token.

The implementation of a lexer is based on finite-state automata. We will encounter
different closely related variation of the concept, in particular deterministic and non-
deterministic ones, and see how regular expressions can be presented by a non-deterministic
finite state automata (NFAs) (see Section 2.5) and how NFAs can be turned into deter-
ministic finite-state automata (DFA, see Section 2.6). As a rule of thumb: Everything
about the source code which is so simple that it can be captured by regular expressions
resp. finite state automata belongs into the scanner.

lexer specification = regular expressions (+ priorities), a lexer implemen-
tation is based on finite-state automata

In this lecture, we will use a parser and lexer generating tool (a variant of lex and yacc),
and the representation of the specification of the tokens is specific to the chosen tool.

Let’s schematically look at how scanning roughly works, for instance scanning the input
string a[index] = 4 + 2.

Figure 2.2 illustrates the status of the scanner after reading the first character, i.e., after
reading a. A usual invariant in such pictures (by convention) is that the arrow or reading
head points to the first character to be read next and thus after the last character having
been scanned/read last.

Concerning the head in the pictures: it’s for illustration, the scanner does not really have
a “reading head”. In the scanner program or procedure, the reading head is represented by
a specific variable. The name of the variable depends on the scanner/scanner tool. And
there is an analogous invariant: the variable contains or points to the next character to
be read.

The picture of a reading head may be reminiscent of the typical picture illustrating Turing
machines (which is not a coincidence). But a “reading head” is is not just a theoretical
construct. In the old times, program data may have been stored and read from magnetic
tape. Very deep down, if one still has a magnetic disk as opposed to an SSD, the secondary



4 2 Scanning
2.1 Introduction

. . . a [ i n d e x ] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q2

Reading “head”
(moves left-to-right)

Figure 2.2: Scanner machine

storage still has “magnetic heads”, only that the compiler typically does not scan or parse
directly char by char from disk. . .

2.1.2 Lexical aspects & the bad(?) old times: Fortran

Standard responsibilities of the scanner is to take care of white space and of so-called
reserved words. Basically, the scanner ignores the whitespaces in that it will hop over
them and in particular will not turn them into “whitespace” tokens. To highlight the
functionality , we have a look at Fortran and how there whitespace is dealt with, at least
in older version. In a way is used to show how whitespace should not be treated . . .

Figure 2.3: Fortran punch card

One should not forget that Fortran is a seriously ancient programming language, devel-
oped in the days of the pioneers. Main memory was seriously smaaaaaaaaaall, compiler
technology was not well-developed (or not at all), and programming was for very few
experts. There was no computer science as profession or university curriculum, so there
was no textbook to consult how to do a compiler or a lexer. At that time Fortran was
considered a high-level language (“wow, a language so high-level that you have to compile
it . . . ”), indeed the first “widely” used high-level programming language.

The treatment of whitespace there was that it was completely without meaning. In the
sense: it does not matter if there is a white space or not at every point in the source code.
For example, the following to lines are equivalent:
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I F( X 2. EQ. 0) TH E N vs. IF ( X2. EQ.0 ) THEN

The treatment of reserved words is another lexical aspect that one would nowadays do
differently. Indeed, Fortran did not have reserved words! For instance, IF and THEN
represents parts of a conditional statement, but the words are not reserved for that use.
I.e., the following would be tolerated, where for instance THEN is used as variable.1

IF (IF.EQ.0) THEN THEN=1.0

Also the following are both lexically (and syntactically) correct

DO99I=1,10 vs. DO99I=1.10

The comma corresponds to specifying the bounds of a loop, as in the following code
DO 99 I =1 ,10

−
−

99 CONTINUE

For the treatment of whitespace It’s in a way like in the super-old days when there was
no “white space” in writing (for instance ancient Latin) and it entered manuscripts (in
Latin or emerging Western European languages) only slowly. It proved helpful in reading
for humans, of course.

Over time, also programming languages adopted a more “helpful” treatment of lexical
aspects. Remember that one core task of scanning is segmenting the input, and white
space can help there. If one treats white space as “basically not there” and thus absolutely
meaningless, one does human readability a big disfavor: humans are used to white space
since the times of no-white-space texts are long gone. One reason why initially Fortran
treated white space like that was perhaps: it may have been the easiest thing to do: if
the scanner reads a white space, do nothing and proceed. Or perhaps the motivation
was to allow “compact programs”. It allowed the expert programmers to write programs
without wasting precious memory for “white space” in the source code. Note that in
the conventional interpretation of white space nowadays, white space does not exactly
represent “nothing” in that one can put it in or out without changing the meaning. White
space has no meaning by itself but terminates preceding non white space.

That treatment is so conventional, that most compilers use more or less the same definition
of “white space” though there is typically not only one “white space” character. There is
tabs, spaces, and then there is different “end-of-line” representations (carriage-return, end-
of-line, newline). In a way, things like “carriage-return” CR and “tabulation command” is
anyway a hold-over from the times of the mechanical and electrical type-writer era: at the
beginning, the input and output peripheral devices connected to a computer were not just
trying to behave like type-writer in software, there were actually sort of type-writers (and

1To figure out that the first THEN is part of a conditional and the second one a variable is not done by
the scanner, that would be the task of the parser. But the scanner nowadays would classify the THEN
as reserved word, and the parser would not allow assignments to reserved words, but to (non-reserved)
identifiers only.
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built in many cases by IBM at any rate. . . ) and one needed some encoding of files to drive
them or read input from them: the encoding for the “bell character” actually may result
in banging on a small copper bell. . . Standard devices like tty are likewise remembrance
of real hardware teletype (typewriter-style) terminals. Since those codes are part of the
ASCII-code (from the 60ies), those “characters” or “symbols” are here to stay. . .

There are other “unconventional” ways to deal with white space. For instance, one could
make the decision that indentation (via “tabbing” or otherwise) has a meaning, as op-
posed to be another example of whitespace. Python is an example of a language, where
indentation is “meaningful” and the lexer (and parser) must be aware of that.

Proper and improper indentation is sometimes also layed down in style guides. It’s more
like a recommendation for programmers to follow for writing “pretty programs”. Imm-
proper indentation would make no semantic difference on the compilation (as would be
the case in Python), it’s just frowned upon as bad taste. Perhaps the compiler would
mutter some criticism or warning about the uglyness of the program. A lexer to sup-
port checking of some stylistic guidelines and proper formatting would have to distinguish
between different things commonly just treated as whitespace. That’s not surprising, as
those tools focus on how nice the program looks (to the user). There are formatting tools
(for instance gofmt for go) that transforms a program is a nicely written one that follow
the stylistic guidelines.

A formatting tool is similar to a pretty printer. A pretty printing is a functionality on
abstract syntax; it allows to inspect the parsed version of a program, printed out in a nice
way. It’s not necessary (but perhaps desirable) that the pretty-printed program formatted
following stylistic guidelines (if there are any). It’s not even necessary that the pretty-
printed program is a program at all, the pretty-printer may add additional information,
helpful for someone debugging the parser and designer of the abstract syntax tree, perhaps
decorated already. Also the parser may have already do very small pieces of rearranging
the code. For instance, the language may offer the user different looping constructs, like
while-loops and repeat-until-loops. These are different constructs in concrete syntax and
have thereby different concrete parse-trees. but the parser may output both kind of loop
in the abstract syntax tree as one kind of loops, maybe a while-loop. That may be done
for uniformity, having less cases to deal with in subsequent phases. There are limitations
what can be achieved in such transformations by the lexer and the parser, so only quite
simple simplifications can be done early one. In the example of the loops, one would say,
repeat-until is treated as syntactic sugar.

Things like massaging the code slightly (or adding helpful extra information) is not done
by formatting tools. At any rate: formatting tools are more for users, pretty printers are
more for compiler writters, that want to look at internal representations (like ASTs).

The lecture will neither be concerned with the stone-age treatment of white-space as in old
Fortran,2 nor with the more elaborate ways discussed afterward. In the oblig, as simplistic
“pretty printer” will be part of the task (though the pretty-ness of the output won’t be a
priority).

The treatment of white space is mostly a question of language pragmatics. Pragmat-
ics deals with non-formal questions like “what’s helpful for humans that program in a

2Also Fortran (of course) has evolved from the pioneer days . . . .
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language”, what’s “user-friendly syntax”. Lexers/parsers would have no problems using
while as variable, but humans tend to. Pragmatics for instance also deals with questions
like “how verbose should a language design be”, how much syntactic sugar it should offer,
etc. In COBOL, the designer’s presumably thought it’s user-friendly to write addition as
ADD y TO z GIVING x (for x:=y+z), so that the programmar can avoid math notation
and use “ordinary language”. But not everyone prefers programming in that style.

In general, in such questions, there is mostly no commonly agreed best answer, and it
depends also on what kind of user one targets and to some large part on the personal
taste, education, and experience of the programmer.

Sometimes, the part of a lexer / parser which removes whitespace (and comments) is
considered as separate and then called screener. It’s not a very common terminology,
though.

2.1.3 Classifying lexemes into tokens

Besides segmenting input character stream into pieces and ignoring comments and whites-
pace, the lexer is tasked with classifying the pieces. The terminology is not 100% uniform,
but most would agree:

Lexemes are the “chunks” (pieces) the scanner produces from segmenting the input
source code (and typically dropping whitespace and comments). Tokens are the
result of classifying those lexemes. And token (generally) is a pair consisting of the
token name and a token token value.

What is a good classification depends also on later phases and it may not be clear till
later, but as a rule of thumb: Things being treated equal in the syntactic analysis, i.e., by
the parser, should be put into the same category.

On the other hand, it’s not too complex either. Programming languages may be vastly
different as far as their syntax, semantics, style of programming, application area(s) etc.
are concerned. As far as their lexical aspects are concerned, they share a great deal of
commonalities. Maybe not in details, but in principle. There will be a notion of whitespace,
there will be comments, though how they are written may vary. Languages will probably
have keywords and will have identifiers. Whether the language refers to them as keywords
and identifiers or uses a different terminology it’s not so important, but languages have
variables, constants and other “things” that are referred to by name (classes, methods,
functions, modules etc.).

Of course details depends on the particular language, like what exactly is allowed as
identifier. Are digits, underscores, or dot’s allowed as part of an identifier or not? If
so, presumably an identifier is not allowed to start with those. Is it allowed to use two
underscores in a row? . . . The designer may make the decision to work with different classes
of identifiers, like some consisting of only lower-case characters (plus digits perhaps) and
with identifiers (starting with or consisting only of) capitals (plus digits perhaps). That
could be done to use the small-letter identifiers for variables and functions, the capital-
letter identifiers for other purposes (classes, modules).
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While the details may be different, depending on the language, they all share that the
classification can be done via regular expression. It’s not a law of nature that, for instance,
comments are done by the lexer resp. can be captured by regular expressions. Assume
a language that supports comments, specifying the begin and the end of a comment. In
Java, for instance one can use /* comment */. What is not allowed is to have nested
comments, like

/∗ Comment text
/∗ some inner comment text ∗/

∗/

Listing 2.1: Nested comments

There are language which allow nested comments, but the vast majority does not. If one
really wanted nested comments, a consequence would be: the lexer can no longer take
care of them. To deal with “nested” situations like that cannot be captured by regular
expressions or finite state machines (at least if one allows arbitrary nesting instead of
specifying : “comments can be nested but only up to level 32”). Dealing with nesting is
very typical for the parser, like expressions consists of sub-expression etc, but the lexer
is too weak to handle that. Nestin is part of the syntactic structure, not the lexical
structure.

That virtually no language supports nesting of comments (and virtually all let the lexer
deal with them) is a question of language pragmatics. It’s just that there is not big need to
have nested comments. As a consequence, of course, a good (beginner’s) advice is: don’t
comment out code . . .

Similar remarks apply also to identifiers and whitespace and other aspects: regular ex-
pressions are just fine to describe them, no one knows whay “nested whitespace” could be
useful for.

Coming back to the classification, Table 2.1 shows one plausible one.

name/identifier abc123
integer constant 42
real number constant 3.14E3
text constant, string literal "this is a text constant"
arithmetic op’s + - * /
boolean/logical op’s and or not (alternatively /\ \/ )
relational symbols <= < >= > = == !=

all other tokens: { } ( ) [ ] , ; := . etc.
every one it its own group

Table 2.1: A possible classification

Note in the classification: there is an overlap: "." is here a token, but also part of real
number constant. Also "<" is part of "<=". Finally, keywords like if and while are
also identifiers.

That refers to some aspect of the lexical analysis, that was refered to earlier, namely that
the scanner has to deal with priorities. With the classification from Table 2.1, if one has
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some sequence <=, then, without further elaboration, the < part of the string could be
seen as representing the relation “less” and the subsequent symbol as equality. Whether
or not that makes sense is not for the scanner to decide, the scanner just chops up the
string into pieces, and then the subsequent parser may complain that it’s syntactically
not allowed to have to relation symbols side by side (or not complain, depending on the
grammar).

In that particular situation, language pragmatics would suggest that <= is not chopped-up
but treated as one chunk, i.e., one lexeme, namely representing the relation less-or-equal.

The same principle also apply to other entries in the classification. For instance abc123
is intended in most languages as one identifier, not as abc followed by the number 123,
or even more weiredly by three identifiers followed by three separate digits).

So, the “priority” is: prefer longer lexemes over shorter ones with white-space as possible
terminator, unlike as in old Fortran, as discussed earlier.

Earlier we said that a token is a pair consisting of a token name and a token value. Not all
tokens actually do have a value. Especially, the reserved “words” or keywords don’t have
a value. For instance if or while are represented by one token each, without a value
attached, same for line called “all other tokens”.

For the operations and relations, it’s more a matter of taste and design. And also perhaps
of the language used to implement the lexer (the meta-language). In Table 2.1, for instance,
the operators +, -, *, and / are listed on the same line.

One could seem them as the same token class, perhaps with a token name like AOP (for
arithmetic operator) and one of 4 different token values. Alternatively, one can also see
them as four different tokens (without value), perhaps with token name like PLUS, MINUS,
TIMES, and DIV.

It does not make any real difference, one way or the other it’s 4 different tokens in this case.
Ultimately the tokens are data items that need to be implemented in the meta-language,
using data structures available in that language.

If one uses an object-oriented language, one can do the following: tokens themselves defined
by classes (i.e., as instance of a class representing a specific token, and the token values as
attribute or instance variable in When discussing the oblig, we will give hints on how to
do it and how it’s concretely represented in the version of lex/yacc we suggest to use.

Often a scanner does slightly more than just classification, it stores names in some table
and store a corresponding index as attribute, it store text constants or literals in some
table, and store the corresponding index as attribute. One may even calculate numeric
constants and store their value as attribute.

2.1.4 How to define lexical analysis and implement a scanner?

Even for complex languages, the lexical analysis is in principle not hard to do. So a
“manual” implementation is straightforwardly possible. Likewise the specification of the
different token classes) may be given in “prosa”. However: there are straightforward
formalisms and notations available as well as efficient, rock-solid tools. This makes it
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easier to specify the lexical aspects unambigously. It makes it also easier to communicate
the lexical definitions to others and easier to change and maintain the scanner. That’s
often done hand in hand with the parser; see the paragraph about parser generators
below.

Prosa specification

A precise prosa specification is not so easy to achieve as one might think. For ASCII
source code or input, things are basically under control. But what if dealing with unicode?
Checking “legality” of user input to avoid SQL injections or similar format string attacks
can involve lexical analysis/scanning. If you “specify” in English: “ Backlash is a control
character and forbidden as user input ”, which characters (besides char 92 in ASCII) in
Chinese Unicode represents actually other versions of backslash? Note: unclarities about
“what’s a backslash” have been used for security attacks. Remember that “the” backslash-
character in OSs often has a special status, like it cannot be part of a file-name but used
as separator between file names, denoting a path in the file system. If one can “smuggle
in” an inofficial (“chinese”) backslash into a file-name, one can potentially access parts of
the file directory tree in some OS which are supposed to be inaccessible. Attacks like that
have been used.

Anyway, Figure 2.4 is an excerpt from some earlier year’s oblig, concerning the lexical
conventions for compila 20 Anyway, it’s an example of a prosa specification, and the oblig
involves writing a lexer for that. Since the lexer is supposed to be based on a lex-style
tool, this means, one has to capture the prosa text in the regular language format of the
chosen tool (for instance JLex). The lexical part does not really change over the years, or
only in minor aspects, but better wait for the official 2022 specification.

Figure 2.4: Sample prosa specification
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Parser generator

Those tools are all based on the same principles, they work roughly similar and can
generate parsers for the same class of languages (language in the theoretical meaning of sets
of words over an alphabet): the lexers cover some (extended) form of regular expressions
and the parser does some form of bottom-up parsing, known as LARL(1) parsing. This
form of parser/lexer generators inspired by lex/yacc is the bread-and-butter, standard
version. The overview at Wikipedia over different such tools is pretty long.

The most famous pair of lexer+parser tools is called “compiler compiler” (lex/yacc = “yet
another compiler compiler”) since it generates (or “compiles”) an important part of the
front end of a compiler, the lexer+parser. lex/yacc originate from C, there are also gnu-
versions around (called flex and bison). Those kinds of tools are seldomly called compiler
compilers any longer. Many other languages ship with a corresponding pair of tools. In
the lecture 2020, someone from the audience mentioned Alex & Happy (for Haskell) and
one oblig groups used that, ocaml has ocamllex/ocamlyacc, similar for other ML versions
and other languages. Java, for some reason, does not ship with such a pair of tools; they
exist though. Notably there is JLex and CUP.

2.2 Regular languages and regular expressions

Regular expressions and regular languages are a very well-known concept and, with vari-
ations, used in different applications, inside compilers or outside, for instance as input
notation to search engine interfaces. They are supported by many editors and text pro-
cessing facilties specifying search patterns for pattern matching, and much more. They are
also part of system tools and utilities, starting from classical ones like awk or sed), but
also tools like grep or find (or general “globbing” in shells). For instance, the following
lists all (La)TeX files, more precisely all files whose file name starts arbitrary and ends
with .tex.

find . -name "*.tex"

Many programming languages, notably “scripting” languages offer extensive support for
working with regular expressions and extended regular expressions. Besides that, they
have been studied theoretically and there are also imporant generalizations (which are
outside of the scope of the lecture).

In the lecture, we start focusing on the classic, vanilla core regular expressions. For
usability and convenience, one often likes to offer extra syntax, that makes the use of
regular expression more convenient. The lex-style tools do that, for example. Adding
more constructs to a language for convenience without really extending the expressivity
of a languages in this way is sometime called “syntactic sugar” (we have mentioned that
concept earlier).

Other practical extensions of regular expressions may fall outside that classification: some-
times one really likes to add expressivity. Those extensions are sometimes called “extended

https://en.wikipedia.org/wiki/Comparison_of_parser_generators
https://www.haskell.org/alex/
https://www.haskell.org/happy/doc/html/sec-using.html
https://en.wikipedia.org/wiki/Glob_(programming)
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regular expression”, and those may still keep central aspects and the feel of regular ex-
pressions, but being actually more expressive, fall outside the formalisms that captures
regular languages. We will look at some abbreviations that fall into the “syntactic sugar”
category, but won’t venture into genuine extensions (which are technically not longer pure
regular expressions, as said).

Practically, for the oblig, one has to cope with the concrete syntax and posibilities of the
chosen lexer generator, for instance, JLex.

2.2.1 The role of regular expressions inside the scanner: the bigger picture

The construction of the parser itself is conceptually split in a sequence of steps. We cover
each of them later, but preview the architecture here shortly.

As mentioned and as fleshed out later, regular expressions are used to describe or
specify a language’s lexical aspects. Regular expressions, though, is a declarative or non-
executable way to decribe those lexical aspects. They don’t represent directly a way that
can be “run” in order to scan a sequence of characters.

For that, one uses finite state automata. It’s a formalism or machine model that in-
cludes states and transitions, and that can directly be represented in any programming
language. Thus, one needs a way to translate a regular expression into such an automaton.
The translation first translates to non-deterministic finite automan (NFA) (see Section
2.5). Being non-determistic makes that model not really useful for scanning. Thus, in a
second step, the NFA is translated to a DFA, a deterministic finite-state automaton (see
Section 2.6 covering determinization). Those deterministic machines can straightfor-
wardly be implementated. However, typically, in a last step, one tries to reduce the size
of the DFA by a process called minimization (see Section 2.7).

All those steps are done automatically by a “lexer generator”. They also help also in other
user-friendly ways of specifying the lexer: defining priorities, assuring that the longest
possible lexeme is tokenized

A lexer generator may even prepare useful error messages if scanning (not scanner gener-
ation) fails, i.e., when running the scanner on a lexically illegal program. Of course, if the
scanner generation itself fails, also there meaingful errors messages and giving reasons for
the failure are welcome. A final source of error could be: the scanner generation produces
a scanner, which is supposed to be a Java or C or whatever kind of program, and that
one is incorrect, maybe syntactically incorrect or ill-typed. Would that imply the lexer
generator tool is broken? Not necessarily. The lex and yacc tools have a mechanism to
inject Java (or or C or whatever) code into the generated output, for instance type and
class definitions and import and package specifications, and the programmer may make
errors there, resulting in an incorrect scanner code.

The classification in step 2 is actually not directly covered by the classical results that
stating reg-expr = DFA = NFA, it’s something extra. The classical constructions presented
here are used to recognise (or reject) words. As a “side effect”, in an actual implementation,
the “class” of the word needs to be given back as well, i.e., the corresponding token needs
to be constructed and handed over (step by step) to the next compiler phase, the parser.
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2.2.2 Alphabets and languages

Languages, regular or otherwise, are sets of words and words a sequences of characters.

Definition 2.2.1 (Alpabet Σ). Finite set of elements called “letters” or “symbols”
or “characters”.

Definition 2.2.2 (Words and languages over Σ). Given alphabet Σ, a word over
Σ is a finite sequence of letters from Σ. A language over alphabet Σ is a set of
finite words over Σ.

Practical examples of alphabets include ASCII, Norwegian letters (capitals and non-
capitals) etc.

In this lecture: we avoid terminology “symbols” for now, as later we deal with e.g. symbol
tables, where symbols means something slighly different (at least: at a different level).
Sometimes, the Σ is left “implicit” (as assumed to be understood from the context).

Remark 2.2.3 (Symbols in a symbol table (see later)). In a certain way, symbols in a
symbol table can be seen similar to symbols in the way we are handled by automata or
regular expressions now. They are simply “atomic” (not further dividable) members of
what one calls an alphabet. On the other hand, in practical terms inside a compiler,
the symbols here in the scanner chapter live on a different level compared to symbols
encountered in later sections, for instance when discussing symbol tables. Typically here,
they are characters, i.e., the alphabet is a so-called character set, like for instance, ASCII.
The lexer, as stated, segments and classifies the sequence of characters and hands over
the result of that process to the parser. The results is a sequence of tokens, which is what
the parser has to deal with later. It’s on that parser-level, that the pieces (notably the
identifiers) can be treated as atomic pieces of some language, and what is known as the
symbol table typically operates on symbols at that level, not at the level of individual
characters.

2.2.3 Some general remarks on languages and how to describe them

A language over a alphabet is a set of words of the given alphabet (see Definition 2.2.2.
Σ is typically finite, words are of finite length, but languages are in general infinite sets
of. Finite languages are boring and trivial.

Example 2.2.4. Assume a two-lettered Σ = {a, b}. Let’s write ε for the empty word, i.e.
the empty sequence of letters, and let ab mean “ first a then b ” etc.

Remark 2.2.5 (Words and strings). In terms of a real implementation: often, the letters
are of type character (like type char or char32 . . . ) words then are “sequences” (say
arrays) of characters, which may or may not be identical to elements of type string,
depending on the language for implementing the compiler. In a more conceptual part like
here we do not write words in “string notation” (like "ab"), since we are dealing abstractly
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{} (also written as ∅) the empty set
{a, b, ab} finite language with 3 words
{ε} (6= ∅) language containing one word
{ε, a, aa, aaa, . . .} infinite languages, all words using only a ’s
{ε, a, ab, aba, abab, . . .} alternating a’s and b’s
{ab, bbab, aaaaa, bbabbabab, aabb, . . .} ??

Table 2.2: Some languages over Σ

with sequences of letters, which, as said, may not actually be strings in the implementation.
Also in the more conceptual parts, it’s often good enough when handling alphabets with
2 letters, only, like Σ = {a, b}. One-letter alphabets are uninteresting, let alone 0-letter
alphabets. But 2 letters are often enough to illustrate some concepts. 3 letter alphabets
may not add mach as far as “theoretical” questions are concerned. That may be compared
with the fact that computers ultimately operate in words over two different “bits” .

Remark 2.2.6 (Finite and infinite words). There are important applications dealing with
infinite words, as well, or also infinite alphabets. For traditional scanners, one mostly is
happy with finite Σ ’s and especially sees no use in scanning infinite words. Of course,
some character sets, while not actually infinite, are large or extendable (like Unicode or
UTF-8).

Languages are simply sets of words and that begs the question, how to describe languages
concretely. The last 3 languages from Table 2.2 are infinite languages and are given using
“dot-dot-dot” (. . .). That’s not a good way to describe a language to a computer (and
to humans) what is meant. And enumerating explicitly all allowed words for an infinite
language does not work either.

Needed: A finite way of describing infinite languages (which is hopefully effi-
ciently implementable & easily readable).

Beware: Is it apriori to be expected that all infinite languages can even be captured in a
finite manner?

Remark 2.2.7 (A metaphor: Rational and irrational numbes). The remark here draws a
parallel drawn from a field you may know, numbers. Also numbers need to be represented
notationally, for instance in decimal notation. Let’s take the reals. They can be repre-
sented by a finite sequence of decimals, followed by a dot, followed by an infinite sequence
of digits. Consider the following two numbers:

2.727272727 . . . 3.1415926 . . . (2.1)

The first number from equation (2.1) is a rational number. It corresponds to the fraction

30
11 . (2.2)

That fraction is actually an acceptable finite representation for the “endless” notation
2.72727272... using “. . . ” As one may remember, it may pass as a decent definition of
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rational numbers that they are exactly those which can be represented finitely as frac-
tions of two integers, like the one from equation (2.2). We may also remember that it is
characteristic for the “endless” notation as the one from equation (2.1), that for rational
numbers, it’s periodic. Some may have learnt the notation

2.72 (2.3)

for finitely representing numbers with a periodic digit expansion (which are exactly the
rationals). The second number, of course, is supposed to be π, one of the most famous
numbers which do not belong to the rationals, but to the “rest” of the reals which are not
rational and hence called irrational. Thus it’s one example of a “number” which cannot
be represented by a fraction, resp. in the periodic way as in equation (2.3).

Well, fractions may not work out for π (and other irrationals), but still, one may ask,
whether π can otherwise be represented finitely. That, however, depends on what actually
one accepts as a “finite representation”. If one accepts a finite description that describes
how to construct ever closer approximations to π, then there is a finite representation of
π. That construction basically is very old (Archimedes), it corresponds to the limits one
learns in analysis, and there are computer algorithms, that spit out digits of π as long as
one wants (of course they can spit them out all only if one had infinite time). But the
code of the algorithm that does that is finite.

The bottom line is: it’s possible to describe infinite “constructions” in a finite manner,
but what exactly can be captured depends on what precisely is allowed in the description
formalism. If only fractions of integers are allowed, one can describe the rationals but not
more.

A final word on the analogy to regular languages. The set of rationals (in, decimal
notation) can be seen as language over the alphabet {0, 1, . . . , 9 .}, i.e., the decimals
and the “decimal point”. It’s however, a language containing infinite words, such as
2.727272727 . . .. The syntax 2.72 is a finite expression but denotes the mentioned infinite
word (which is a decimal representation of a rational number). Thus, coming back to the
regular languages resp. regular expressions, 2.72 is similar to the Kleene-star, but not the
same. If we write 2.(72)∗, we mean the language of finite words

{2, 2.72, 2.727272, . . .} .

In the same way as one may conveniently define rational number (when represented in
the alphabet of the decimals) as those which can be written using periodic expressions
(using for instance overline), regular languages over an alphabet are simply those sets of
finite words that can be written by regular expressions (see later). Actually, there are
deeper connections between regular languages and rational numbers, but it’s not the topic
of compiler constructions. Suffice to say that it’s not a coincidence that regular languages
are also called rational languages (but not in this course).

2.2.4 Regular expressions

Without further ado, here the definition of regular expression. Later we will represent the
same definition in a different fashion, using a (context-free) grammar.
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Definition 2.2.8 (Regular expressions). A regular expression is one of the following
1. a basic regular expression of the form a (with a ∈ Σ), or ε, or ∅
2. an expression of the form r | s, where r and s are regular expressions.
3. an expression of the form r s, where r and s are regular expressions.
4. an expression of the form r∗, where r is a regular expression.

In other textbooks, also the notation + instead of | for “alternative” or “choice” is a
known convention. The | seems more popular in texts concentrating on grammars. Later,
we will encounter context-free grammars (which can be understood as a generalization of
regular expressions) and the |-symbol is consistent with the notation of alternatives in the
definition of rules or productions in such grammars. One motivation for using + elsewhere
is that one might wish to express “parallel” composition of languages, and a conventional
symbol for parallel is |. We will not encounter parallel composition of languages in this
course. Also, regular expressions using lot of parentheses and | seems slightly less readable
for humans than using +.

Regular expressions as language

A regular language is a language that can be described by regular expressions, so reg-
ular expressions is a notation for regular languages. However, regular expressions is a
language itself. Without actually adding more to the concept of regular expression as
given in Definition 2.2.8, in the following we discuss issues with regular expression as no-
tation or language. This is partly also done in preview to later chapters about grammars
and parsing. So the discussion here may be appreciated better after we have introduced
grammatical issues like the one we touch upon here.

What issues are we talking about? That will be (context-free) grammars, associativity
and precedence, and a bit about abstract vs. concrete syntax. All those concepts will
covered in more depth in the later chapter, but let’s use the regular expression notation
for a warm up.

Regular expressions is a notation, i.e., a language consisting of symbols over some alphabet,
that can be combined to “words”. Some of the words are legal regular expressions and
some not. For instance

| | | a

is a word from the alphabet of regular expression, but it’s not a regular expression, it does
not adhere to the syntax of regular expressions.

Regular expressions as notation have a syntax (and a semantics). One could write a lexer
(and parser) to parse a regular language. Obviously, tools like parser generators do have
such a lexer/parser, because their input language are regular expressions (and context free
grammars), besides syntax to describe further things. One can see regular languages as a
domain-specific language for tools like (f)lex (and other purposes).

Context-free grammars cover the syntax of a language, not the lexical aspects. So let’s de-
scribe syntax of regular expression by a grammar (without actually bothering to introduce
the concept of context-free grammars explicitly, that’s for later).
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A “grammatical” definition The essence of Definition 2.2.8 could be captured by a “rule
system” as follows

r → a
r → ε
r → ∅
r → r | r
r → r r
r → r∗

(2.4)

It’s an example for a context-free grammar. We will see more than enough context-free
grammars in the form of equation (2.4) resp. the more compact forms that follow. They
will be central to parsing and their definition and format will be explained in detail at
that point. Here, we use the context-free grammar notation (known as BNF) to describe
one particular notation, namely the notation known as regular expressions.

To save space, one typically would not list each rule or production in a single line, but could
compress the presentation a bit. Later, for CF grammars, we use mostly capital letters to
denote “variables” of the grammars (then called non-terminal symbols or non-terminals
for short). If we like to be consistent with that convention in the parsing chapters and
use capitals for non-terminals, and writing it more compactly, the grammar for regular
expression looks as follows:

Definition 2.2.9 (Regular expressions as CFG). Assume an alphabet Σ. The
syntax of regular expression is given by the following grammar

R → a | ε | ∅ basic reg. expr.
| R | R | RR | R∗ compound reg. expr.

(2.5)

This is just a more “condensed” representation of the grammar we have seen before. In
particular note the two “different” versions of the | symbol: one as syntactic element for
regular expressions, one as symbol used in context-free grammars on the meta-level, used
to describe the syntax of regular expressions. Though these levels are clearly separated,
the intended meaning of the symbol is kind of the same, it represents “or”.

Symbols, meta-symbols, meta-meta-symbols . . . So, regular expression is a notation
or language to describe (regular languages over a given alphabet Σ (i.e. subsets of Σ∗.
Regular expressions have their own alphabet, which contains |, ∗ among other symbols.
So the is a language being described and a language used to describe the language. So
there’s a gap between

language ⇔ meta-language

Here, the language is regular expressions as a notation to describe regular languages,
and as meta-language, we use English (for instance in Figure 2.4) resp. a notation for
context-free grammars, a notation here used to describe regular expressions.
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With two levels of languages around, that begs the question, how to distinguish between
them. If we use a prosa specification, it’s not a big deal, English is English and symbols are
symbols. Howecer, regular expressions and the context-free grammar notation not so much
different.3 We hinted at that already pointing out that in the grammar from Definition
2.2.9, the | is used as part of the language as well as part of the meta-language.

There is (resp will be another) level. It’s not only the syntax level of the language (here
regular expression) but also what regular expression mean, the semantics of regular
expression. We already know what regular expressions are supposed to mean, namely
regular languages, and we should have a good intuitive feeling what concrete language a
concrete regular expressions expressed; the semantics will be nailed down more explicitly
in Section 2.2.5 afterwards.

For the regular expressions syntax, we use boldface font. a. For the semantics, we use
non-boldface, so the meaning of the notation a is the letter a. The regular expression
syntax for the empty word ε is ε, the notation for the empty set ∅ is ∅ etc.

That may sounds like a bit hairsplitting, like saying the notation 0 stands for the number
0. Splitting hairs like this is like a déformation professionelle of compiler writers. The
distinction between language and meta-language as well as the distinction between the
language and what it represents is sharply felt.

The distinction between language and meta-language in compiler implementations, is very
real (even if not done by typographic means as in the script here or textbooks . . . ): the
programming language being implemented need not be the programming language used
to implement that language (the latter would be the “meta-language”). For example
in the oblig: the language to implement is called “Compila”, and the language used in
the implementation will (for most) be Java. Both languages have concepts like “types”,
“expressions”, “statements”, which are often quite similar. For instance, both languages
support an integer type at the user level. But one is an integer type in Compila, the other
integers at the meta-level. They may be quite similar, but, looking at the fine-print they
are different, like their relationship to or compatibility with other tymes, perhaps their
inner representation etc. The distinction may look blurred if one writes a compiler for a
language in the language itself, something we discussed as bootstrapping a compiler, but
it’s still there.

Also the distinction for syntax and what it represents is very real. That’s the very essence
of a compiler, translate a notation into something else that executes which is the “meaning”
of the syntactic program (never mind that outcome of the compilation can be talked about
in a different, lower level notation, for instance representing the instruction set of some
chip). That distinction already applies to a notation like 0 and what it represents (above
we just wrote 0). In practice, it will be some bit pattern of some length, and the compiler
has to arrange for that representation.

Remark 2.2.10 (Regular expression syntax). We are rather careful with notations and
meta-notations, at least at the beginning. Note:

3Later we make more explicit in which way actually context-free language are strictly more expressive as
regular languages and in which way a regular expression can be seen as a restricted form of context-free
grammars.
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Later, there will be a number of examples using regular expressions. There is a slight
“ambiguity” about the way regular expressions are described (in this presentation, and
elsewhere). It may remain unnoticed (so it’s unclear if I should point it out here). On
the other hand, the lecture is, among other things, about scanning and parsing of syntax,
therefore it may be a good idea to reflect on the syntax of regular expressions itself.

In the examples shown later, we will use regular expressions using parentheses, like for
instance in b(ab)∗. One question is: are the parentheses ( and ) part of the definition
of regular expressions or not? That depends a bit. In the presentations like the one here
typically one often would not care, one tells the readers that parentheses will be used for
disambiguation, and leaves it at that (in the same way one would not bother to tell the
reader that it’s fine to use “space” between different expressions (like a | b is the same
expression as a | b). Another way of saying that is that textbooks, intended for human
readers, give the definition of regular expressions as abstract syntax as opposed to concrete
syntax. Those two concepts will play a prominent role later in the grammar and parsing
sections and will become clearer then. Anyway, it’s thereby assumed that the reader can
interpret parentheses as grouping mechanism, as is common elsewhere, as well, and they
are left out from the definition not to clutter it. Note also that the non-grammar-based
definition of regular expression from Definition 2.2.8 does not mention parentheses.

Of course, computers and programs (i.e., in particular scanners or lexers for instance those
of tools dealing with regular expressions), are not as good as humans to be educated in
“commonly understood” conventions, So one does not explicitly inform the reader that
“paretheses can be added for disambiguation if wished”.) Abstract syntax corresponds to
describing the output of a parser (which are abstract syntax trees). In that view, regular
expressions (as all notation represented by abstract syntax) denote trees. Since trees in
texts are more difficult (and space-consuming) to write, one simply use the usual linear
notation like the b(ab)∗ from above, with parentheses and “conventions” like precedences,
to disambiguate the expression. Note that a tree representation represents the grouping
of sub-expressions in its structure, so for grouping purposes, parentheses are not needed
in abstract syntax.

Of course, if one wants to implement a lexer or to use one of the available ones, one has
to deal with the particular concrete syntax of the particular scanner. There, of course,
characters like ′(′ and ′)′ (or tokens like LPAREN or RPAREN) will typically occur.

To sum up the discussion: Using concepts which will be discussed in more depth later, one
may say: whether paretheses are considered as part of the syntax of regular expressions
or not depends on the fact whether the definition is wished to be understood as describing
concrete syntax trees or abstract syntax trees!

See also Remark 2.2.13 later, which discusses further “ambiguities” in this context. Later
(when gotten used to it) we may take a more “relaxed” attitude towards it, assuming
things are clear enough by then, as do many textbooks.

Precedences and associativity Parentheses can be used for grouping, as discussed, but
they don’t need to be added. Thus leads to the second mentioned issue that will show
up later when discussing grammars and parsing. That’s the question of precedences and
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associativity. Those concepts are used to allow to not use parentheses and still make clear
how to interpret a piece of syntax repre means, here regular expressions. For instance
clarifying what a | bc means, is it (a | b)c or a | (bc). The latter one is the common
interpretation, and that is tolds the reader by saying that concatenation has a higher
priority or binding power than |. Another question is, what to make out of a | b | c,
(a | b) | c or a | (b | c)? In this case it does no actually matter in the sense that either
way it represents same regular language {a, b, c}. If one wants the first interpretation, one
would specify “| associates to the left” or “| is left-associative”.

Precedence of the operators of regular expressions is, from high to low: ∗, con-
catenation, |. The |-operator is left-associative, concatenation is right-associative.

By “concatenation”, the third point in the enumeration is meant. It is written or rep-
resented without explicit concatenation operator, just as juxtaposition, like ab is the
concatenation of the characters a and b, and also for concatenating whole words: w1 w2.
See also the remarks in connection with Example 2.2.13.

2.2.5 Semantics (meaning) of regular expressions

Definition 2.2.11 (Regular expression). Given an alphabet Σ. The meaning of a
regexp r (written L(r)) over Σ is given by equation (2.6).

L(∅) = {} empty language
L(ε) = {ε} empty word
L(a) = {a} single “letter” from Σ
L(rs) = {w1w2 | w1 ∈ L(r), w2 ∈ L(s)} concatenation
L(r | s) = L(r) ∪ L(s) alternative
L(r∗) = L(r)∗ iteration

(2.6)

Note: left of “=”: regular expressions, i.e. syntax, right of “=” its semantics or meaning.
4

The definition may seem a bit over the top. One could say, the meaning of the regular
expression is clear enough when described in simple prose. That may actually be the
case. But seeing it as obvious just means, regular expressions and the meaning of such an
expression, which is the set of words it describes, is likewise straightforward. Nonethless,
we make the “effort” to define the meaning. First of all, precision does not hurt, within
a compiler lecture and outside. In other situations, the question of “what does it mean”,
i.e., the question of semantics, become more pressing. One can ask the same question
about later other formalism, like the meaning of context-free grammars. Thirdly, in this
simple situation, the description of the meaning of a language hopefully makes the different
levels more clear: the syntactic level (symbols) and the semantic level resp. the meta-level

4Sometimes confusingly “the same” notation.
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(math). Of course, “math” is a discipline which has its own symbols and notations.
In this particular case of regular expressions, they are pretty close. And of course the
description of the semantics using math assumes that the reader is familiar with those
notations, so that a definition like L(r | s) = L(r)∪L(s) is helpful or more compact than
an English description. But of course, it just a way of saying “the regular expression
symbol | means set union”. Indeed, another motivation is that this form of semantic
definition is a form of translation, i.e., “compilation”. In this case from one notational form
(regular expression) to another one (mathematical notation, whose meaning is assumed to
be clear). Semantics and translations from one level of abstraction to another one are also
needed for programming languages themselves, though we don’t go there in this lecture.
For instance, in the oblig, the compila language has to be translated to a lower level. We
could have specified the semantics of compila more formally, though the definition would
be much more complicated (and probably use different techniques) than the semantics of
regular languages. We could even be more ambitious: not only define the semantics of
compila, but also define the semantics of the language it is compiled to. That would be
some form of “byte-code” in our lecture. After having defined both levels of semantics, one
could establish that both semantics do the same. That would be the question of compiler
correctness. There are attempts of having a provably (!) correct compiler, though that
is pretty complex, And even more complex than a verified compiler would be a verifying
compiler. That problems is on the list of the so-called grand challenges in computer
science.

2.2.6 Examples

In the following, we assume as alphabet Σ = {a, b, c}, and we aready start relaxing and
no longer bother sometimes to “boldface” the syntax

words with exactly one b (a | c)∗b(a | c)∗
words with max. one b ((a | c)∗) | ((a | c)∗b(a | c)∗)

(a | c)∗ (b | ε) (a | c)∗
words of the form anban,
i.e., equal number of a’s
before and after 1 b

Example 2.2.12 (Words that do not contain two b’s in a row). Let’s assume a three-letter
alphabet Σ = {a, b, c}. The following regular expression

(b (a | c))∗ (2.7)

describes a language which contains only words that do not contain two b’s in a row, but
it is too restricted, in that it does not contain all such words over the given alphabet. One
thing that’s wrong with equation (2.7) is that b occurs alternatiningly: the words start
with b, then an non-b, then b again, etc (or a prefix thereof). Furthermore, a word can
never end with a b.

The following does not do strict alternation

((a | c)∗ | (b (a | c))∗)∗ (2.8)
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but the way it’s formulated it allows to contain two or more b’s in a row. Equation (2.9)
shows a few equivalent formulations capturing the intended property.

((a | c) | (b (a | c)))∗
(a | c | ba | bc)∗

(a | c | ba | bc)∗ (b | ε)
(notb | b notb)∗(b | ε) where notb , a | c

(2.9)

Remark 2.2.13 (Regular expressions, disambiguation, and associativity). Note that in
the equations in the example, we silently allowed ourselves some “sloppyness” (at least for
the nitpicking mind). The slight ambiguity depends on how we exactly interpret definitions
of regular expressions. Remember also Remark 2.2.10 on page 18, discussing the (non-
)status of parentheses in regular expressions. If we think of Definition 2.2.8 on page 16 as
describing abstract syntax and a concrete regular expression as representing an abstract
syntax tree, then the constructor | for alternatives is a binary constructor. Thus, the
regular expression

a | c | ba | bc (2.10)

which occurs in the previous example is ambiguous. What is meant would be one of the
following

a | (c | (ba | bc)) (2.11)
(a | c) | (ba | bc) (2.12)

((a | c) | ba) | bc , (2.13)

corresponding to 3 different trees, where occurences of | are inner nodes with two children
each, i.e., sub-trees representing subexpressions. In textbooks, one generally does not
want to be bothered by writing all the parentheses. There are typically two ways to
disambiguate the situation. One is to state (in the text) that the operator, in this case
|, associates to the left (alternatively it associates to the right). That would mean that
the “sloppy” expression without parentheses is meant to represent either (2.11) or (2.13),
but not (2.12). If one really wants (2.12), one needs to indicate that using parentheses.
Another way of finding an excuse for the sloppyness is to realize that it (in the context of
regular expressions) does not matter, which of the three trees (2.11) – (2.13) is actually
meant. This is specific for the setting here, where the symbol | is semantically represented
by set union ∪ (cf. Definition 2.2.11 on page 20) which is an associative operation on sets.
Note that, in principle, one may choose the first option —disambiguation via fixing an
associativity— also in situations, where the operator is not semantically associative. As
illustration, use the ’−’ symbol with the usal intended meaning of “subtraction” or “one
number minus another”. Obviously, the expression

5− 3− 1 (2.14)

now can be interpreted in two semantically different ways, one representing the result 1,
and the other 3. As said, one could introduce the convention (for instance) that the binary
minus-operator associates to the left. In this case, (2.14) represents (5− 3)− 1.
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Whether or not in such a situation one wants symbols to be associative or not is a judge-
ment call (a matter of language pragmatics). On the one hand, disambiguating may make
expressions more readable by allowing to omit parentheses or other syntactic markers
which may make the expression or program look cumbersome. On the other hand, the
“light-weight” and “easy-on-the-eye” syntax may trick the unsuspecting programmer into
misconceptions about what the program means, if unaware of the rules of associativity and
priorities. Disambiguation via associativity rules and priorities is therefore a double-edged
sword and should be used carefully. A situation where most would agree associativity is
useful and completely unproblematic is the one illustrated for | in regular expression: it
does not matter anyhow semantically. Decisions concerning when to use ambiguous syntax
plus rules how to disambiguate them (or forbid them, or warn the user) occur in many
situations in the scannning and parsing phases of a compiler.

Now, the discussion concerning the “ambiguity” of the expression (a | c | ba | bc) from
equation (2.10) concentrated on the |-construct. A similar discussion could obviously
be made concerning concatenation (which actually here is not represented by a readable
concatenation operator, but just by juxtaposition (= writing expressions side by side)). In
the concrete example from (2.10), no ambiguity wrt. concatenation actually occurs, since
expressions like ba are not ambiguous, but for longer sequences of concatenation like abc,
the question of whether it means a(bc) or a(bc) arises (and again, it’s not critical, since
concatenation is semantically associative).

Note also that one might think that the expression suffering from an ambiguity concern-
ing combinations of operators, for instance, combinations of | and concatenation. For
instance, one may wonder if ba | bc could be interpreted as (ba) | (bc) and b(a | (bc)) and
b(a | b)c. However, in Definition 2.2.11 on page we stated precedences or priorities, stating
that concatenation has a higher precedence over |, meaning that the correct interpreta-
tion is (ba) | (bc). In a text-book the interpretation is “suggested” to the reader by the
typesetting ba | bc (and the notation it would be slightly less “helpful” if one would write
ba|bc. . . and what about the programmer’s version a b|a c?). The situation with prece-
dence is one where difference precedences lead to semantically different interpretations.
Even if there’s a danger therefore that programmers/readers mis-interpret the real mean-
ing (being unaware of precedences or mixing them up in their head), using precedences
in the case of regular expressions certainly is helpful, The alternative of being forced to
write, for instance

((a(b(cd))) | (b(a(ad)))) for abcd | baad

is unappealing even to hard-core Lisp-programmers (but who knows ...).

A final note: all this discussion about the status of parentheses or left or right assocativity
in the interpretation of (for instance mathematical) notation is mostly is over-the-top for
most mathematics or other fields where some kind of formal notations or languages are
used. There, notation is introduced, perhaps accompanied by sentences like “parentheses
or similar will be used when helpful” or “we will allow ourselves to omit parentheses if
no confusion may arise”, which means, the educated reader is expected to figure it out.
Typically, thus, one glosses over too detailed syntactic conventions to proceed to the more
interesting and challenging aspects of the subject matter. In such fields one is furthermore
sometimes so used to notational traditions (“multiplication binds stronger than addition”),
perhaps established since decades or even centuries, that one does not even think about
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them consciously. For scanner and parser designers, the situation is different; they are
requested to come up with the notational (lexical and syntactical) conventions of perhaps
a new language, specify them precisely and implement them efficiently. Not only that:
at the same time, one aims at a good balance between expliciteness (“Let’s just force
the programmer to write all the parentheses and grouping explicitly, then he will get less
misconceptions of what the program means (and the lexer/parser will be easy to write
for me. . . )”) and economy in syntax, leaving many conventions, priorities, etc. implicit
without confusing the target programmer.

2.2.7 Additional “user-friendly” notations

r+ = rr∗

r? = r | ε

Special notations for sets of letters:

[0− 9] range (for ordered alphabets)
~a not a (everything except a)
. all of Σ

naming regular expressions (“regular definitions”)

digit = [0− 9]
nat = digit+

signedNat = (+|−)nat
number = signedNat(”.”nat)?(E signedNat)?

The additional syntactic constructs may come in handy when using regular expressions,
but they don’t extend the expressiveness of the formalism. That’s pretty obvious by the
way the extensions are defined. Note that we don’t explain the meaning or semantics of
the new constructs in the same way as for the core constructs (defining L and giving their
mathematical interpretation). Instead, we expand the new constructs and express them
in terms of the old syntax. They are treated as syntactic sugar, as one says.

Tools, utilities, and libraries working with regular expression (like lex) typically support
sugared versions, though the exact choice of notation for the construct may vary.

As mentioned, there are also so called extended regular expressions, where the exten-
sions make the formalism more expressive than the core formalism. Consequently, those
extensions are not syntactic sugar then.

One could look at the collection of constructors for the syntax of regular language, in-
cluding the sugar, and wonder whether there aren’t some missing. For example, we have
in the language a form of “or” (disjunction), written |, one could ask, why not an “and”
(conjuction, intersection), for instance. That’s indeed interesting, insofar it is an example
which is not syntactic sugar on the one hand, but on the other hand does not extend
the expressiveness for real. If one had regular expressions containing an “and”, then one
can alway find a different regular expression with the same meaning, without the “and”.
However, the transformation would not be of the same nature than for the syntactic sugar
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we added: the conjunction cannot just be expanded away; consequently one would not
call that addition syntactic sugar. There exists other constructs that are non-sugar but
do not add expressiveness (negation or complementation for example).

Mostly, such constructs like intersection or complementation are not part of the regular
expression syntax, though theoretically, one would not leave the class of regular languages
(= languages that can be expressed by regular expressions). Why are those then left out?
It’s probably a matter of pragmantics. One does not really need them for many things one
want to do with regular expressions, like describing lexical aspects of a language for a lexer
(for other applications that may be different). One wants to classify strings, and one is
content by saying “It’s whitespace (which is is this or this or this), or it’s a number, or it’s
an identifier, or a bracket . . . ”. Given also the fact that adding conjuction or negation or
other non-sugar ingredients would make the some following constructions more complex,
there is no real motivation to support conjunction. By the “following constructions” I
mean basically the translation of a regular expressions into a (non-deterministic) finite-
state automaton. This translation, called Thompson’s construction, will be covered later
in this chapter. A tool like lex does this construction (followed by other steps). The
construction is fairly simple, but adding conjuction and complementation would drive up
the size of the resulting automata. For intersection, for instance, one would needed a form
of product construction, which is also conceptually more complex than the straightforward,
compositional algorithm underlying Thompon’s construction. Actually, it would not be so
bad, since if one avoid using conjuction or negation, the size of the result would not blow
up, so the reason, why regular expressions don’t typically support those more complex
operators is that pragmatically, no one misses them for the task at hand, at least not for
lexers.

Ordered alphabet

We have defined an alphabet as a (finite) set of symbols. In practice, alphabets or character
sets are not just sets, which are unordered, but are seen as ordered. Each symbol of the
alphabet has a “number” associated to it (a binary pattern) which corresponds to its place
in order in the sequence of symbols. One of the simplest and earliest established ordered
alphabets in the context of electronic computers is the well-known ascii alphabet. See
Figure 2.5.

Having the alphabet ordered is one thing, having a “good” order or arrangement is a
different one. The reference card shows some welcome properties, for instance, that all
lower-case letters are contiguous and in the “expected” order, same for the capital case
letters. Since the designers of ascii arranged it in that way, one can support specifying
all lower-case letters as [a-z] and capital case letters as [A-Z]. What does not work
is having all letters as [a-Z], since, in ascii, the letters are not arranged like that. The
capital letters come before the lower case letters, but also [A-z] would not work as
intended, as there is a “gap” of other symbols between the lower-case and the upper-case
letters. Isn’t that stupid? Actually not, the arrangement as made clear in the figure, is
such that the operation of turning a lower-case letter to a upper-case latter a matter of
flipping bits. Another rational decision is to place the decimal numbers “align” partly
with their binary representions. It’s not that 0, 1, etc. are exactly the corresponding
bit patterns, but at least parts of the word correspond to the binary pattern. Anyway,
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Figure 2.5: ASCII reference card

details like that don’t matter too much for us, but one has to be aware of the concept
of ordered alphabets as such, in order to specify, for example, all letters as [a-zA-Z]
(or [A-Za-z]). Many encodings are nowadays extensions or variations of ascii, and also
for those, specifications like [a-z] work. For instance, UTF-8. As a side remark: Ken
Thompson (the one from Thompon’s construction) was involved in working out UTF-8,
an encoding that includes ASCII insfar that it’s identical with ASCII in its first part. Of
course, there are very many variations of UTF (and Unicode symbol set, of which UTF is
a encoding scheme),

There are however, also alternatives to ascii, not just extension. One is Extended Binary
Coded Decimal Interchange Code (EBCDIC) (actually also for EBCDIC, there are many
variation). EBCDIC is perhaps mostly of historic interests as it is supported mainly
by IBM mainframes and larger such computers. I mention EBCDIC here, because the
encoding has the unfortunate property, that, for instance, capital letters are not contiguous
(what where the thinking. . . ). For such an encoding, of course, things like [A-Z], make no
sense. The encoding would have other negative consequences, for instance, sorting a list of
words is more tricky (or at least less efficient). However, EBCDIC still lives on, there exist
Unicode encodings based on that (as opposed to based in extensions of ascii like UTF-8),
which concequently are called UTF-EBCDIC. Once, some things are standardized, they
never die out completely (and actually EBCDIC just inherits properties of punchcards,
which existed before the modern electronic computer, to the new area. In that context, it’s
not a coincidence that IBM which was a big name in “punchcard processing equipment”
and stuck to aspects of the encoding when it became a big name in electronic computers
and mainframes.

2.3 Finite state automata (DFAs and NFAs)

In this section and the following we introduce the very central notion of finite state au-
tomata and cover their close relation to regular expression. Finite state automata are
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well-studied and play an important role also beyond their use for lexing. There are many
different variations of finite state automata, also under different names. Such automata
in their classic form are pretty simple objects, basically some graphs with labelled edges,
and some nodes are singled out as start or initial nodes and some as final or accepting
nodes. What makes such “graphs” automata or machines is their operational interpre-
tation, they are seen as mechanisms that “run” or do steps. The nodes of the “graph”
are seen as states the machine can be in. The edges are transition. It’s assumed that
“executions” of the machine starts in one of the initial states, and when in one final state,
the execution ends, more precisely, can end. The mental picture of some entity, being in
some discrete state, starting somewhere, doing steps or transitions one after the other is
of course super-general and very unspecific. Basically all mechanized computing can be
thought of operationally that way, going from one state to a next one and so on.

As the name indicates, specific here is that the number of states are finite. That’s a
strong restriction. Finite state automata are an important model of computation. It is
also a model for hardware circuits, more specifically discrete, “boolean” circuits not analog
hardware. It’s clear that a binary circuit can be only in a finite number of states, and finite
state machine are a good model for describing such hardware. The automata in that case
are a bit more elaborate than the ones we use here, in particular, one would use automata
that don’t have a unstructured alphabet, but one would conceptually distinguish between
input and output (though possible on the same alphabet). There are different ways one can
do that. Typically, the edges carry the output, whereas on can connect the output to the
states, or alternatively to the edges, as well. Those two styles of finite-state input/output
automata are called Moore-machines (= output on the state) resp. Mealy-machines (=
output on the transitions). The two different models would also require different styles of
hardware realization, but those things are not important for us.

For lexing, we are handling automata with an unstructured alphabet, without distinguish-
ing input from output. Such single-alphabet automaton can be “mentally seen” that the
edges generate the letters (i.e., the letters are the output). With this view, a given au-
tomaton generates a language, i.e., the set of all sequences of letters that lead from an
initial to an accepting state. Alternatively, one can see the letters on the edges as input;
in this view, such machines are seen as recognizers or acceptors. The final states of an
automaton are also called accepting states. Anyway, that view of acceptors is also the
appropriate one for lexing or scanning. The letters of the alphabet are the characters from
the input and the machine moves along and accepts a word (a lexeme of the language
being scanned), and the accepting state corresponds to the token classes (for instance, an
indentifier, or a number etc.).

Coming back to the issue of finite state I/O automata we brushed. Actually, the lexer in
the context of a compiler can be seen as involving input and output. The characters are
the input, and the token (token class and token value) are outputs and parsing a file means
making iterated use of that arrangement, handing over a token stream to the parser.

We (as basically all compiler books) focus on the classic theory of finite state automata,
ignoring as far as the theory is concerned, the token-output part. This is also the part,
which connects with the regular expression from before. Regular expressions specify the
lexical aspects of the language, and finite state automata are the execution mechanism to
accept the corresponding lexemes. Of course, concretely, tools like lex need to arrange
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also for the token-output part, but if one has the input-part under control, there is not
much to understand there.

One important aspect is the question determinism vs non-determinism. Determinism in
computational situations mean: there is (at most) one next state (or one reaction, on
possible result . . . ). Non-determinism means, there is potentially more than one, the
future is not determined. For finite state automata, it’s more precisely as follows: Given
a state and given an (input) symbol, say a, there is (at most) one successor reachable via
an a-transition. One can also say: there is at most one a-successor. In other words, the
current state and the input determines the next state (if any).

That’s highly-desirable in a lexer: the lexer scans one letter after the other, and its
not supposed to make guesses how to proceed. Doing so would lead do the danger of
backtracking: in case the guess turns out to rejecting the input later down the line the
lexer has to try to explore alternatives to find out if any of this could lead to accepting
the input nonetheless. That’s a horrible way to scan the input.

The good news is: one can avoid that. Intuitively the way to do it is to replace an
non-determistic automaton by a different, but equivalent one, that conceptually explores
all alternatives “at the same time”. The determinization algorithm is known as powerset
construction and is pretty straightforward and pretty natural.

Side remark 2.3.1 (Determinisation of automata-like formalisms). Determinization of
FSAs will be covered in Section 2.6. Here, already, as some side remarks, As we will see,
the construction is, as said, straightforward and natural However, strangely perhaps, it
works not universally. For instance, there are other automata-based formalisms that look
quite similar. One such is finite-state automata that doen’t work in finite words (as we do)
but infinite words. Or finite-state automata that work in trees (either working top-down
or bottom-up). We will not encounter those.

What we will encounter, though, is a particular form of “infinite state automaton” known
as push-down automaton. Those, by having an infinite amount of memory, they are more
expressive than finite state automata. They are central for parsing (not lexing) of context-
free languages. The amount of memory for push-down automata is infinite, but not “ran-
dom access”, i.e. one can only access the top of a stack (by pushing and popping content),
and this restriction fits with context-free languages (in the same way that the finite-state
restriction fits with regular languages).

Anyway, for all those automata-like constructions, there are deterministic and non-deterministic
variants in that the respective input determines their reaction or not. However, non-
deterministic versions for those are strictly more expressive than deterministic ones (with
exception of bottom-up tree automata where determinism vs. non-determinism does not
matter, and the powerset construction would not work for those. Perhaps also interesting:
for Turing machines, which can be seen as machines with finite control and infinite amount
of random access memory (not just a stack), again determinism is not a restriction.

All that is meant just as a cautening not to assume that the powerset construction can be
transported “obviously” to other settings. . .
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Now to the basic definition of finite state automata.. Variations of FSA’s exist in many
flavors and under different names, other well known names nclude finite-state machines,
finite labelled transition systems. Generally “state-and-transition” representations of pro-
grams or behaviors (finite state or else) are wide-spread as well, for instance as state
diagrams, Kripke-structures, I/O automata, Moore & Mealy machines . . . . As mentioned
earlier, the logical behavior of certain classes of electronic circuitry with internal mem-
ory (“flip-flops”) is described by finite-state automata and indeed, historically, the design
of electronic circuitry (not yet chip-based, though) was one of the early very important
applications of finite-state machines.

Definition 2.3.2 (FSA). A FSA A over an alphabet Σ is a tuple (Σ, Q, I, F, δ)
• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ ⊆ Q× Σ×Q transition relation

The final states are also called accepting states. The transition relation can equivalently
be seen as function

δ : Q× Σ→ 2Q

For each state and for each letter, give back the set of sucessor states (which may be
empty). We often use a more suggestive notation, for instance

q1
a−→ q2 for (q1, a, q2) ∈ δ

We also use freely —self-evident, we hope— things like

q1
a−→ q2

b−→ q3 .

The definition given is fairly standard and whether one see δ as relation of function is, of
course, equivalent. One often uses graphical representations to illustrate such automata;
we will encounter numerous examples.

Figure 2.6 shows a graphical representation of an FSA, using convention we will use
throughout. The initial states, in this case only one, are marked by an incoming arrow.
The accepting states, in this case only one, as well, are marked by with a double ring.
The automaton is deterministic, though not complete. We could interpret the automaton
as complete DFA, with one extra non-accepting state.

Figure 2.6: Graphical representation of an FSA

The intended meaning of an FSA over an alphabet Σ is the set of all the finite words,
the automaton accepts.

https://en.wikipedia.org/wiki/Saul_Kripke
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Definition 2.3.3 (Accepted words and language of an automaton). A word
c1c2 . . . cn with ci ∈ Σ is accepted by automaton A over Σ, if there exists states
q0, q2, . . . , qn from Q such that

q0
c1−→ q1

c2−→ q2
c3−→ . . . qn−1

cn−→ qn ,

and were q0 ∈ I and qn ∈ F . The language of an FSA A, written L(A), is the set
of all words that A accepts.

Remark 2.3.4 (Finite states). The distinguishing feature of FSA (as opposed to more
powerful automata models such as push-down automata, or Turing-machines), is that
they have “ finitely many states ”. That sounds clear enough at first sight. But one has
too be a bit more careful. First of all, the set of states of the automaton, here called
Q, is finite and fixed for a given automaton, all right. But actually, the same is true for
pushdown automata and Turing machines! The trick is: if we look at the illustration of the
finite-state automaton earlier, where the automaton had a head. The picture corresponds
to an accepting use of an automaton, namely one that is fed by letters on the tape,
moving internally from one state to another, as controlled by the different letters (and
the automaton’s internal “logic”, i.e., transitions). Compared to the full power of Turing
machines, there are two restrictions, things that a finite state automaton cannot do

• it moves on one direction only (left-to-right)
• it is read-only.

All non-finite state machines have some additional memory they can use (besides q0, . . . , qn ∈
Q). Push-down automata for example have additionally a stack, a Turing machine is al-
lowed to write freely (= moving not only to the right, but back to the left as well) on the
tape, thus using it as external memory.

2.3.1 FSA as scanning machine? (Determinism vs. non-determinism)

General FSA have slightly unpleasant properties when considering them as decribing an
actual program (i.e., a scanner procedure/lexer), given the “theoretical definition” of ac-
ceptance:

Mental picture of a scanning automaton: Starting in an initial state, the
automaton eats one character after the other, and, when reading a letter, it moves
to a successor state, if any, of the current state, depending on the character at hand.
Once hitting an accepting state, the automaton accepts the processed word.

There are 2 problematic aspects in that.

• non-determinism: what if there is more than one possible successor state?
• undefinedness: what happens if there’s no next state for a given input?
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The 2nd one is easily repaired, the 1st one requires more thought. In [7], the concept of
recogniser corresponds to a DFA.

Let’s discuss the first point, non-determinism, a bit. We touched upon the issue in
the introduction of the chapter already: non-determinism is “problematic”. One could try
backtracking, but, you definitel don’t want that in a scanner. And even if you think
it’s worth a shot: how do you scan a program directly from magnetic tape, as done in
the bad old days? Magnetic tapes can be rewound, of course, but winding them back
and forth all the time destroys hardware quickly. How should one scan network traffic,
packets etc. on the fly? The network definitely cannot be rewound. Of course, buffering
the traffic would be an option and doing then backtracking using the buffered traffic, but
maybe the packet-scanning-and-filtering should be done in hardware/firmware, to keep
up with today’s enormous traffic bandwith. Hardware-only solutions have no dynamic
memory, and therefore actually are ultimately finite-state machine with no extra memory.
As hinted at in the introducton: there is a way to turn a non-deterministic finite-state
automaton into a deterministic version.

We start by first defining the concept of determinism, resp. what constitutes a determin-
istic automaton

Definition 2.3.5 (DFA). A deterministic, finite automaton A (DFA for short) over
an alphabet Σ is a tuple (Σ, Q, I, F, δ)

• Q: finite set of states
• I = {i} ⊆ Q, F ⊆ Q: initial and final states.
• δ : Q× Σ→ Q transition function

The transition function is a special case of the transition relation: it is deterministic, but
also left-total (“complete”). For a relation, being left-total means, for each pair q, a from
Q× Σ, δ(q, a) is defined. When talking about functions (not relations), it simply means,
the function is total, not partial.

Some people call an automaton where δ is not a left-total but a deterministic relation (or,
equivalently, the function δ is not total, but partial) still a deterministic automaton. In
that terminology, the DFA as defined here would be deterministic and total.

Remark 2.3.6 (Transition function and totality). Depending on which text one consults,
the definition of DFA slightly disagrees. It’s not a fundamental disagreement, it’s more a
question of terminology. It concern if being a deterministic automaton includes “totality”
of the transition relation/transition function or not. Or in other words: for each state and
each letter a, is there exactly one a-successor or at most one.

One could make the argument, determinism means the latter: at each state, and for each
input, the reaction is fixed: one either moves to one particular successor state, or else is
“stuck.” That corresponds to a definition where δ is a partial function, unlike the definition
given, where δ is a total function. So, our definition of DFA means, the automaton is
deterministic and total. Some would say a deterministic finite state automaton need not
be total (being a separate aspect the automaton enjoys or not).

Actually, it’s a terminology question and does not matter much, basically it says: A DFA
is a determistic and total finite state automaton (but we won’t bother to call it DTFA
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or something). The reason why it does not matter much is that really there is no much
difference anyway. A automaton with a partial transition function can always be completed
into a total one by adding an extra non-accepting state, covering the situations when the
partial automaton would otherwise be “stuck”. That’s so obvious, that one need bother
talk about it much. Also later, when showing graphical representation of automata: when
talking about DFA (and when we want to really stress that they are total), we still might
leave out to show the extra state in the figure, it’s just assumed that one understands that
it’s there.

As far as implementations of automata is concerned (for instance for lexing purposes):
the “partial transition function” is also not too realistic. If the lexer eats one symbol
which, at that point, is illegal, and for which there is no successor state, the lexer (and the
overall compiler) whould not simply stop or deadlock or crash. It will eat the symbol and
inform the surrounding program (the parser, the compiler) that this situation occured.
It’s indicates a form of error (a lexical error in the input), since we are dealing with
an deterministic automaton, so there cannot be an alternative reading of the input that
would have avoided that the lexer is stuck (or moved to a non-accepting state, or raised
an exception etc). So, turning an automaton into a “total” or “complete” one is a non-
issue, but removing non-determinism from an automaton is an issue. We will discuss
determinization later.

2.3.2 Some examples of finite state automata, mostly deterministic

Example 2.3.7 (Identifiers). Consider the following regular expression specifying indenti-
fiers.

identifier = letter (letter | digit)∗ . (2.15)

Figure ?? shows finite-state automata that accept the corresponding regular language. The
one from ?? is deterministic, but not complete or total. The second one from Figure ?? is
additionally complete, i.e., the has a total transition function. In general, any deterministic
finite-state automaton can be made complete (and still deterministic) by adding one extra
non-accepting state and the appropriate additional transitions, as shown. The extra state
is here called error, but the names of the states don’t matter, they are only there to help
the human reader.

(a) deterministic (b) deterministic + complete

Figure 2.7: Identifiers

The example shows an automaton for identifiers, as they could appear in this or similar
form in the lexer specifications for typical programming languages. They are specified us-
ing regular expressions, so it’s also an illustration how regular expression can be translated
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into an automaton. The exact construction (which will be presented in three stages) will
be covered later in this chapter, but the example is so simple, that one can easily come
up with a deterministic automaton corresponding to the regular expression.

Example 2.3.8 (Natural numbers). Consider the following regular expression for natural
numbers.

digit = [0− 9]
nat = digit+

(2.16)

One might say, it’s not really the natural numbers, it’s about a decimal notation of natural
numbers (as opposed to other notations, for example Roman numeral notation). Note
also that initial zeroes are allowed here. It would be easy to disallow that. Another
remark: we make use of some user-friendly aspect supported in many applied versions of
regular expression, some form of syntactic sugar. That’s the possiblity to use definitions
or abbreviations. We give a name to the regular expression [0− 9] and that abbreviation
digit is used for defining nat. That certainly makes regular expressions more readable, and
we will continue that form of building larger concepts from simpler ones in the following.

Also, using [0− 9] makes sense only if we assume an ordered alphabet.

Note the treatment of digit in the automaton. Officially, transitions are to be labelled by
letters from the alphabet, but here we labelled some by digit, which abbreviates [0 − 9].
It’s easy to see that it can be seen simple as a shorthard for writing 10 individually labelled
transisition. Actually we did the same already for the identifiers in the automata from
Figure ??. In Figure ?? we used any and other to represent any letter from the alphabet
resp. all letters not yet covered by other transitions. Actually, one could even allow edges
to be labelled by regular expressions, without leaving the regular languages, but we won’t
make use of that.

Figure 2.8: (Deterministic) FSA for natural numbers

Example 2.3.9 (Signed natural numbers). Extending the definition of natural numers from
Example 2.16, we can define signed natural numbers, natural numbers preceded optionally
by a sign. with the following regular expression:

signednat = (+ | −)nat | nat (2.17)

Figure 2.9a shows a non-deterministic FSA and Figure 2.9b a deterministic one for that
regular expression.

The first automaton is non-deterministic by the fact that there are two initial states. Basi-
cally, one informally does two “constructions”, the “alternative” in the regular expression
is simply writing two automata side by side, i.e., one automaton which consists of the
union of the two automata. In this example, it therefore has two initial states.

Again the automata are not complete.
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(a) non-deterministic (b) deterministic

Figure 2.9: Signed natural numbers

Example 2.3.10 (Fractional numbers).

frac = signednat(”.”nat)? (2.18)

Figure 2.10 shows the corresponding deterministic automaton. Note the “optional” clause

Figure 2.10: Automaton for fractional numbers

using ? in the regular expression and the corresponding fact that the automaton has
multiple accepting states.

Remark 2.3.11 (Non-determinism in automata vs. scanners). As mentioned, the au-
tomaton from Figure 2.10 has two accepting states. Note that this does not count as
non-determinism. If one considers the automaton as some abstract form describing a
scanner, one could make the argument that there is non-determinism involved. It’s true
that, if one gives the automaton a sequence of letters, that determines its end-state (and
thus whether the word is accepted or not). However, lexer’s task will also have to segment
the input and decide when a word if done (and then tokenized) and when not. In the
given automaton, after having reached the first accepting state, one can make the argu-
ment that, if there is a dot following, the automaton has to make the decision whether to
accept the word or to continue. That sounds like a non-deterministic choice (actually,
seen like that it would be a non-determistic choice).

It just means, a deterministic automaton is not in itself a scanner. A scanner deals
repeateadly with accepting words (and segmenting), a finite state automaton is dealing
only with the question, whether a given word (seen as already segmented, so to say) is
acceptable or not. The current section deals just with acceptance or rejection of one word,
and also the standard, classical definition of determisim for automata is only concerned
with that question.
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Example 2.3.12 (Floats).

digit = [0− 9]
nat = digit+

signednat = (+ | −)nat | nat
frac = signednat(”.”nat)?

float = frac(E signednat)?

(2.19)

Figure 2.11 shows the corresponding deterministic automaton.

Figure 2.11: Automaton for fractional numbers

Remark 2.3.13 (Recursion). Louden [11] points out that regular expressions do not
contain recursion. This is for instance stated at the beginning of Chapter 3 in [11] where
the absence of recursion in regular expressions is pointed out as the main distinguishing
feature of regular expressions compared to context-free grammars (or even more expressive
grammars of formalisms, see later).

When considering regular expressions as being “without recursion”, not everyone would
agree. Looking at the defining equations in (2.19), the series of equations “culminates”
in the one for floats, the last one listed. Furthermore, each equation makes use on its
right-hand side only of definitions defined strictly before that equation (“strict” means,
that a category defined in the left-hand side equation may also not depend directly on
itself by mentioning the category being defined on the defining right-hand side). In that
sense, the definition clearly is without recursion

For context-free grammars, that restriction will not longer apply. This absence of at least
explicit recursion when defining a regular expression for instance for floats allows that
one can consider the definitions as given as simply useful “abbreviations” to assist the
reader’s or designer’s understanding of the definition. They therefore play the role of
macro definitions as for instance supported by C-style preprocessors: the “real” regular
expression can easily obtained by literally replacing the “macro names” as they appear
in some right-hand sides by their definition, until all of them have disappeared and one
has reached the “real” regular expression, using only the syntax supported by the original,
concise definition of regular expressions.5 Textual replacement, by the way, is also the way,

5Additional syntactic material that is added for the convenience of the programmer without adding
expressivity of the language and which can easily be “expanded way” is also known as syntactic sugar.
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pre-processors deal with macro definitions. Clearly this easy way of replacing mentioning
of left-hand sides by their corresponding right-hand sides works only in absence of recursive
definitions.

That supports the case that regular expressions don’t contain recursion. There is, however,
a different angle to the issue. Recursion, very generally, is a way to describe infinite
structures, behavior etc. Regular languages are, in general, infinite, i.e., infinite sets of
words, and the way to capture those infinite sets in a finite way is via the Kleene star. In
the automata, infinitely many different words are represented by “loops”. Thus, the Kleene
star does allow to express (implicitly) a form of recursion, even if it’s a more restricted
form than that allowed by context-free grammars. The point may become more clear if
we replace the definition for natural numbers from equation (2.16), using + for “one or
more iterations” by the following recursive one:

nat = digit nat | digit . (2.20)

Compared to the more general definitions for context-free grammars later, the recursive
mentioning of nat on the right-hand side of the definition for regular language is restricted.
The restriction will become clearer once we have covered context-free grammars in the con-
text of parsing. Suffices for now, that the restrictions are called right-linear grammars
(alternatively light-linear grammars, both are equally expressive), where linear refers to
the fact that at most one of the “meta-variables” in a grammar (such as nat from above)
allowed to occur on the right-hand side of a rule, and right-linear would mean, it’s al-
lowed to occur only at the end of a right-hand side.6 Another, basically equivalent, point
of view or terminology is that the definitions may use tail-recursion (but not general
recursion).Tail-recursion corresponds to right-linear definitions (as the “tail” is considered
to be at the right-and end.)

To summarize: the dividing line between regular languages vs. context-free languages may
well be described as allowing tail-recursion vs. general recursion (not as without or with
recursion as in [11]). For those who followed the lecture IN2040 (functional programming)
may remember the distinction between recursive and iterative procedures. When pro-
gramming, one sometimes distinguishes between iteration (when using a loop construct)
on the one hand and recursion on the other, where iteration corresponds to a restricted
form of recursion, namely tail-recursion: tail-recursion is a form of recursion, where no
stack is needed (and which therefore here can be handled by finite-state automata), in
contrast to context-free grammars, which cannot be handled by FSA’s, one needs equip
them with a stack, after which they are called push-down automata, most oftenly.

Example 2.3.14 (DFAs for comments). Without bothering this time to give a regular
expression specification, Figure 2.12 contains deterministic automata for comments, one
in the style of Pascal, one in the style supported by C, C++, Java . . .

6As a fine point, to avoid confusion later: The definition from equation (2.20) would count as two rules
in a grammar, not one, corresponding to the two alternatives. The restrictions for linearity etc. apply
per rule/branch individually.
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(a) Pascal

/ ∗

other

∗

∗

other

/

(b) C, C++, Java

Figure 2.12: Comments

2.4 Implementation of DFAa

DFAa underly the implentation of lexers. The notion as such is simple enough, but a
concrete lexer has to cover slightly more things than the theoretical coverage so far. One
is that the lexer needs to be coupled up with the parser, feeding it with one token after
the other. I.e., in the implementation, the automaton is not just a recognizer, it has not
just sequences of characters as input which it has to decide on whether to accept or not. It
also needs to produce sequences of tokens as output. Related to that, the lexer is not just
the implementation of one single DFA, but it’s a loop that repeatedly “invokes” DFAa.
Another aspect of the regular expressions resp. the DFA is the need for priorities. We
have mentioned the issue when discussing regular expression, for instance, when confronted
with the string <=, then that is conventionally scanned as less-or-equal, and not as a <
followed by a =.

2.4.1 Longest match

That aspect of longest scan is not really covered by the notion of DFA (nor by non-
deterministic automata). That has to do with the way, automata accept words (we touched
upon that already in Remark 2.3.11). They start in their initial state, eat through the
input, but when it come to acceptance in a lexer, it misleading to think like that: if you
hit an accepting state, accept the word (and return the corresponding token). Sure, if a
automaton hits an accepting state, this word seens so far is accepted, resp. belongs to
the language the automaton describes. But there may be another run of the automaton
(even if it is a deterministic one and is fed the same word as prefix), that reaches the
accepting state, and then continues, perhaps accepting later down the road a longer word
which extends the one the automaton could accept right now. Of course there may not be
a guarantee that there exists a longer word. Anyway, a lexer explores one word only and
makes decisions “on the spot” (being deterministic), preferring longer scans over shorter.
In case of hitting an accepting state, it checks if one can proceed, still accepting the
(extended) word. If not it accepts the word as is. This priority to proceed as long as
possible and favoring longer words over shorter prefixes is not directly covered by the
theoretical treatment of FSAa so far, but it’s an aspect an implementation would have to
do.

This section brushes also on data structures one can use to implement DFAs, resp.
scanners. We don’t go too deep, bascially we sketch how one could use tables to represent
automata (which can be realized for instance by two-dimensional arrays or in other ways).
Tools like lex allows the compiler writer to ignore details there, as that’s what those
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tools do: generate appropopriate data structures representing the DFA, taking care also
of the other aspects mentioned, and interfacing with the parser component of a compiler.
Later in this section, we introduce a notation labelling edges of the DFA with [ and ], for
instance, writing [other]. The meaning will be, that is a way to describe the “longest
match” discipline. For instance, assume an automaton designed to accept a word defined
as a sequence of letters; that could be described as [a− zA−Z]∗, making use of ranges in
ordered alphabets. The edge-label other will be used to abbreviate all “other” symbols.
More technically, in a state with labels on outgoing edges labeled by some symbols, an
outgoing edge labelled other represents all symbols not covered by the outgoing edges.
It should be self-evident, especially for a determistic automaton, that can be only one
outgoing edge labeled other . So far, that has nothing yet to do with the point discussed
here, namely prioritizing longer matches. To do that, one uses edges, annotated with [
and ], as said. Note: it may be unfortunate, but the notation is meant to do something
else than defining a letter as regular expression [a− zA−Z]∗. What is meant then? Well,
a transition labeled [a] means: if a is next, move to the next state without actually
consuming or “eating” the a as input. Concretely, we use often transitions labelled
[other ], and moving to an accepting state. That is the way to represent the longest match
or longest possible scan. We continue eating symbols, like lower and upper-case letters,
but without accepting the string as yet. When we hit a symbol other than a letter, we
proceed and accept the string, but the very last symbol is not part of the word we just
processed. That can be seen as a form of “look-ahead”. The letters or expressions in
brackets are checked to make a decision without actually consuming them. That peek into
the immediate future makes it a form of look-ahead. Looking ahead into the future of
the lecture, the notion of look-ahead with play also a prominent role when we will talk
about parsers: the amount of look-ahead one is willing to give to a parser influences its
expressiveness: obviously, more look-ahead, more powerful.

Example 2.4.1 (Indentifiers). Remember the DFA for identifiers from Figure ?? in Example
2.3.7. We had two versions, an incomplete one and complete one with an extra “error”
state.

The one from Figure 2.13 is deterministic, but it’s not total or complete. The transition
function is only partial. The “missing” transitions are not shown, as we often did earlier as
well to make the pictures more compact. It is then implicitly assumed, that encountering
a character not covered by a transition leads to some extra “error” state which simply is
not shown.

Figure 2.13: Deterministic automaton

As explained before, the [ ] around the transition other at the end means that the scanner
does not move forward on the input there (but the automaton proceeds to the accepting
state). That is something that is not 100% in the mathematical theory of FSA, but is
how the implementation in the scanner will behave. Note also that the accepting state has
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changed: we have an extra state what we move to by the special kind of transition [other ].
As the name implies, “other” means all symbols different from the ones already covered by
the other outgoing edges. This is used to realized the longest prefix: The shown DFA not
just accepts “some” identifier it spots on the input, i.e., an arbitrary sequence of letters
and digits (starting with a letter). More precisely, it takes as many letters and digits as
possible until it encounters a character not fitting the specification but not earlier. Only
at that point does the automaton accepts but without advancing the input, in that this
character will have to be scanned and classified as the “next chunk” and this “the next
automaton”.

2.4.2 Implementations

The following shows rather “sketchy” pseudo-code about how part of a lexer can be pro-
grammed or represented. It’s one loop and it represents how to accept one lexeme. As
mentioned at the beginning of this section, the task of a lexer in the context of a compiler
is to repeatedly accept one lexeme after the other (or reject an input and stop) and hand
over a corresponding stream of tokens. This need of repeated acceptance does not mean
that there is another loop around the while-loop shown in the pseudo-code. At least the
mentioned outermost loop is not part of the lexer. The lexer and the parser work hand
in hand, and often that’s arranged in that lexer works “on demand” from the parser: the
parser invokes the lexer “give me a new token”, the lexer has of course remembered the
position in the input from the last invokation, and, starting from there tries to determine
the next lexeme and, if successful, gives back the corresponding token to the parser. The
parser determines if, at that point in the parsing process, the token fits to the syntactic
description of the language, and if so, adds a next piece (at least implicitly) in building
the parse tree, and then asks the lexer for the next token, etc. The pseudo-codes of the
lexer therefore contain only one loop, the one for accepting one word.

s t a t e := 1 { s t a r t }
while s t a t e = 1 or 2
do

case s t a t e of
1 : case input cha rac t e r of

l e t t e r : advance the input ;
s t a t e := 2

else s t a t e := . . . . { e r r o r or other } ;
end case ;

2 : case input cha rac t e r of
l e t t e r , d i g i t : advance the input ;

s t a t e := 2 ; { a c tua l l y une s s e s sa ry }
else s t a t e := 3 ;
end case ;

end case ;
end while ;
i f s t a t e = 3 then accept else e r r o r ;

Listing 2.2: Explicit state representation
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The state is here represented as some integer variable. The reaction of the autmaton is
a nested case switch, first one which state one is in, and secondly on which input. One
could of course also do the “case nesting” the other way around, or making one flat case
switch, with all combinations of state and input on the same level. We also see that the
“error” state in the complete DFA is also represented in some form: there is a else-case if
the previous case(s) don’t match.

In the following slides, we show how the decision-information can be “centralized” in one
table. In the table, empty slots represent missing reactions, i.e., the move to an error
state.

Table 2.3 represents the DFA in tabular form and Listing 2.3 sketches some pseudo-code
that makes use of that table

aaaaaaaa
state

input
char letter digit other accepting

1 2 no
2 2 2 [3] no
3 yes

Table 2.3: Table representation of the DFA

s t a t e := 1 { s t a r t }
ch := next input c h a r a c t e r ;
while not Accept [ s t a t e ] and not e r r o r ( s t a t e )
do

while s t a t e = 1 or 2
do

newstate := T[ s ta te , ch ] ;
{ i f Advance [ s ta te , ch ]

then ch:= next input c h a r a c t e r } ;
s t a t e := newstate

end while ;
i f Accept [ s t a t e ] then accept ;

Listing 2.3: A table-based implementation

2.5 From regular expressions to NFAs

We start by re-visiting finite state machines (see Definition 2.3.2) and generalize them
slightly

Here we kind of repeat the definition, with δ slightly differently, but ultimately equivalently
represented. What we add, however, are so-called ε-transitions, which allows the machine
to move to a new state without eating a letter. That is a form on “spontaneous” move, not
being triggered by the input, which renders the automaton non-deterministic. It will turn
out, that by adding this kind of transitions does not matter, as far the expressiveness of
the NFAs is concerned. Why do we then bother adding them? Well, ε-transitions come in
handy in some situations, in particular in the construction we will present afterwards: how
to turn a regular expression into an NFA. It’s slightly more convenient when one allows
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such transitions. It’s easy to understand also why. As a preview to that construction: it
will be a compositional construction. To construct the automton for a compound regular
expression, for instance for the sequential composition r1r2, one assumes one has the
automata for the component regular expressions r1 and r2, and then one glues them
together with ε-transitions, i.e., connects the accepting states of r1 with the initial states
of r3 with empty transitions. That’s pretty easy, so the use if those transitions facilitates
a straightforward, compositional construction.

Definition 2.5.1 (NFA (with ε transitions)). A non-deterministic finite-state au-
tomaton (NFA for short) A over an alphabet Σ is a tuple (Σ, Q, I, F, δ), where

• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ : Q× Σ→ 2Q transition function

In case, one uses the alphabet Σ+{ε}, one speaks about an NFA with ε-transitions.

It is assumed that emptyword is not a symbol of Σ. That’s why we write Σ + {ε} and
not Σ ∪ {ε}, with + representing disjoint union. In a way, ε is not meant as letter at
all it represents the absence of a latter. The version of NFA presented here includes ε-
transitions. Depending on which book one consults, the notion of NFA may or may not
include such transitions. We call them here explicitly NFA with empty transitions. It
does not matter anyhow, as far as the expressiveness is concerned.

Whowever, the ε is treated different from the “normal” letters from the alphabet Σ.

δ can equivalently be interpreted as relation (as we did in the formulation from Definition
2.3.2) δ ⊆ Q× Σ×Q (transition relation labelled by elements from Σ).

Remark 2.5.2 (Terminology (finite state automata)). There are slight variations in the
definition of (deterministic resp. non-deterministic) finite-state automata. For instance,
some definitions for non-deterministic automata might not use ε-transitions, i.e., defined
over Σ, not over Σ + {ε}. Another word for FSAs are finite-state machines. Chapter 2
in [11] builds in ε-transitions into the definition of NFA, whereas in Definition 2.5.1, we
mention that the NFA is not just non-deterministic, but “also” allows those specific transi-
tions. Of course, ε-transitions lead to non-determinism, as well, in that they correspond to
“spontaneous” transitions, not triggered and determined by input. Thus, in the presence
of ε-transition, and starting at a given state, a fixed input may not determine in which
state the automaton ends up in.

Deterministic or non-deterministic FSA (and many, many variations and extensions thereof)
are widely used, not only for scanning. When discussing scanning, ε-transitions come in
handy, when translating regular expressions to FSA, that’s why for instance [11] directly
builds them in.

The language of an automaton with ε-transitions is analogous to the language of automata
without (see (Definition 2.3.3 on page 30). Run the manchine on a given word, see if this
way one can reach a final state (also called accepting state). If so, the word belongs to
the language, otherwise not. As far as ε-transitions are concerned: εs simply do not count
(representing “no character”).
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Definition 2.5.3 (Acceptance with ε-transitions). A word w over alphabet Σ is
accepted by an NFA with ε-transitions, if there exists a word w′ which is accepted
by the NFA with alphabet Σ + {ε} according to Definition 2.3.3 and where w is w′
with all occurrences of ε removed.

The behavior of such a machine can also be seen as follows: A reads one character after
the other (following its transition relation). If in a state with an outgoing ε-transition, A
can move to a corresponding successor state without reading an input symbol.

2.5.1 NFA vs. DFA

We have mentioned, that, NFA’s are bad as machinery for implementing a lexer, being non-
deterministic. They have, on the other hands, also some positive aspects. The most impor-
tant one being for us is: it’s easier to translate regular expressions into non-deterministic
machines (and if one allows ε-transitions, it will make it even more straightforward).

• NFA: often easier (and smaller) to write down, esp. starting from a regular expression
• non-determinism: not immediately transferable to an algo

a

ε

a

ε

ε

b

a

a b

b

The example is used as illustration of an NFA and a corresponding DFA. In this small
example, it’s straightforward to come up with a deterministic version of the automaton.
In a later section, we discuss a systematic way of turning an NFA to a DFA, i.e., an
algorithm.

Before showing the construction itself, we show a few examples, highlighting some regular
expression and corresponding NFAs.

Example 2.5.4. The task is to recognize :=, <=, and = as three different tokens. That
would correspond to a regular expression involing “or”:

:= | <= | = .

That’s easy enough to represent as NFA, see Figure 2.14a. A deterministic version is not
much harder to obtain, see Figure 2.14b.
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(a) non-deterministic
(b) deterministic

Figure 2.14: Illustration for Thompson’s construction

The example was straightforward to turn into a deterministic one. It’s not always so
trivial. The next example shows that, and makes clear why the example just shown is so
simple to deal with.

The words in previous Example 2.5.4 share some common parts, there is some overlap: all
three strings contain the character =. However, they don’t share a common prefix, i.e., a
common initial common segment). That’s shown in the following example.

Example 2.5.5. Again three lexemes are to be recognised, represented by the following
regular expressions:

<= | <> | < .

They can be straightforwardly by the NFA of Figure 2.15a, similar as we did in the previous
example. One can then, as in the previous example, use a single initial state instead (see
Figure 2.15b), but that does not turn the automaton into a deterministic one. Figure 2.16

(a) non-deterministic (1)
(b) non-deterministic (2)

Figure 2.15: Illustration for Thompson’s construction

then shows a deterministic automaton

Figure 2.16: Illustration for Thompson’s construction: deterministic
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The examples were not directly Thompson’s construction, i.e., how to go from regular
expressions to FSAa, notably NFAa. They just perhaps made plausible that it might be
a good idea not do attempt to do a deterministic automaton directly, but construct a
non-deterministic one first, and determinize that in a second step. The examples basically
illustrated the non-deterministic construction for alternatives, i.e., regular expressions
constructed by |, is really strightforward.

But it is just an illustration. What is needed is a systematic translation, an algorithm,
best an efficient one. Conceptually easiest is to translate to non-deterministic automata,
actually translated to automata with ε-transitions; the latter aspect was not illustrated
by the examples from before, it was easy enough without that in the considered examples.
Determinization is postponed to a second step, likewise minimization.

Example 2.5.6 (Illustration for ε-transitions). Revisiting Example 2.5.4, one can use ε-
transitions for the automaton. The automaton has only one initial state but is non-

Figure 2.17: The use of ε-transitions

deterministic, since it uses ε on its transitions.

2.5.2 Thompson’s construction

Regular expression are given inductively, there are basic regular expressions and compound
expressions (see Definition 2.2.8 or grammar from Definition 2.2.9).

Goal: Give NFA for the basic regular expression. Construct an NFA of compound
regular expression is given by taking the NFAa of the immediate subexpressions and
connect them appropriately.

The construction is due to Ken Thompson [13]. It will make ample use of ε-transitions
and the construction slightly7 simpler, if one constructs with one start and one accepting
state.

Remark 2.5.7 (Compositionality). Compositionality and compositional concepts (def-
initions, constructions, analyses, translations, . . . ) are immensely important and pervasive
in compiler techniques (and of course beyond). One example already encountered was the
definition of the language of a regular expression (see Definition 2.2.11 on page 20). The
design goal of a compositional translation here is the underlying reason why to base the
construction on non-deterministic machines.

7It does not matter much, though.
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Compositionality is also of practical importance (“component-based software”). In con-
nection with compilers, separate compilation and (static / dynamic) linking (i.e. “compos-
ing”) of separately compiled “units” of code is a crucial feature of modern programming
languages/compilers. Separately compilable units may vary, sometimes they are called
modules or similarly. Part of the success of C was its support for separate compilation
(and tools like make that helps organizing the (re-)compilation process). For fairness sake,
C was by far not the first major language supporting separate compilation, for instance
FORTRAN II allowed that, as well, back in 1958.

Btw., Ken Thompson, who first described the regular-expressions-to-NFA construction, is
one of the key figures behind the UNIX operating system and thus also the C language
(both went hand in hand). Not suprisingly, considering the material of this section, he is
also the author of the grep-tool (“globally search a regular expression and print”). He
got the Turing-award (and many other honors) for his contributions.

The base cases, for basic, i.e., non-composed regular expressions ε and a (for all a ∈ Σ)
are shown in Figure 2.18.8

ε

(a) Empty word ε

a

(b) Single character

Figure 2.18: Thompson’s construction: base cases

The inductive cases, for compound expressions, are shown in Figures 2.19a, 2.19b, and
2.19c. In the pictures from Figure 2.19, the rectangular box(es) represent the automata for
the immediate subexpression(s). By convention, the state on the left is the unique initial
one, the state on the right is the unique final one. By building the larger automaton, the
“status” of the initial states and final states may change of course. For instance, in the case
of | in Figure 2.19b, a new initial state and a new accepting state are introduced for the
compund automaton, but the initial and final states from the two component automata
loose their special status thereby, of course.

Example 2.5.8 (ab | a). Here is a small example illustrating the construction. In the
exercises, there will be more.

2.6 Determinization

The section covers the second step in the translation from regular expressions to DFAs:
we have to get rid of non-determinism and make the machine deterministic. It’s not too
hard, after seeing the idea. Deterministic or not, the automaton eats symbols and moves to
another state. In the case of a non-deterministic automaton, it may non-deterministically
move to one of many possible sucessor states. That’s problematic, because if the wrong
choice is made, the automaton would need to backtrack and try alternative routes.

8The base care for ∅ is not practically useful, and the “construction” is left out here.
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Figure 2.19: Thompson’s construction: inductive cases
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Figure 2.20: Thompson’s construction

That can be avoided, if, when presented with alternative successor states, the machine
can explore all of them at the same time. So, instead of moving non-deterministically to
one successor state, the automaton moves to all possible successor states, which is
a set. Of course, that would be a different automaton, but it is a deterministic one: there
is exactly one set of successor states. This alternative automaton, working on sets of
states of the original NFA can be systematically constructed. This construction is the
determinization procedure.

2.6.1 Determinization: the subset construction

The task is, given a non-deterministic automaton A, construct an equivalent DFA A. The
deterministic one, instead of backtracking, explores all successors at the same time. Each
state q′ in A represents a subset of states from A, and given word w feeding that to A
leads to the state representing all states of A reachable via w. The procedure is known as
powerset construction (by Rabin and Scott [12]).

The construction itself is straightforward enough. Analogous constructions works for some
other kinds of automata, as well, but for still others, the approach does not work: For
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some forms of automata, non-deterministic versions are strictly more expressive than the
deterministic one, for instance for some automata working with languages on infinite
words, not finite words as here.

Definition 2.6.1 (ε-closure, a-successors). Given a state q, the ε-closure of q,
written closeε(q), is the set of states reachable via zero, one, or more ε-transitions.
We write qa for the set of states, reachable from q with one a-transition. Both
definitions are used analogously for sets of states.

We often call states like q, and sets of states then Q. So the notations for the ε-closure of
a set Q of states is closeε(Q) and Qa represent the a-successors of Q.

It may also be worth remarking: later, when it comes to parsing, we will encounter the
phenomenon again: some steps done treating symbols from a context-free grammar will be
done “eating symbols” (for parsing, those symbols will be called “terminals” or “terminal
symbols” and correspond to tokens). Consequently, in the context of parsing and “parsing
automata” (which are supposed to be deterministic, as well), we will likewise encounter
the notion of an ε-closure which is analogous to the concept here.

Input: NFA A over a given Σ
Output: DFA A

1. the initial state: closeε(I), where I are the initial states of A
2. for a state Q in A: the a-successor of Q is given by closeε(Qa), i.e.,

Q
a−→ closeε(Qa) (2.21)

3. repeat step 2 for all states in A and all a ∈ Σ, until no more states are being
added

4. the accepting states in A: those containing at least one accepting state of A

Next we show a few examples. More are covered by the exercises. In the figures, we
show the resulting deterministic automata. However, we don’t show the complete or total
version, i.e., the extra state sometimes needed to obtain a total successor function is not
shown. The state can be seen as being “marked” with the empty set {}

Example 2.6.2 (ab | a). Figure 2.21a shows the automaton corresponding to 2.21a as
produced by Thompson’s construction. It has one initial state, one final state, and makes
ample use of ε-transitions. Figure 2.21b shows the result of the determinization (without
showing the “error” state). That states use sets of states from the NFA as “name”.

Example 2.6.3 (Identifiers). Remember the regular expression for for identifiers from equa-
tion (2.15). Figure 2.22a shows the generated NFA and Figure 2.22b the DFA after de-
terminization.

One can compare the DFA here with the automata from Figure 2.7a and 2.7b from before.
Those are also determininistic; the one from Figure 2.7b is complete in that it shows
an error state. The previously shown automata were hand-made, the one from Figure
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Figure 2.22: Identifiers

2.22b is the result of the determinization algorithm and has more states. This means, the
determinization resulted not in an deterministic automatong as small as possible.

2.7 Minimization

This then is the last stage of the construction, minimizing a DFA. It should be clear why
that is useful: less states means more compact representation (but perhaps not necessarily
speed-up in lexing). Minimal means, with the least number of states. It’s clear that there
exists an automaton with the least number of states. But what is perhaps more surprising
there exists exactly one automaton with the minimal number of states. A priori, there
might be two different automata with a minimal amount of states, but that is not the
case. Of course, being the same automaton means up-to isorphism. Isomorphic means
“structually identical” basically it means, the “names” of the states don’t matter, but
otherwise the automata are the same.

We learn the algorithm that systematically calculates the minimal DFA from a given DFA.
Previously, we downplayed the question, whether a DFA is complete or not, because if
not complete, one can easily think of it as complete, assuming an extra error state. In the
minimization here, it’s important to indeed have a complete deterministic automaton, all
states participate in the construction, including an extra error state that may be necessary
to complete the DFA.

The concstruction presented here is only one of different ways to achieve the goal. It’s
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known as Hopcrofts’s partitioning refinement algorithm. A modern version of that is
described in Hopcroft [9].

Properties of minimization:

Minimality: the resulting DFA has minimal number of states.

Canonicity: all DFA for the same language result in the same minimal DFA.

These properties have a positive side-effect, in that it solves also equivalence problems:
Given two DFA, do they accept the same language? That can be checked by turning them
into the minimal form and check if they are the same (isomorpic). One one likewise check
if 2 regular expressions described the same language, turning them into their minimal
deterministic automata representations.

Now to Hopcroft’s partitioning refinement construction. As said, the starting point is a
complete DFA, i.e., error-state possibly explicitly needed.

The algorithm will be explained to some extent in the following (mostly by way of exam-
ples).

I would expect, when tasked oneself with the problem of minimizing a given DFA, most
would try to approach the problem the following way. One would look at an the automaton
and look for situations when one could save some state. That’s a natural way of thinking,
also when one try concrete examples on pen and paper.

For instance, one could look at the DFA for identifiers from Figure 2.22b. It has three
accepting states, but it does not take long to realize that only one is enough. One can
“merge” the two states on the right because the “do the same”. By “doing the same” it’s
meant that both accept the same language, when one starts in them for accepting words.
That language can be described by the regular expression (letter | digit)∗. Collapsing the
two states into one makes (and perhaps afterwards the third one) the automaton smaller
without changing the accepted language. That could be a core step for an algorithm: hunt
for pairs or sets of equivalent states, collapse them, then then hunt for further opportunities
and continue until only non-equivalent states remain, and then stop.

That’s a valid idea. One would check some aspects before being sure it works. Termination
is obvious. Another issue would be: is it important in which order to do the collapsing.
It is a priori clear whether the algo would be independent from the strategy which pairs
to collapse first. It could be that by choosing “wrong”, one gets a smaller automaton, but
somehow get stuck before reaching the really minimal one. That would be an unpleasant
property of the approach (and would lead to backtracking). One also would have to solve
the problem of checking when are two states equivalent (and that might be computationally
complex).

But, as said, it’s a valid idea (and I am rather sure, the approach would be indepedent from
the order of collapsing). The algorithm we describe below works the other way around
in that it’s not based on merging equivalent states, but by starting out with a “collapsed
automaton”, where all states are collapsed, and the splits them repeatedly (based on a
criterion described later). The algo is not very obvious. In the merge-based, naive one, one
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starts with a DFA and in each steps, it gets smaller, but the algo maintains as invariant
that all the intermediately constructed DFAs accept the same language as the original.
Thereby it’s clear that the result is likewise equivalent. And since we stop, when there are
no more non-equivalent states, it’s also plausible, that the result is minimal.

The partition refinement construction works the other way around! instead of
collapsing equivalent states:

Initialization: start by collapsing as much as possible (details apply).

Iteration: iteratively, detect non-equivalent states, and then split a “collapsed” state

Termination: stop when no violations of “equivalence” are detected

Why is it called partitioning refinement? A partitioning of some set, here a set of states,
means dividing the set up in different subsets, called partitions, such that every element
(here every state) belongs to exactly one partition. So all original elements are covered
without overlap of the partitions. It’s called partition refinement, because, starting from
a very coarse partitioning, the iteration splits partitions, refining them until the criterion
for splitting no longer applies.

We can consider the partition containing sets of states as state in some collapsed au-
tomaton. Initially, basically fully collapsed, with 2 states only, it will be generally not
equivalent to the DFA, it accepts a different and larger language. It will also be smaller
than the minimal one. And actually it won’t be determinist. The algorithm proceeds
by splitting collapsed states as long as the splitting criterion is fulfilled. So all the in-
termediate automata are non-equivalent to the targeted DFA and all of them are smaller
than the minimal one and non-deterministic. Once the splitting-criterion is no longer
satisifed, one stops, and one has reach the first automaton in this process which, surprise,
surprise, is equivalent to the targeted one, and at the same time is the minimal one, and
is deterministic.

That is the high-level idea of the algorithm. The explanation pretends that the partitions
are states of some automaton. That is a helpful picture to understand how it works. The
code of the algorithm may not explicity construct the intermediate automaton, it simply
refines the partitions. The splitting-criterion can be thought of checking if the current
partitioning, when interpreted as states of an automaton is still non-determinstic. If
so, repair that instance of non-determinsim by splitting. If deterministic, stop.

If the refinement ends with the fine-grained partitioning, the one where each state form it’s
own partion, then we are back at the original deterministic automaton, and the procedure
showed that the DFA we started with was already minimal.

Let’s do the partition refinement a bit more concrete.
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• Initial partitioning: 2 partitions: set containing all accepting states F , set
containing all non-accepting states Q\F

• Loop do the following: pick a current equivalence class Qi and a symbol a
– if for all q ∈ Qi, δ(q, a) is member of the same class Qj ⇒ consider Qi as
done (for now)

– else:
∗ split Qi into Q1

i , . . . Q
k
i s.t. the above situation is repaired for each

Qli (but don’t split more than necessary).
∗ be aware: a split may have a “cascading effect”: other classes being
fine before the split of Qi need to be reconsidered ⇒ worklist algo

• stop if the situation stabilizes, i.e., no more split happens (= worklist empty,
at latest if back to the original DFA)

The initialization, as mentioned before, starts with an (almost completely) collapsed au-
tomaton. It’s not totally collapsed to a one-state representation, but consists of 2 states,
no matter how big the original automaton is.

The algo speaks about partitions and operates by refining them. A partition is a technical
term about sets, is splitting up a set into different (non-empty) subsets in such a way, that
each element of the original set is in exactly one of the subsets, and the the union of all
subsets is the original set. Alternatively (and equivalently), a partition on a set can be
seens as equivalence relation on the set (an equivalence relation being a binary relation
which is reflexive, transitive, and symmetric). We won’t dig into mathematical depth here,
so let’s just illustrate it in a very examples. Assume a five-element set

A = {1, 2, 3, 4, 5} .

We can partition it into two subsets

{{1, 2, 3}, {4, 5}}

Let’s call the two subsets A1 and A2.

Equivalently, one can see that partition as considering 1, 2, and 3 and “equivalent” and
likewise 4 and 5. In other words, the partition corresponds to an equivalence relation. If
one likes to spell the equivalence relation ∼ ⊂ A×A in full detail as set of pairs, it would
be

∼= {(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)}

which corresponds to A2
1+A2

2. Both views are interchangable. Seen as equivalence relation,
one can also view the algorithm as refining a equivalence relation instead of a partitioning.
Remember when discussing the naive “merging approach”, we merged “non-equivalent”
states. So, also there, we were working with an equivalence relation, what was meant
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there was semantical language equivalence. To states are equivalent, if they accept the
same language, when starting acceptance runs from there.

Of course here, during the run of the automaton, the equivalence relation that corresponds
to the current partition is not yet semantic language equivalence, it’s a more coarse-grained
equivalence relation, considering states currently as equivalent (grouped together in the
same subset of the partition), when in fact, semantically, they are not equivalent. When
the algo stops, though, the equivalence relation coincides with the intended langugue
equivalence.

Here, we are working with partitons of the set of states of the given DFA, and we start
with a partition, consisting of to subsets: the set of states is split into two parts: the
accepting states and the non-accepting states. The algorithm works in one direction only:
namely by taking a subset, i.e., one element in the current partition of Q, and splits that,
if needed. The partition gets more finegrained with each iteration, until no more splitting
can be done.

If one looks at some partition during the run of the algo, one can conceptually interpret
the partition as an automaton: Each subset of the partition forms some “meta-state”
consisting of sets of states, and there are transitions between those meta-states in the
obvious. In this way, the algo not just steps through a sequence of partitions it refines,
but at least conceptually, to a sequence of automata. This is a way of “thinking” about
the run of the algo, the algo itself does not explicitly construct sequences of automata, it
works on a sequence of partitions that gets more and more finegrained during the run.

However, thinking in terms of intermediate automata helps to interpret the splitting-
condition: when (and how) should the algo split a meta-state, and when can it stop. As
mentioned earlier, starting from the initial 2-state automaton, the intermediate automata
are generally smaller than the minimal one, and they are accept a language different from
the one of the target automaton (a larger language, actually). There is a third aspect,
not mentioned so far: at and intermediate stage, the automaton with the meta-states is
generally non-deterministic. It’s clear that if one takes a DFA and collapses some states
into one meta-state, the result will no longer be deterministic. That is also the splitting-
condition. The algo looks at meta-states (i.e., a subset in the current partition) and if
that meta-state violates the requirement that it should be determistic, then it splits it.
Actually, the algo checks whether or not a meta-state is determistic per symbol, i.e., the
algo checks where some meta-state Q and a symbol a behave deterministically or not.

If the meta-state behaves non-deterministically, we have to repair that, and that’s by
splitting the that meta-state, so the the resulting split behaves deterministically (with
respect to that symbol a). Howerver, we split only as much as we need to repair the
non-determistic violation, but not more. For instance, one does not simply “atomize” the
meta-states into its individual original states. Those would surely behave deterministic as
the starting point had been DFA, but this way, we won’t get the minimal automaton in
general, as we would do more splits than actually necessary.

So far so good. Of course, one need to treat more than a, it may be necessary, after
splitting a meta-state wrt. a, that one need to split the result further wrt. b. That’s
clear, and let’s not talk about that, let’s focus on one symbol. More interesting is the
question: after having split one meta-state in the way described, making the fragments
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deterministic, am I done with the fragments, or will I have to split them further? The
answer is: doing it one time may not be enough. The reason is as follows. Splitting
a meta-state in the way described may have a rippling effect on other meta-states. For
instance, if one has a stituation like

Q
a−→ Q′

and the meta-state Q′ happens to be split in, say, two refined meta-states Q′1 and Q′2,
then the predecessor state Q suddenly has 2 outgoing a-transitions even if we assume that
sometimes earlier, Q was the result of some splitting step, making it determistic at that
earlier point. That mean, splitting a state may affect that other states have to be split
again, that is the mentioned rippling effect.

A good way to organize the splitting task is to put all the current meta-states that have
not been checked wether they need a split or not into a work list. It may not technically
be a list, but could be a queue or stack, or in general a collection data type, but the
algo would still be called worklist algorithm. Anyway, with this data structure, one can
remove one piece of work, a current meta state out from the work-list, splits it, if necessary,
removes the piece of work, but (re-)adds predecessor states, as they need to be rechecked
and re-treated.

Side remark 2.7.1 (Partition refinement vs. merging equivalent states). We started
earlier by claiming that a naive approach would probably try to merge equivalent states
starting from the given DFA (with would be a “partition coarsening”), as that seems more
obvious. Now, why is the partition refinement algo intuitvely a better idea (without going
into algorithmic complexity considerations)?

In a way, the two approaches (refinement vs. coarseing) look pretty similar. One merges
states resp. split states, until no more merging resp. splitting is neccessary, and then
stops. It’s also not easy to say, which is the shorter route, i.e., which approach needs on
average the least amount of iterations (perhaps in the special case where the automaton
comes via Thompson’s construction and determinzation).

There is a significant difference, though, that that’s the condition to decide when to stop
(resp. if still merging resp. splitting is necessary). In Hopcrof’s refinement approach, the
check is local. The condition concerns the next single edges originating in a (meta)-state.
If they violate the determinism-requirement: then split, otherwise not.

The condition on the merging approach is not-local. They require to check wether to states
accept the same language. That cannot be checked by the looking one step ahead, checking
the outgoing edges. That involves checking all reachable states, and is a much more
complicated condition. Perhaps some memoization (remembering and caching (partial)
earlier checks) can help a bit, but Hopcroft’s partitioning refinment seems not only more
clever, it looks also superior.

Next is a “illustration” of the elementary split step. Namely the situation when it’s not
trivial, in the sense that something happens.

Actually, the algo is pretty simple. Perhaps it works also in a slightly surprizing manner.
If one would try to solve the problem oneself, one perhaps would think along the following
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lines. One is given a deterministic (and complete) automaton, and one want to find the
minimal equivalent one. The starting point in general is not minimal yet, so the task is
to make it smaller but still accepting the same language. A natural idea might then be:
find out, somehow, which two states in the automaton are “equivalent” (insofar that they
accept the same language, if one takes them as initial state). Of one detects two or more
such equivalent states, one may identify them, i.e., use one state instead of two or more
states, making the automaton a bit smaller but still remain equivalent. And then repeat
the “identify-equivalent-states” step until all states are non-equivalent.

The algo presented here works the other way around, insofar that it does not glue states
together but splitting states. So it is a but more mysterious: it starts with a very small
automaton (only 2 states, no matter how big the input of the algo is). The 2-state initial
automaton is in general smaller than the minimal equivalent one and it is not equivalent.
The splitting step in the algorithm make the automaton in the construction larger in
each iteration, until splitting is no longer done. During that process, the intermediate
automata (which are non-deterministic) are all not equivalent to the target automaton.
However, the first one encountered where no split is possible any longer, that one is not
just deterministic, it’s also equivalent to the input automaton and it’s the minimal one.

Now, how does the splitting work? As said, it’s pretty straightforward: One takes one
current partitioning. One is thus dealing with sets of sets of states, let’s call them “meta-
states” and use Q as letter (as on the slides). The algo chooses one meta-state Q and a
letter a in the alphabet and ask the question:

Does this meta-state behaves Q deterministic wrt. a?

If yes, the step is done. If not, make the meta-state deterministic wrt. a, by splitting it.
However, don’t split it more than necessary, just enough to make the result deterministic
wrt. a. And then repeat the step.

That’s basically all. However, one can organize the process of splitting in a more clever
way, more clever at least, than randomly picking in each iteration a meta-state Q together
with a letter a. Obviously, if one has treated the pair (Q, a) in one iteration, it’s stupid
to pick the same pair in the next iteration again. One should remember (Q, a) as “done”
and pick another one. The ones that one have not yet been explored, that’s the worklist
mentioned on the slides. However, it’s not 100% trivial. Trivial would be: One makes
a list of all pairs (Q, a) in advance, and then one ticks off one element of that list after
the other, until finished. That would be so simple that one would not bother to call it a
worklist algorithm.

The complication comes from the cascading effect of splitting. If in one step of the iter-
ation, the algo splits some “meta-state”, then some previously treated pairs may have to
be reconsidered: they may have previously be deterministic (and thus removed from the
worklist), but the splitting now may or may not have changed that. Therefore, they need
to be re-added to the worklist.

The basic step is illustrated in Figure 2.23. In Figure 2.23a, the step targets the parti-
tion consisting of {q1, . . . , q6}. In this illustation, all involved states have outgoing edges
labelled a. Of course, each of the individual states qi has exactly one successor state
(the automaton being deterministic and complete). However, as shown in the picture,
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considering the partions as state, the partition {q1, . . . , q6} has three a-successors, the the
partitions shown on the right. Therefore, the step splits the partition to make that part of
the construction deteriministing but not splitting it more than necessessary (for instance
by “atomizing” the partition into individual states). The result of that split is shown in
Figure 2.23b.
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(b) After the split

Figure 2.23: Splitting the partition {q1, . . . , q6} on a

Let’s have a look at a few more examples. The following examples are shown in overlays
in the slides. They unfolding of the overlays is not done for the script version here.

Example 2.7.2 (Again: DFA for identifiers). We have seen the DFA for identifiers earlier.
It’s repeated in Figure 2.24b, with the initial partitioning indicated by the red bubbles.
The only partition that needs to be splitted is the one of the left with two states, and
the split is on the label letter . The minimal automata (which we seen before) is shown in
Figure ?? (where we have omitted the error state,

{1} {2, 3, 4, 5, 7, 10}

{4, 5, 6, 7, 9, 10}

{4, 5, 7, 8, 9, 10}error

letter

letter

digit

digitletter

letter

digit

digit

(a) Completed automaton

(b) Minimized (error state omitted)

Figure 2.24: DFAs for identifiers

Example 2.7.3 (Partition refinement). Consider the following regular expression.

(a | ε)b∗ (2.22)

The minimization via partitioning refinement is shown in Figure 2.25. Trivial partitions
that only contain a single state are not marked by a red bubble.
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Figure 2.25: DFAs for the regular expression from equation (2.22)

Figure 2.26: Minimal DFA, error state omitted

2.8 Scanner implementations and scanner generation tools

This last section contains only rather superficial remarks concerning how to implement
as scanner or lexer. A few more details can be found in [7, Section 2.5]. The oblig will
include the implementation of a lexer/scanner, so one will get a hands-on experience how
to use tools like that

Scanners are simple and well-understood part of compiler, so hand-coding is certainly pos-
sible. Mostly, however, one is better off with a generated scanner (and parser). Standard
tools are tools lex / flex (also in combination with parser generators, like yacc/bison.
The original ones are for C, but this pair of tools exits for many implementing languages.
The scanner part is based on the results covered in this chapter.

The scanner generator and the parser generator work hand in hand, to they generate a
lexer and a scanner, where the output of lexer/scanner is the input for parser. As discussed,
programmer specifies regular expressions for each token-class and corresponding actions
(and whitespace, comments etc.).

The specification language typically offers some conveniences, like extended regular ex-
pression. The parser part allows to specify priorities, associativities etc.) to ease the task.
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The lexer specification is then automatically translated to NFA (e.g. Thompson), turned
to an DFA, and then minimized (with a little care to keep the token classes separate).
The DFA us implemented usually with the help of some table representation.

Tokens and tje actions of a parser will be covered later. For example, identifiers and
digits as described by the regular expressions, would end up in two different token classes,
where the actual string of characters (also known as lexeme) being the value of the token
attribute.

Here is a small example
1
2 DIGIT [0 −9]
3 ID [ a−z ] [ a−z0 −9]∗
4
5 %%
6
7 {DIGIT}+ {
8 p r i n t f ( "An integer : %s (%d)\n " , yytext ,
9 a t o i ( yytext ) ) ;

10 }
11
12 {DIGIT}+"."{DIGIT}∗ {
13 p r i n t f ( "A f l o a t : %s (%g )\n " , yytext ,
14 a t o f ( yytext ) ) ;
15 }
16
17 i f | then | begin | end | procedure | function {
18 p r i n t f ( "A keyword : %s \n " , yytext ) ;
19 }

Listing 2.4: Sample flex file (excerpt)

The example is taken from http://dinosaur.compilertools.net/flex/flex_
5.html#SEC5

The example shown not the how to specify lexer that works together with a parser. The
outcome of a detecting a lexeme here is not to produce a token that is handed over to the
parser. Here, the lexer will simply print some diagnostic message in the “action parts”,
the parts in the curly braces.

The exact syntax for the scanner generator depends on the particular tool, the example
is flex-syntax. The JLex tool for compilers written in Java is pretty similar, as most such
tools, as they all have comparable functionality.

http://dinosaur.compilertools.net/flex/flex_5.html#SEC5
http://dinosaur.compilertools.net/flex/flex_5.html#SEC5
http://dinosaur.compilertools.net/flex/flex_5.html#SEC5
http://dinosaur.compilertools.net/flex/flex_5.html#SEC5
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