
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2021

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

3 Grammars 1
3.1 Introduction . 1
3.2 Context-free grammars and BNF notation 5

3.2.1 BNF notation . 6
3.2.2 Grammars as language generators 8
3.2.3 Some common-sense requirements for reasonable grammars 10

3.3 Syntax trees, concrete and abstract . 11
3.4 Ambiguity . 15

3.4.1 Precendence & associativity . 17
3.4.2 Unambiguity without imposing explicit associativity and precedence 19
3.4.3 Adding sugar: extended BNF . 24
3.4.4 EBNF examples . 25
3.4.5 Some yacc style grammar . 25

3.5 Chomsky hierarchy . 26

3 Grammars 1

3
Grammars
Chapter

ms
Error:
picsms Error: Check if the pics are included (and/or the codes or the definitions).

In the org-export.

What
is it

about?Learning Targets of this Chapter
1. (context-free) grammars + BNF
2. ambiguity and other properties
3. terminology: tokens, lexemes
4. different trees connected to

grammars/parsing
5. derivations, sentential forms

The chapter corresponds to [3,
Section 3.1–3.2] (or [4, Chapter 3]).

Contents

3.1 Introduction 1
3.2 Context-free grammars and

BNF notation 5
3.3 Syntax trees, concrete and

abstract 11
3.4 Ambiguity 15
3.5 Chomsky hierarchy 26

3.1 Introduction

The compiler phase after the lexer is the parser. In the lecture, treating that phase is
done in two chapters. The current one covers the underlying concepts, namely context-
free grammars. The following chapter will deal with the parsing process.

Context-free grammars resp. notations for context-free grammars play the same role for
parsing as regular expressions played for lexing. There are grammars other than context-
free grammars, later we will at least mention the so-called Chomsky hierarchy, the most
well-known classification of language description formalisms (see Section 3.5). Context-
free languages correspond to one level there, and actually regular language to another one,
actually the simplest level; regular language can be seen as a restricted form of context-free
languages.

Context-free grammars are probably the most-well known example of grammars, so when
speaking simply about “a grammar”, one often just means context-free grammar, though
there are other types as well, as said.

Context-free grammars specify the syntax of a language, as opposed to regular expressions,
which specify the lexical aspects of the language. That’s basically by convention:

2 3 Grammars
3.1 Introduction

The syntax of the language refers to those aspects that can be captured by a
context-free grammar.

When it comes to parsing, one typcially don’t make use of the full power of context-free
grammars, one restricts oneself to special, limited forms, for practical reasons. the chapter
about parsing. One restriction one wants to impose on parsing will already be discussed in
this chapter. That is that one does not want the grammar to be ambigious. Ambiguous
grammars are not useful in parsing, as we will discuss in Section 3.4.

Parser abstract syntax treetoken stream

Figure 3.1: Bird’s eye view of a parser

The input-output interface of a parser is shown in Figure 3.1.

The overall task of a parser is to check that the token sequence correspond to a syntactically
correct program. if yes: yield a tree as intermediate representation for subsequent phases,
if not, give understandable error message(s). The output of the parser is what is known
as abstract syntax tree.

In the parser phase, we will encounter various kinds of trees, basically two. Since parsing
and context free grammars are concerned with syntax, they are generically called syntax
trees.

But there are abstract syntax trees and concrete syntax trees or parse trees. An
abstract syntax tree is what is given back by the parser, as shown in Figure 3.1. Parse trees
is a concept internal to the parser. A parse tree reflects the inner working of the parser,
they way the parser constructs or derives at the conclusion that a program is syntactically
correct. A program is syntactically correct, if there exists a parse tree for it. Since the
parse tree reflects the derivation process in the context-free grammar that specifies the
syntax, those trees are also called derivation trees

The abstract and the concrete syntax trees are not independent. Depending on design
decisions of the designer of the language and of the parser, both kinds of trees may be
very close to each other or slightly less so. As the name indicates, typically the concrete
syntax tree contains more details than the abstract syntax tree. Since the abstract syntax
tree is what the parser hands down to the subsequent phases of the compiler, it contains all
necessary information for that, but ideally not more. In the same way, that the lexer filters
out white space as irrelevant for the subsequent phases, the parser typically excludes some
information in the parse tree, i.e., in the concrete syntax, and gives back a more cleaned-up
tree version as output. Typically would be, to leave out parentheses or other grouping
syntax, as the grouping information is already represented by the tree itself. You may
remember the disucssion about the syntax of regular expression and whether parentheses
are part of that syntax. The answer is, if we think of it as concrete syntax, parentheses
are part if it, if we think of it as abstract syntax (basically thinking a regular expression
is a tree), it’s not needed.

3 Grammars
3.1 Introduction 3

The task of parsing is, given a stream of “symbols” w and a grammar G, find a
derivation from G that produces w.

Parsing is concerned with context-free grammars. As mentioned, one will generally not
try to use the full-power of context-free grammars, but make some restrictions. To the
very least, one insists on the grammar to be non-ambiguous. More globally, there are
different classes of grammars, some more restritive than context-free grammars, some
more expressive. Actually, regular languages correspond to a restricted form of context-
free languages. They are too restricted, though, to be used for parsing, but good enough
for lexing.

Derivations derive “words”. In general, words are finite sequences of symbols from a given
alphabet (as was the case for regular languages). In the concrete picture of a parser, the
words are sequences of tokens. A successful derivation leads to tree-like representations.

program

stmts

stmt

assign-stmt

expr

+

var

y

var

x

var

x

decs

val=vardec

Figure 3.2: Sample syntax tree

The displayed syntax tree is meant “impressionistic” rather than formal. Neither is it a
sample syntax tree of a real programming language, nor do we want to illustrate for in-
stance special features of an abstract syntax tree vs. a concrete syntax tree. Those notions
are closely related and corresponding trees might all look similar to the tree shown.

Side remark 3.1.1 (Grammars for natural languages). The concept of context-free gram-
mars goes back to Chomsky (and Schützenberger). They were (also) used in describing
natural languages, not computer languages (Chomsky is, among other things, a linguist).
So the tree represents the syntactic structure of a (simple) English sentence. See Figure
3.3. What the tree is exactly supposed to mean is not too important (VP and NP stand
for verb-phrase and noun-phrase etc.).

S

NP

DT

The

N

dog

VP

V

bites

NP

DT

the

N

man

Figure 3.3: Natural language syntax tree

4 3 Grammars
3.1 Introduction

Let’s recap also the interface between lexer and parser. Remember the task of the scanner
is chopping up the input character stream, throw away white space, etc. and classify the
pieces. One piece is called lexeme, a classified lexeme is a token, consisting of token
name and a token value; some token classes may not have values. Sometimes we will use
notations like 〈integer, ”42”〉 for tokens, when referring to both the token name and the
token value. We also often call the token name just token.

Remark 3.1.2 (Token (names) and terminals). We said, that sometimes we use “token”
just to mean token symbol, ignoring its value (like “42” from above). Especially, in the
conceptual discussion and treatment of context-free grammars, which form the core of the
specifications of a parser, the token value is basically irrelevant. Therefore, one simply
identifiers and silently ignore the presence of the values.

tokens = terminals of the grammar

That is in line with the rule of thumb mentioned in the introductory chapter about the
classification task for the scanner. It stated things that are treated identically should be
classified into the same token.

In an implementation, and in lexer/parser generators, the value ”42” of an integer-representing
token must obviously not be forgotten, though . . . The grammar may be the core of the
specification of the syntactical analysis, but the result of the scanner, which resulted in
the lexeme ”42” must nevertheless not be thrown away, it’s only not really part of the
parser’s tasks.

Remark 3.1.3 (On the use of notations). Writing a compiler, especially a compiler front-
end comprising a scanner and a parser, but also for later phases, is about implementing
representation of syntactic structures. The script here and the slides don’t implement
a lexer or a parser or similar, but describe in a hopefully unambiguous way the princi-
ples of how a compiler front end works and is implemented. To describe that, one needs
“language”, as well, such as the English language (mostly for intuitions) but also “mathe-
matical” notations such as regular expressions, or in this section, context-free grammars.
Those mathematical definitions have themselves a particular syntax. One can see them
as formal domain-specific languages to describe (other) languages. One faces therefore
the (unavoidable) fact that one deals with two levels of languages: the language that is
described (or at least whose syntax is described) and the language used to describe that
language. We already faced the same when talking about regular expressions. The situ-
ation is, of course, the same when writing a book teaching a human language: there is a
language being taught, and a language used for teaching (both may be different). More
closely, it’s analogous when implementing a general purpose programming language: there
is the language used to implement the compiler on the one hand, and the language for
which the compiler is written for. For instance, one may choose to implement a C++-
compiler in C. It may increase the confusion, if one chooses to write a C compiler in C
That was a bit discussed in the introductory chapter under the header “bootstrapping”.
Anyhow, the language for describing (or implementing) the language of interest is called
the meta-language, and the other one described therefore just “the language”.

3 Grammars
3.2 Context-free grammars and BNF notation 5

When writing texts or slides about such syntactic issues, typically one wants to make
clear to the reader what is meant. One standard way are typographic conventions, i.e.,
using specific typographic fonts. I am stressing “nowadays” because in classic texts in
compiler construction, sometimes the typographic choices were limited (maybe written as
“typoscript” on a type writer, or even a manuscript, or a mixture, a typoscript with some
extra manual scribbles here and there for symbols not supported by the typewriter.

3.2 Context-free grammars and BNF notation

In this chapter and the one for parsing, we focus context-free grammars. So when
mentioning grammars, we mean context-free ones. For lexing, we discussed regular ex-
pressions and regular languages. Languages, as defined earlier is a (typically infinite) set of
words, and languages that can be described by regular expression are regular languages.
Grammars, context-free or otherwise, like regular expression, is a formalism to unam-
biguously specify a language. Context-free grammars consequently described context-free
languages. What is descibed by such grammar is a (programming’s) language syntax.
So such a grammar describes all syntactically correct programs of a given progamming
language. In the context of a compiler, the alphabet of the context-free language is the
set of tokens that the lexer procudes.

Slogan A CFG describes the syntax of a programming language. a

aAnd some say, regular expressions describe its microsyntax.

Note: a compiler might reject some syntactically correct programs, whose violations cannot
be captured by CFGs. That is done by subsequent phases. For instance, the type checker
will reject many syntactically correct programs that are ill-typed. The type checker is an
important part from the semantic phase (or static analysis phase). A typing discipline is
not a syntactic property of a language (in that it cannot captured most commonly by a
context-free grammar), it’s therefore a “semantic” property.

Sometimes, the word “grammar” is synonymously for context-free grammars, as CFGs
are so central. However, the concept of grammars is more general; there exists context-
sensitive and Turing-expressive grammars, both more expressive than CFGs. Also a re-
stricted class of CFG correspond to regular expressions/languages. Seen as a grammar,
regular expressions correspond so-called left-linear grammars (or alternativelty, right-
linear grammars), which are a special form of context-free grammars.

Definition 3.2.1 (CFG). A context-free grammar G is a 4-tuple G =
(ΣT ,ΣN , S, P):

1. 2 disjoint finite alphabets of terminals ΣT and
2. non-terminals ΣN

3. 1 start-symbol S ∈ ΣN (a non-terminal)
4. productions P = finite subset of ΣN × (ΣN + ΣT)∗

Productions are also called rules.

6 3 Grammars
3.2 Context-free grammars and BNF notation

As mentioned, in the context of a parser, the terminal symbols correspond to tokens and
are the basic building blocks of the syntax. Non-terminals, (e.g. representing an “expres-
sion”, a “while-loop”, a “conditional statement” are compound syntactic constructions.
For syntax trees (in particular parse trees), the leaves consists of terminals, the inner nodes
of non-terminals. A grammar is a notation for generating languages —context-free lan-
guage, of course— by doing derivations. This generative aspect, specifying a language, is
of course not the same as parsing. Parsing is the inverse problem: given a grammar and
some sequence of terminals (or token in a parser): determine whether that sequence be-
longs to the grammar’s language or not, i.e. whether the input is syntactically correct
or not. The CFG is thus the specification of what the parser is expected to parse.

3.2.1 BNF notation

BNF is a popular & common format to write context-free languages. It’s named after
pioneering (seriously) work on Algol 60. It’s a notation to write productions/rules + some
extra meta-symbols for convenience and grouping

Backus-Naur form: What regular expressions are for regular languages, is BNF
for context-free languages.

Side remark 3.2.2. It seems like Peter Naur does not like to be associated with BNF . . .
He prefers the acronym to stand for Backus normal form. He is a Turing award winner
and may be to Danemark what OJD is to Norway. John W. Backus, another Turing
award winner, is also known for his involvement in Fortran, which is the first high-level
programming language in actual widespread use. The BNF notation has been used in
describing Algol 60 [1] (and ever since).

Let’s have a look at some example for illustration. There will be more than enough BNF-
grammars in this and the following chapter, including different variations on capturing
expressions

Example 3.2.3 (Expressions in BNF).

exp → exp op exp | (exp) | number
op → + | − | ∗

(3.1)

The notation here uses “→” for productions or rules, i.e., pairs of the grammar, and “ | ”
indicating alternatives for one non-terminal. For convention, we write terminals boldface,
and non-terminals italic. Also simple math symbols like “+” and “(” are meant above as
terminals. The start symbol here is exp. Unless stated otherwise, the start symbol is
the first non-terminal mentioned in the grammar. This expression grammar consists of 6
productions/rules, 3 for expr and 3 for op. Instead of →, one often finds the notation ::=.

https://en.wikipedia.org/wiki/ALGOL_60

3 Grammars
3.2 Context-free grammars and BNF notation 7

Remark 3.2.4 (Terminals). Conventions are not always 100% followed, often bold fonts
for symbols such as + or (are unavailable or not easily visible. The alternative using, for
instance, boldface “identifiers” like PLUS and LPAREN looks ugly. Some books would
write ’+’ and ’(’.

In a concrete parser implementation, in an object-oriented setting, one might choose to
implement terminals as classes (resp. concrete terminals as instances of classes). In that
case, a class name + is typically not available and the class might be named Plus. Later
we will have a look at how to systematically implement terminals and non-terminals, and
having a class Plus for a non-terminal ‘+’ etc. is a systematic way of doing it (maybe
not the most efficient one available though).

Most texts don’t follow conventions so slavishly and hope for an intuitive understanding
by the educated reader, that + is a terminal in a grammar.

There are different variations notation, BNF is not really “standardized” across books
(and especially tools). The “classic” way two write it (as in Algol 60) may look as follows:

<exp> ::= <exp> <op> <exp>
| (<exp>)
| NUMBER

<op> ::= + | - | *

There exist also extended versions of BNF (EBNF), where one could write:

exp → exp (” + ” | ”− ” | ” ∗ ”) exp
| ”(” exp ”)” | ”number”

(3.2)

This variation also marks the terminals by “quoting” them. Note that the last grammar
has to kinds of parenthes: the quoted ones which represent terminals, as well as meta-
symbols used for grouping the grammar notation.

Specific and unambiguous notation is important, in particular if you implement a concrete
language on a computer. On the other hand: understanding the underlying concepts by
humans is likewise important. In that way, bureaucratically fixed notations may distract
from the core, which is understanding the principles. XML, anyone? Most textbooks (and
we) rely on simple typographic conventions (boldface, italics). For “implementations” of
BNF specification (as in tools like yacc), the notations, based mostly on ASCII, cannot
rely on such typographic conventions.

As said, BNF and its variations is a notation to describe “languages”, more precisely the
“syntax” of context-free languages. Of course, BNF notation, when exactly defined, is a
language in itself, namely a domain-specific language to describe context-free languages. It
may be instructive to write a grammar for BNF in BNF, i.e., using BNF as meta-language
to describe BNF notation (or regular expressions). BTW: Is it possible to use regular
expressions as meta-language to describe regular expressions?

8 3 Grammars
3.2 Context-free grammars and BNF notation

Example 3.2.5 (Different ways of writing the same grammar). Let’s look at the following
grammar consisting of written as 6 pairs from ΣN × (ΣN ∪ ΣT)∗ (6 rules, 6 productions)
, with “→” as nice looking “separator”:

exp → exp op exp
exp → (exp)
exp → number
op → +
op → −
op → ∗

(3.3)

The choice of non-terminals is of course irrelevant except for human readability. So we
can write equivalently

E → E O E | (E) | number
O → + | − | ∗

(3.4)

Still, we count 6 productions.

3.2.2 Grammars as language generators

A grammar represents the language it generates, i.e., the set of words that can be derived
using it. Deriving a word is simple enough: start from start symbol. Pick a matching
rule to rewrite the current word to a new one and repeat until the result contains terminal
symbols, only.

To ease the presentation, let’s fix some conventions

Convention 3.2.6. We will use α1, α2, β . . . for word of terminals and nonterminals,
w, v1 . . . for words of terminals, and A,B′ . . . for a single non-terminal. We use also
X for arbitrary grammar symbols, a terminal, or non-terminal, or ε.

We will use those conventions when speaking conceptually about grammars and their
properties and will continue to use the conventions also in the chapter about parsing. In
concrete examples, we will often deviate from the conventions, for instance, we continue
to use expr for a non-terminal representing expression, not an upper-case letter, say E.

With these conventions, a derivation is of the following form:

S ⇒∗ α = α1Aα2 ⇒ α1βα2 ⇒∗ w

The single derivation step in the middle applies a production A→ β to the non-terminal
A occurring in A. The end-result w is a word of terminals. The words in the middle
contain non-terminals and possibly terminals. Words from Σ∗ = (ΣN ∪ ΣT)∗ are also
called sentential forms.

3 Grammars
3.2 Context-free grammars and BNF notation 9

We write α1 ⇒G α2 for one (rewrite) step in a given grammar G, resp. α1 ⇒ α2, when G
is clear from the context. If we want to be specific, we can write for one step using rule n
explicitly α1 ⇒n α2. The many-step derivation relation is written ⇒∗ , etc.

Definition 3.2.7 (Language of grammar G).

L(G) = {s | start ⇒∗ s and s ∈ Σ∗T }

Derivation is a non-deterministic process, i.e., a derivation makes choices what the next
step is. One can distinguish two aspects of non-determinism here: 1) a sentential form
contains (most often) more than one non-terminal, including the case that one particular
non-terminal occurs more than once. In that situation, one has the choice of expanding
one non-terminal or the other. 2) Besides that, there may be more than one production
or rule for a given non-terminal. Again, one has a choice.

As far as 1) is concerned.: whether one expands one symbol or the other leads to different
derivations, but won’t lead to different derivation trees or parse trees in the end. Below,
we impose a fixed discipline on where to expand. That leads to left-most or right-most
derivations.

Example 3.2.8 (Derivation). Take the expression grammar from Example 3.2.3 and assume
the word

(number−number)∗number .
The following shows a derivation for that word:

exp ⇒ exp op exp
⇒ (exp) op exp
⇒ (exp op exp) op exp
⇒ (n op exp) op exp
⇒ (n−exp) op exp
⇒ (n−n)op exp
⇒ (n−n)∗exp
⇒ (n−n)∗n

(3.5)

In the derivation, we use underlining to indicate the “place” where a rule is used, i.e., an
occurrence of the non-terminal symbol which is being rewritten/expanded. The particular
derivation from equation (3.5) is a so-called leftmost derivation, the following one from
equation (3.6) is a rightmost derivation:1

exp ⇒ exp op exp
⇒ exp op n
⇒ exp∗n
⇒ (exp op exp)∗n
⇒ (exp op n)∗n
⇒ (exp−n)∗n
⇒ (n−n)∗n

(3.6)

There are also other (“mixed”) derivations for the same word possible.
1We’ll come back to those concepts later, it will be important.

10 3 Grammars
3.2 Context-free grammars and BNF notation

3.2.3 Some common-sense requirements for reasonable grammars

The format of grammars is pretty simple and allows to write all kinds of grammars, some
obviously defective. People studied what is a good form for grammars and there are
various so-called normal forms for grammars and methods how to transform a grammar
into a decent form. We don’t look into that and keep it informal. We just mention some
obvious things one should avoid when writing a grammar, on the level of common sense.

For instance, all symbols, terminals and non-terminals, should occur in a some sentential
derivable from the start symbol. Besides avoiding useless symbols, one might not have rules
in the grammar that don’t contribute to the language being derived or avoid redundancy in
the productions. Also at least one word containing only non-terminals should be derivable.
In other words, a grammar that specifies the empty language is not really useful

Here is an example of a silly grammar G (start-symbol A)

A → Bx
B → Ay
C → z

where L(G) = ∅

There can be further conditions one would like to impose on grammars besides the one
sketched. A CFG that derives ultimately only 1 word of terminals (or a finite set of those)
does not make much sense either.

There are further conditions on grammar characterizing their usefulness for parsing or
particular parsing techniques. So far, we mentioned just some obvious conditions of “use-
less” grammars or “defects” in a grammer (like superfluous symbols). “Usefulness condi-
tions” may refer to the use of ε-productions and other situations. Those conditions will
be discussed when the lecture covers parsing (not just grammars).

Remark 3.2.9 (“Easy” sanitary conditions for CFGs). We stated a few conditions to
avoid grammars which technically qualify as CFGs but don’t make much sense, for instance
to avoid that the grammar is obviously empty.

There’s a catch, though: it might not immediately be obvious that, for a given G, the
question L(G) =? ∅ is decidable!

Whether a regular expression describes the empty language is trivially decidable. Whether
or not a finite state automaton describes the empty language or not is, if not trivial, then
at least a very easily decidable question.

For context-sensitive grammars (which are more expressive than CFG but not yet Turing
complete), the emptyness question turns out to be undecidable. Also, other interesting
questions concerning CFGs are, in fact, undecidable, like: given two CFGs, do they de-
scribe the same language? Or: given a CFG, does it actually describe a regular language?
Most disturbingly perhaps: given a grammar, it’s undecidable whether the grammar is
ambiguous or not. So there are interesting and relevant properties concerning CFGs which
are undecidable. Why that is, is not part of the pensum of this lecture (but we will at

3 Grammars
3.3 Syntax trees, concrete and abstract 11

least have to deal with the important concept of grammatical ambiguity later). Coming
back to the initial question: fortunately, the emptyness problem for CFGs is decidable.

Questions concerning decidability may seem not too relevant at first sight. Even if some
grammars can be constructed to demonstrate difficult questions, for instance related to
decidability or worst-case complexity, the designer of a language will not intentionally try
to achieve an obscure set of rules whose status is unclear, but hopefully strive to capture in
a clear manner the syntactic principles of an equally hopefully clearly structured language.
Nonetheless: grammars for real languages may become large and complex, and, even if
conceptually clear, may contain unexpected bugs which makes them behave unexpectedly
(for instance caused by a simple typo in one of the many rules).

In general, the implementor of a parser will often rely on automatic tools (“parser genera-
tors”) which take as an input a CFG and turns it in into an implementation of a recognizer,
which does the syntactic analysis. Such tools obviously can reliably and accurately help
the implementor of the parser automatically only for problems which are decidable. For
undecidable problems, one could still achieve things automatically, provided one would
compromise by not insisting that the parser always terminates (but that’s generally is
seen as unacceptable), or at the price of approximative answers. It should also be men-
tioned that parser generators typcially won’t tackle CFGs in their full generality but are
tailor-made for well-defined and well-understood subclasses thereof, where efficient recog-
nizers are automaticlly generatable. In the part about parsing, we will cover some such
classes.

3.3 Syntax trees, concrete and abstract

As mentioned variously, grammars and parsing is about the syntax of a language and it
deals with trees. Consequently it’s about syntax trees. We also mentioned that in a parser
one distinguishes between parse-tree, also called concrete syntax trees on the one hand,
and abstract syntax trees on the other. One also speaks about the contrete syntax of a
language and its abstract syntax.

Let’s start discussing parse tree. A derivation is a sequence of derivation steps, is it’s a
linear representation of the process generating a word or sentential form. The ultimate
order of individual steps is irrelevant, however. In particular, the order of the derivation
steps is not needed for subsequent phases. What matters is the parse tree, a tree structure
that captures the essence of a derivation.

Let’s look at some examples.

Example 3.3.1 (Parse tree). Consider the derivations from Example 3.2.8, for the expres-
sion grammar from Example 3.2.3. The parse tree for both derivations is shown in Figure
3.3.1.

Note: the numbers in the tree are not part of the parse tree. They are just shown here to
indicate order of derivation. The concrete numbers are those for the right-most derivation
from equation (3.6).

12 3 Grammars
3.3 Syntax trees, concrete and abstract

1 exp

4 exp

(5 exp

8 exp

n

7 op

−

6 exp

n

)

3 op

∗

2 exp

n

Figure 3.4: Parse tree (numbers for right-most derivation),

The parse trees often contains unnecessary details, for instance parentheses, used for group-
ing, or other unnessessary nodes. Parentheses for grouping are not necessary, the tree
structure represents the intended grouping already. Also the tree may be represented
more compactly. That is the case in particular, if the grammar is written “weirdly”.

Why would one do that, writing up a grammar not in the clearest possible manner? If
the grammar is used for parsing, not just for describing the language, then one has to
take care of possible restrictions of the chosen parser technology. For instance, the ex-
pression grammar from equation (3.1) looked clean enough, but the grammar is ambigous.
Ambiguous grammars are unwanted, and realistic parsers cannot handle such grammars
properly. So, as clean as the grammar is, to be used in a parser, it needs to be reformu-
lated so that it becomes at least unambigous. Depending on what parsing technique one
uses, other aspects of a grammar are not acceptable for parsing, and sometimes one can
massage the grammar or reformulate it to make it acceptable; sometimes the language is
too complicated for a certain class of parsers. Such reformulations, if possible, typically
don’t increase the clarity of a grammar. We will see examples of that in the chapter about
parsing, but also in this chapter when talking about ambiguity (see Section 3.4)

Example 3.3.2 (Parse tree and abstract syntax tree). Let’s look at a very simple example,
trees for the expression 3 + 4, again using the grammar from Example 3.2.3. The tree
from Figure 3.5a is a parse tree for the expression, actually the only parse tree for it. The
numbers indicate that the tree has been derived by a left-most derivation (though again,
the numbers are not officially part of the parse tree, as the order is irrelevant.) Figure

1 exp

2 exp

n

3 op

+

4 exp

n

(a) Parse tree

+

3 4

(b) AST

Figure 3.5: Trees for 3 + 4

3.5b sketches a possible abstract syntax tree, containing only three notes. Abstract syntax
trees in a compiler are a data structure, an important intermediate representation. In the
parse tree, we indicate the syntax structure omitting token values, for instance the token
class n may contain lexeme or values like 3 and 4 in the example, and those of course need
to be stored in the abstract syntax tree data structure.

3 Grammars
3.3 Syntax trees, concrete and abstract 13

Figure 3.5b shows an AST for the earlier parse tree for the expression 34− 3 ∗ 42.2

Figure 3.6: Plausible schematic AST (for the parse tree from Figure 3.4)

Comparing ASTs and CSTs, they are closely related. It’s not surprising, the grammar
describes the concrete syntax of a program, in terms of tokens. I.e., it’s already no longer
the source code as the whitespace and comments have typically been filtered out already
and the lexems have been tokenized. But apart from that, the concrete syntax represents
the code as is. And abstract syntax trees likewise represent the code, only abstracting
away to some degree unneccessary details.

Parse trees are an important conceptual structure, to talk about grammars and derivations
and later parsing. most likely not explicitly implemented in a parser as data structure,
it’s more that the parser, given a grammar, when doing a parse, follows it’s run, the
structure of a parse tree. When doing so, it builds up the abstract syntax tree as data
structure in the host language. In the extreme case, when the designer choose to keep
all the details of the parsing procedure, when the abstract syntax trees are equivalent to
parse tree, the parsing process simply records the parse or derivation tree and hands that
over as (not so) abstract syntax tree.

However, typically, the designer abstracts a bit from that. If the grammar is given (and
if its unambiguos), the parse trees for a given input is fixed. However, for the abstract
syntax tree, one has a little bit of freedom how to design then (and how to contretely
implement them as data structure in the host-languate or meta-language). Thus, nodes as
in ASTs like the one from Figure 3.5b are concrete data stuctures in the meta-language,
for instance C-structs, instances of Java classes, or what ever is best suitable in the chosen
host language. So the AST figure and similar ones are meant rather schematic, only.

Note also: we use 3 in the AST, where lexeme was "3". At some point, the lexeme,
which is a string, here "3", is converted to a number in the meta-language. As already
mentioned in the introductory chapter, that’s typically already done by the lexer.

Now, what can one typically abstract away from a parse tree? Parentheses and similar
grouping constructs are not needed in an AST. Then one could have constructs like
conditionals. In concrete syntax it’s one could write if b then S1 else S2 endif.
Here a conditional that indicate the end by some special keyword endif. This end-
marker is also some form of grouping. The fact that the syntax uses tokens like if, then,
else and endif (corresponding to the lexemes if, then else, and endif, is not really
relevant. It’s just how a conditional is written down in concrete syntax. Abstractly, a

2For this expression and in the given grammar, it’s not the only parse tree and consequently not the only
abstract syntax tree. We come to that later.

14 3 Grammars
3.3 Syntax trees, concrete and abstract

conditional can be represented by a node in a tree with three children nodes, that’s all
that matters.

One can even invest a bit more in abstracting away from the parse tree. For instance, if
one had a language that allows in concrete syntax two or more forms of loops, say a while-
and a repeat-until loop. One form can easily express the other, so one would need not
both. Still, the programmer may enjoy having both forms at disposal. Both therefore must
be parseable and covered by the concrete syntax, but one could arrange for an abstract
syntax tghat support only one, but transforms the other form away. One would call then
the extra form syntactic sugar. Why would one get rid of such syntactic sugar in the
AST? A motivation is, if one can already get rid of superflous constructs early on, one
does not have to deal with them afterwards. So, one would not have to type check all
variants, one would not have to generate code for all of them, etc.

Since we have just mentioned conditionals, let’s have another look at those. Conditionals
in one syntactic form or other occur in basically all programming languages. As of now,
we use the conditionals for not much more than pointing out something that should be
rather obvious: there is (always) more than one way to describe an intended language
by a context-free grammar. The same was the case for regular expressions, as well (and
generally for all notational systems): there is always more than one way to describe
things.

Example 3.3.3 (Conditionals G1). The following grammar in BNF, let’s call it G1, is a
plausible formulation for conditional for a language that supports both two-armed and
one armed conditional. The expression syntax is of course simplified, as irrelevant for us
right now.

stmt → if -stmt | other
if -stmt → if (exp) stmt

| if (exp) stmt else stmt
exp → 0 | 1

(3.7)

The sequence of terminals
if (0) other else other (3.8)

is syntactically correct, as evidenced by the parse tree from Figure 3.7.

stmt

if -stmt

if (exp

0

) stmt

other

else stmt

other

Figure 3.7: Parse tree

Of course, with more than one formulation, some may “better” than others. That may refer
to “clarity” or readability for humans. But there are also aspects relevant for parsing. As
formulation of a grammar may be in a form unhelpful for parsers. That may also depend

3 Grammars
3.4 Ambiguity 15

of the chosen style of parsers: some formulations pose problems for top-down parsers resp.
for bottom-up parsers. Issues like that will be discussed in the chapter of parsing, here
we are still covering grammars. In particular in connection with conditionals (which is
a classic example): the chosen syntax here will lead to ambiguity, which we will discuss
later. In this particular examples, both formulations of the grammar are ambiguous (it
will be a classical example of ambiguitity). Actually, it’s quite straightforward to convince
oneself, that one cannot reformulate the grammar, to get an equivalent but unambigous
grammar. The ambiguity goes deeper (in this case): the language itself is ambiguous. We
pick up on those issues later.

Example 3.3.4 (Another grammar for conditionals). Conditionals G2

stmt → if -stmt | other
if -stmt → if (exp) stmt else−part

else−part → else stmt | ε
exp → 0 | 1

(3.9)

As abbreviation, ε representes the empty word. We have encountered the symbol ε
before, in the context of regular languages. In regular expressions, the symbol ε represents
the same as here: the empty word, the absence of a symbol, the empty sequence, etc.

See Figure 3.8 for a parse tree and an AST for that grammar.

stmt

if -stmt

if (exp

0

) stmt

other

else−part

else stmt

other

(a) Parse tree

COND

0 other other

(b) AST

Figure 3.8: Trees for G2

A potentially missing else part may be represented by null-“pointers” in languages like
Java. In functional languages, one could use “option” types to represent in a safer way
the fact that the else part is there or may be missing. With null-pointers, there is always
the danger that the programmer forgets that the value may not be there and then forgets
to check that case properly, and cause some null pointer exception.

3.4 Ambiguity

Before we mentioned some “easy” conditions to avoid “silly” grammars, without going into
detail. Ambiguity is more important and complex. A grammar is ambiguous, if there

16 3 Grammars
3.4 Ambiguity

exist words for which there are two different parse trees.

That’s in general highly undesirable, as it means there are sentences with different syn-
tactic interpretations (which therefore may ultimately interpreted differently). That is
mostly a no-no, but even if one would accept such a language definition, parsing would be
problematic, as it would involve backtracking trying out different possible interpretations
during parsing (which would also be a no-no for reasons of efficiency). In fact, later, when
dealing with actual concrete parsing procedures, they cover certain specific forms of CFG
(with names like LL(1), LR(1), etc.), which are in particular unambiguous. To say it dif-
ferently: the fact that a grammar is parseable by some, say, LL(1) top-down parser (which
does not do backtracking) implies directly that the grammar is unambiguous. Similar for
the other classes we’ll cover.

Note also: given an ambiguous grammar, it is often possible to find a different “equiva-
lent” grammar that is unambiguous. Even if such reformulations are often possible, it’s
not guaranteed: there are context-free languages which can be captured by ambiguous
grammars, but not by an unambigous one. In that case, one speaks of an context-free
ambiguous language or says the language is inherently ambiguous. We concentrate on
ambiguity of grammars, not languages.

Now that we have said that ambiguity in grammars must be avoided, we should however
also say, that, in certain situations, one can in some way live with it. One way of living
with it is: imposing extra conditions on the way the grammar is used, that removes
it (in a way, priorizing some rules over others). In practice, that often takes the form
of specifying associativity and binding powers of operators, like making clear that 1 +
2 + 3 is “supposed” to be interpreted as (1 + 2) + 3 (addition is left-associative) and
1 + 2 × 3 is the same as 1 + (2 × 3) (multiplication binds stronger than addition). The
grammar as such is ambigiguous, but that’s fine, since one can make it non-ambiguous by
imposing such additional constraints. And not only can one do that technically, that form
of disambiguation is also transparent for the user.

Figure 3.9: Tempus fugit . . . (picture source: wikipedia)

One famous sentence often used to illustrate ambiguity in natural languages is “Time flies
like a banana” or longer “time flies like an arrow, fruit flies like a banana”. That sentence
is often attributed to Groucho Marx, but it’s a bit aprocryphal.

3 Grammars
3.4 Ambiguity 17

Definition 3.4.1 (Ambiguous grammar). A grammar is ambiguous if there exists
a word with two different parse trees.

We have seen examples of ambiguity before.

Example 3.4.2. Remember the expression grammar from Example 3.2.3 and equation (3.1)
and consider

number − number ∗ number .

Obviously, there are different parse trees for that, and consequently different ASTs. And
of course, the different ASTmean different things, i.e., represent different numbers. Resp.
code ulimately generated from the two trees will result in different outcomes.

(a) Parse tree (1) (b) Parse tree (2)T
∗

−

34 3

42

(c) AST (1)

−

34 ∗

3 42

(d) AST (2)

Figure 3.10: Different parsing of 31− 3 ∗ 42

Remark 3.4.3 (Different meaning). The issue of different meanings may in practice be
subtle: is (x+ y)− z the same as x+ (y − z)? In principle yes, but what about MAXINT?
The slides stipulates that difffernet parse trees lead to different ASTs and this in turn
into different meanings. That is principle correct, but there may be special circumstances
when that’s not the case. Different CSTs may actually result in the same AST. Or also:
it may lead to different AST which turn out to have the same meaning. The slide gave
an example of where it’s debatable whether two different ASTs have the same meaning or
not.

3.4.1 Precendence & associativity

One way to make a grammar unambiguous (or less ambiguous) is to use the concepts
of precedence and associativity. See Table 3.1 for conventions for standard binary
operators in infix-notation. Exponentiation a ↑ b is written in standard math texts as
ab.

18 3 Grammars
3.4 Ambiguity

binary op’s precedence associativity
+, − low left
×, / higher left
↑ highest right

Table 3.1: Standard precedences and associativities of mathematical binary operators

With these conversions understood, one can transform the following expression into an-
other one using paretheses, to make the grouping explicit.

5 + 3/5× 2 + 4 ↑ 2 ↑ 3 =
5 + 3/5× 2 + 423 =
(5 + ((3/5× 2)) + (4(23))) .

(3.10)

Those concepts work mostly fine for binary operators in infix, but usually also for unary
ones (postfix or prefix).

Here are two examples in actual programming languages. The scan from Figure 3.11a is
taken from an edition of the book “Java in a nutshell”, the one from Figure 3.11b covering
C++ is clipped from the net

(a) Java (b) C++

Figure 3.11: Associativity and precendences

As mentioned, the question whether a given CFG is ambiguous or not is undecidable.
Note also: if one uses a parser generator, such as yacc or bison (which cover a practically
usefull subset of CFGs), the resulting recognizer is always deterministic. In case the
construction encounters ambiguous situations, they are “resolved” by making a specific

3 Grammars
3.4 Ambiguity 19

choice. Nonetheless, such ambiguities indicate often that the formulation of the grammar
(or even the language it defines) has problematic aspects. Most programmers as “users” of
a programming language may not read the full BNF definition, most will try to grasp the
language looking at sample code pieces mentioned in the manual, etc. And even if they
bother studying the exact specification of the system, i.e., the full grammar, ambiguities
are not obvious (after all, it’s undecidable, at least the problem in general). Hidden
ambiguities, “resolved” by the generated parser, may lead to misconceptions as to what
a program actually means. It’s similar to the situation, when one tries to study a book
with arithmetic being unaware that multiplication binds stronger than addition. Without
being aware of that, some sections won’t make much sense. A parser implementing such
grammars may make consistent choices, but the programmer using the compiler may not
be aware of them. At least the compiler writer, responsible for designing the language,
will be informed about “conflicts” in the grammar and a careful designer will try to
get rid of them. This may be done by adding associativities and precedences (when
appropriate) or reformulating the grammar, or even reconsider the syntax of the language.
While ambiguities and conflicts are generally a bad sign, arbitrarily adding a complicated
“precedence order” and “associativities” on all kinds of symbols or complicate the grammar
adding ever more separate classes of nonterminals just to make the conflicts go away is
not a real solution either. Chances are, that those parser-internal “tricks” will be lost on
the programmer as user of the language, as well.

Sometimes, making the language simpler (as opposed to complicate the grammar for the
same language) might be the better choice. That can typically be done by making the
language more verbose and reducing “overloading” of syntax. Of course, going overboard
by making groupings etc. of all constructs crystal clear to the parser, may also lead to
non-elegant designs. Lisp is a standard example, notoriously known for its extensive use of
parentheses. Basically, the programmer directly writes down syntax trees, which certainly
removes ambiguities, but still, mountains of parentheses are also not the easiest syntax for
human consumption (for most humans, at least). So it’s a balance (and at least partly a
matter of taste, as for most design choices and questions of language pragmatics).

But in general: if it’s enormously complex to come up with a reasonably unambigous
grammar for an intended language, chances are, that reading programs in that language
and intutively grasping what is intended may be hard for humans, too.

Note also: since already the question, whether a given CFG is ambiguous or not is un-
decidable, it should be clear, that the following question is undecidable, as well: given a
grammar, can I reformulate it, still accepting the same language, that it becomes unam-
biguous? At least in general, reformulating a given grammar into an unambigous one is
often possible, resp. figuring out that there’s not chance for it, as the language is inherently
ambiguous.

3.4.2 Unambiguity without imposing explicit associativity and precedence

There exists also a recipe to (try to) remove ambiguity by reformulating the grammar. The
method sketched here, known as precedence cascade is a receipe to massage a grammar
in such a way that the result captures intended precedences (and at the same time their
associativities, as well). It works in that way for syntax using binary operators. That

20 3 Grammars
3.4 Ambiguity

receipe is commonly illustrated using numerical expressions. We will encounter analogous
tasks also in the exercises. Let’s start with a simple example, illustrating associativity of
expressions.

Example 3.4.4 (Assiciativity of expressions). Let’s take expressions built with + and −
as binary operators (represented by addop). To have them left-associative, we can
introduce a separate non-terminal, here called term, and write the grammar in a left-
recursive manner:

exp → exp addop term | term (3.11)

More precisely, the first production is left-recursive over the non-terminal exp. Analo-
gously, right-associativity is achieved by right-recursion (see equation 3.12), and for a
non-associative (and ambiguous) representation, one would not need the additional non-
terminal term, if one had expressions only using plus and minus.

exp → term addop exp | term (3.12)

If, besides addition and substruction, one also supports multiplication, for instance, it’s
no longer a question of associativity alone, then also precendence enters the picture. In
this case, one will introduce a non-terminal for each precedence level. The two levels could
be called expressions and terms, and if the addop is intended to be non-associative, the
corresponding part of the grammar would look as follows:

exp → term addop term | term (3.13)

Of course, with minus as possible operator, a non-associative formulation is bad idea.

Let’s continue the example by adding multiplication and covering precedence.

Example 3.4.5 (Factors and terms). As hinted at in the previous example, we need to
introduce separate extra non-terminals to cover the precedence levels. There, besides
expression, there are terms and factors (which are traditional names for those). Concerning
associativity, both operator levels are defined as left-associative, as the corresponding
productions for exp and for term are left-recursive.

Figure 3.12 shows two parse-trees, Figure 3.12a illustrates precedence (of multiplication
over −), Figure 3.12b illustrating left-associativity (of minus).

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

(3.14)

Sometimes, whether operators associates to the left or the right is irrelevant. One speaks
of non-essential ambiguity.

3 Grammars
3.4 Ambiguity 21

(a) 34− 3 ∗ 42
(b) 34− 3− 42

Figure 3.12: Factors and terms

Example 3.4.6 (Non-essential ambiguity). Consider the following two possible ways to
specify sequential composition of statements, one with the corresponding operator associ-
ating to the left, in the other formulation associating to the right.

stmts → stmts ; stmt
| stmt

stmt → S

stmts → stmt ; stmts
| stmt

stmt → S

For

(a) left-assoc. (b) right-assoc.

Figure 3.13: Sequential composition

sequential composition, the associativity does not semantically matter. Indeed, the parser
could turn both parse trees or concrete syntax trees of Figure 3.13 into the same abstract
syntax tree. Figure 3.14 sketches two possible representations; the second one is meant as
represing a linked list, where each statement points to its successor.

When using a “non-associative” representation in the AST, later phases would not even
see the difference in programs parsed under a left- or under right-associative regime, or
between S; {S;S} and {S;S};S, if the syntax support grouping.

(a) (b)

Figure 3.14: Possible abstract syntax trees

22 3 Grammars
3.4 Ambiguity

So in a situation of inessential ambiguitiy, it does not matter which parse-tree is actually
chosen by a parse. Does it mean, one should use an ambiguous grammar. It may be
easier to formulate, if one cannot rely on a mechanism that allows to specify associativity
without need to come up with some precedence cascade oneself.

Actually, it may not be a good idea. Anyway, we are currently talking about properties
of grammars and their parse-tree, not about parsing and the parser. Practical parsers
cannot handle ambiguous grammars and they are not aware if an ambiguous situation
is essential or not. Being responsible for checking syntactic well-formedness and nothing
else, it’s not the business of the parser of having an opinion about semantical issues (like
if the ambiguity is essential or not).

What a parser would do instead is the following. It would stumble upon the situation
but would not reject the input. After all, if ambiguite caused the trouble, it is not so
much a defect on the input, but rather dubious as far as the grammar is concerned. So it
would issue a warning, but based on its internal working, make a decision concerning the
precedence or the associativity, if those cause the ambiguous situation.

One could of course say, who cares. If the ambiguity is inessential, it does not matter
what decision the parser does. That’s true, of course. On the other hand, a grammar that
causes the parser generator to issues warnings is not a good sign.

Actually, warnings are not only caused by ambiguitity or situations like the one we dis-
cussed, that could be solved by specifying precedences and associativities. It’s guaranteed
that an ambiguous grammar will produce at least one warning, resp. will exhibit conflicts
as they will be called for parsers. But a parser generating tool will exhibit conflicts also
for unambiguous grammara. Indeed, the parse generator won’t try to determine whether a
grammar is ambiguous or not, that’s undecidable anyway. The warnings reflect more the
limitations of a given form of parser technology: situations where it cannot decide which
way do to proceed, and then proceeding one way, but issuing a warning that there is an
alternative not pursued.

As said, which grammar is accepted without warnings and which not depends depends
on the chosen form of parsers (bottom-up vs. top-down) and the amount of so-called
look-ahead. So it’s common when developing a grammar as basis for parsing, one has to
massage the grammar for a while, and during that fine-tuning, one has to struggle which
quite an amount of warnings in different parts of the syntax. It also implies that the
grammar specifying the syntax of a language for humans is not the one used for parsing.
That for instance will be the case in the oblig: we spefify the syntax by a grammar, but
no effort is made to make it unambiguous or that it can be accepted by parser generator
without warnings

The grammatical massage may make the grammar not more beautiful in the same sense
that putting in more non-terminals into the simple expression grammar to realize a prece-
dence cascade did not make the expression grammar more beautiful.

One could try to find an excuse for a grammar with parse conflict. One could explain
away some conflicts as symptom of inessential ambiguity. In other cases an excuse could
be, that based on the knowledge how the parser technology works, the desginer use sure
which decision will be taken by the tool, and that decision is the one designer can live
with.

3 Grammars
3.4 Ambiguity 23

Both arguments are not too convincing, a grammar without conflicts is a sign of a well-
desiged parser. It’s more convincing to explicitly specify in the grammar “times is left-
associative and of higher priority than plus ” than to assure

“you will notice a conflict, but the parser generator, as far as I know, works in
such a way that times is left-associative and of higher-priority than plus, don’t
worry about the warning. Also the other warnings are features, not bugs.”.

The following is actually an example of essential ambiguity. It’s a well-known example,
and it’s an example not involving binary operators. Binary operators are well understood,
and they can be tamed in a clear manner by specifying their associativity. It’s also an
example we will revisit in the parsing chapter, to see which decisions bottom-up parsers
do in an ambiguous situation involving dangling elses, as the phenomenon is called.

Example 3.4.7 (Dangling else). Let’s consider the grammar from Example 3.3.3, in par-
ticular the conditionals from equation (3.7).

The grammar is ambiguous, as can be seen on the nested-if -expression Nested if’s in
the following expression:

if (0) if (1) other else other (3.15)

which can be parse with the parse trees from Figure 3.15 The grammar is The common

(a) (b)

Figure 3.15: Two possible parse-trees

convention in languages that support such forms of conditionals is to connect else to
closest “free” (= dangling) occurrence of a conditional. It means, the parse tree from
Figure 3.15b is the preferred one.

We mentioned earlier, that often, when facing ambiguity or conflict, one can massage the
grammar into an alternative formulation, without that defects. The precendence cascade
is an example of such a massage. For the dangling-else situation, the next grammar leads
to a unambigous representation, and one with the intended “closest-dangling-conditional”
preference.

24 3 Grammars
3.4 Ambiguity

Example 3.4.8 (Conditionals: unambiguous grammar). An ambiguous grammar for the
conditionals-grammar is the following.

stmt → matched_stmt | unmatch_stmt
matched_stmt → if (exp) matched_stmt else matched_stmt

| other
unmatch_stmt → if (exp) stmt

| if (exp) matched_stmt else unmatch_stmt
exp → 0 | 1

It enforces to never have an unmatched statement inside a matched one. As we mentioned,
massaging a grammar to be acceptable for a parse often does not make the grammar
simpler or more beatiful, and this one is no exception . . .

So actually, one would seldomly use that formulation, at least not for human consumption.
Instead one would use the ambiguous one, with extra instructions to connect each else to
closest free if .

And there are other alternatives: To side-step the whole issue, one may use a different
syntax, for example, a mandatory else-branch, or require endif .

stmt

if -stmt

if (exp

0

) stmt

if -stmt

if (exp

1

) stmt

other

else stmt

other

Figure 3.16: CST (dangling else)

3.4.3 Adding sugar: extended BNF

make CFG-notation more “convenient” (but without more theoretical expressiveness)

syntactic sugar

Main additional notational freedom: use regular expressions on the rhs of productions.
They can contain terminals and non-terminals.

• EBNF: officially standardized, but often: all “sugared” BNFs are called EBNF
• in the standard:

– α∗ written as {α}
– α? written as [α]

• supported (in the standardized form or other) by some parser tools, but not in all
• remember equation (3.2)

The notion of syntactic sugar was mentioned earlier, when discussing sugared versions of
regular expression. They were consequently called extended regular expressions. Syntactic
sugar is a techical term. The process of removing syntactic sugar (typically by the parser
when generating the abstract syntax tree), is called desugaring.

3 Grammars
3.4 Ambiguity 25

3.4.4 EBNF examples

A → β{α} for A→ Aα | β

A → {α}β for A→ αA | β

stmts → stmt {; stmt}
stmts → {stmt ;} stmt

if -stmt → if (exp) stmt[else stmt]

greek letters: for non-terminals or terminals.

3.4.5 Some yacc style grammar

Let’s also have a short look at how grammars are writting in parser generators. Here’s an
example code snippet. It sketches the syntax in yacc-style for an example involving simple
arithmetical expressions. That example, in one form or the other, is almost unavoidable,
when looking at such tools (and lectures like this one): the always illustrate they syntax
and usage with a small expression example as warm-up. It’s like the “hello-world” for yacc
and friends.

Without going into details, we see additional information beyond the pure grammar. The
grammar is on the “lower left corner” of the file. There is additional information before that
part. The grammar as such is ambiguous; we have seen similar grammars in the lectures.
It’s made unabigiguous by specifying appropriate associativities and precedences. So one
does not need to massage such grammars using the technique of precendence cascades, we
have discussed earlier.

One thing that we don’t have discussed yet is the “effect” of the grammar, or the action
part. That’s written, for each production or rule, on the right-hand side, in parentheses.
That specifies what the parser should return, when processes a given production of the
grammar during parsing.

In a standard setting, the action should give back an abstract syntax tree, which then is
handed down to subsequent phases of a compiler, for instance, taking the AST and doing
a type check on it before continuing even further. The expression example illustrates
abstract syntax trees. Instead it uses the action part of the specification to do something
simpler: it calculates the numerical value of the corresponding expression. In a way, the
parser “executes” the code already during parsing. That’s possible, because the grammar
is so very simple. In more complex setting, doing computations is beyond the power of
the parser resp. cannot be captured by (actions on a) context-free grammar. That’s
why further phases in a compiler are needed, until the resulting code is handed over to a
execution platform. Compilers don’t execute code themselves (at least not in general.)

The result of a action as far as productions for the expression non-terminal is concerned
is thus a number. In one of the first lines, the corresponding type (in the implementing
language) is defined, namely as double.

26 3 Grammars
3.5 Chomsky hierarchy

/* Infix notation calculator--calc */
%{
#define YYSTYPE double
#include <math.h>
%}

/* BISON Declarations */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */

/* Grammar follows */
%%
input: /* empty string */

| input line
;

line: '\n'
| exp '\n' { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp '+' exp { $$ = $1 + $3; }
| exp '-' exp { $$ = $1 - $3; }
| exp '*' exp { $$ = $1 * $3; }
| exp '/' exp { $$ = $1 / $3; }
| '-' exp %prec NEG { $$ = -$2; }
| exp '^' exp { $$ = pow ($1, $3); }
| '(' exp ')' { $$ = $2; }

;
%%

3.5 Chomsky hierarchy

The chapter here is concerned with context-free languages. It’s not the only form of
languages, and context-free grammars not the only form of grammars. For completeness
sake, let’s shortly place context-free languages and regular language, another class of
languages we encountered, inside the so-calledChomsky hierarchy[2]. It is an important
classification of (formal) languages, due to the linguist Noam Chomsky. The classification
is also known as Chomsky-Schützenberger-hierarchy.

The hierarchy contains 4 levels of languages,3, from type 0 languages (the most expressive
3Of course, with a famous concept like that, people came up with refinements but the 4 mentioned levels

3 Grammars
3.5 Chomsky hierarchy 27

ones) to type 3 languages, the most restricted ones (see Table 3.2). The hierarchy is based
on the form of grammars used to describe the languages at a level. So there is a most
general form of grammars, the one for the type-0 languages, and the other language classes
are given by imposing more restrictions on the rule format.

Languages are defined as sets of words over a given alphabet, as we did already for regular
languages, and as for the context-free grammars, one splits the symbols into terminal and
non-terminal symbols, ΣT and ΣN .

As convention, we use letters a, b, . . . ∈ ΣT for terminals, A,B, . . . ∈ ΣN non-terminals,
and for general words α, β . . . ∈ (ΣT ∪ ΣN)∗.

The most general of grammars has basically no restrictions on the two words.

Being a hierarchy mean, each type n language is ahierachy is inclusive and strict

rule format languages machines closed
3 A→ aB , A→ a regular NFA, DFA all
2 A→ α1βα2 CF pushdown

automata
∪, ∗, ◦

1 α1Aα2 → α1βα2 context-
sensitive

(linearly re-
stricted au-
tomata)

all

0 α→ β, α 6= ε recursively
enumerable

Turing ma-
chines

all, except
comple-
ment

Table 3.2: Chomsky hierarchy

The levels of the hierarchy are related to machine models that generate resp. recognize
them. For regular languages, we discussed the connection to finite-state automata at some
length. For context-free languages, there is a automata model called push-down automata.
That are basically finite-state automata equipped with an additional memory in the form
of a stack. The stack is unbounded, so the machine model is no longer finite-state. In the
same way that finite-state machines play a role in implementing scanners, PDA’s can be as
the foundation of parsers. However, programming languages typically don’t use context-
free grammars in their full generality, for instance, ambiguous grammars are a no-no.
Instead one restructs to more restricted forms of grammars and we will also not introduce
push-down automata as concept (though the parsing process will included working with
a stack, either explicitly or by doing a recursion-based procedure for parsing.

Also for context-sensitive languages at level 1, there exists a machine or automaton model,
but we won’t deal with it . . .

The rule format for type 3 languages (= regular languages) is also called right-linear.
Alternatively, one can use left-linear rules. If one mixes right- and left-linear rules, one
leaves the class of regular languages. The rule-format above allows only one terminal
symbol. In principle, if one had sequences of terminal symbols in a right-linear (or else
left-linear) rule, that would be ok too.

remain central.

28 Bibliography
Bibliography

Bibliography

[1] Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis,
A. J., Rutishauser, H., Samuelson, K., Wegstein, B. V. J. H., van Wijngaarden, A.,
and Woodger, M. (1963). Revised report on the algorithmic language ALGOL 60.
Communications of the ACM, 6:1–17.

[2] Chomsky, N. (1956). Three models for the description of language. IRE Transactions
on Information Theory, 2(113–124).

[3] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[4] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

Index
Index 29

Index

L(G) (language of a grammar), 6

abstract syntax tree, 2
Algol 60, 6
alphabet, 6
ambiguity, 15, 17
ambiguous grammar, 17
associativity, 17
AST, 2

Backus-Naur form, 6
BNF, 6

extended, 24

CFG, 5, 6
Chomsky hierarchy, 1, 27
concrete syntax tree, 2
conditionals, 15
contex-free grammar

emptyness problem, 11
context-free grammar, 1, 5, 6

dangling else, 23
derivation, 11

left-most, 8
leftmost, 9
right-most, 9, 11

derivation (given a grammar), 8
derivation tree, 2

EBNF, 24, 25

Fortran, 6

grammar, 1
ambiguous, 17, 18
context-free, 1, 5, 6
left-linear, 5, 28
right-linear, 5

language
of a grammar, 9

left-linear grammar, 5, 28
leftmost derivation, 9
lexeme, 4

meta-language, 7

microsyntax
vs. syntax, 5

natural language, 3
Noam Chomsky, 3
non-terminals, 6

parse tree, 2, 6, 11
parsing, 1, 2, 6
precedence

Java, 18
precedence cascade, 20
precendence, 17
production (of a grammar), 6

regular expression, 7
right-linear grammar, 5
right-most derivation, 9
rule (of a grammar), 6

scannner, 4
sentence, 6
sentential form, 6
sugar, 24
syntactic sugar, 24
syntax, 1, 5
syntax tree

abstract, 2
abstract vs. concrete, 3
concrete, 2

terminal symbol, 4
terminals, 6
token, 4
type checking, 5
typographic conventions, 7

	Contents
	Grammars
	Introduction
	Context-free grammars and BNF notation
	BNF notation
	Grammars as language generators
	Some common-sense requirements for reasonable grammars

	Syntax trees, concrete and abstract
	Ambiguity
	Precendence & associativity
	Unambiguity without imposing explicit associativity and precedence
	Adding sugar: extended BNF
	EBNF examples
	Some yacc style grammar

	Chomsky hierarchy

