
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2022

Martin Steffen

http://www.ifi.uio.no/~msteffen


ii Contents

Contents

9 Intermediate code generation 1
9.1 Intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

9.1.1 Generating code: compilation to machine code . . . . . . . . . . . . 4
9.1.2 Byte code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

9.2 Intermediate code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
9.3 Three-address (intermediate) code . . . . . . . . . . . . . . . . . . . . . . . 6
9.4 P-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9.5 Generating P-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9.5.1 Describing p-code generation with attribute grammars . . . . . . . . 15
9.5.2 Implementation in a functional language . . . . . . . . . . . . . . . . 18
9.5.3 Source language AST data in C . . . . . . . . . . . . . . . . . . . . . 19

9.6 Generation of three-address intermediate code . . . . . . . . . . . . . . . . . 22
9.6.1 Implementation in a functional language . . . . . . . . . . . . . . . . 22
9.6.2 Describing 3AIC generation using attribute grammars . . . . . . . . 24
9.6.3 3AIC generation in a C-like or Java-line language . . . . . . . . . . . 24

9.7 From P-code to 3A-code and back . . . . . . . . . . . . . . . . . . . . . . . 26
9.7.1 P-code to 3AIC: static simulation . . . . . . . . . . . . . . . . . . . . 27
9.7.2 P-code ⇐ 3AIC: macro expansion . . . . . . . . . . . . . . . . . . . 29

9.8 More complex data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.8.1 Array access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.8.2 Access to records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.9 Control statements and logical expressions . . . . . . . . . . . . . . . . . . . 39
9.9.1 Boolean expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.9.2 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



9 Intermediate code generation 1

9
Intermediate code generation
Chapter

What
is it

about?Learning Targets of this Chapter
1. intermediate code
2. three-address code and P-code
3. translation to those forms
4. translation between those forms

Contents

9.1 Intro . . . . . . . . . . . . . . 1
9.2 Intermediate code . . . . . . . 5
9.3 Three-address (intermedi-

ate) code . . . . . . . . . . . 6
9.4 P-code . . . . . . . . . . . . . 11
9.5 Generating P-code . . . . . . 13
9.6 Generation of three-address

intermediate code . . . . . . . 22
9.7 From P-code to 3A-code and

back . . . . . . . . . . . . . . 26
9.8 More complex data types . . 32
9.9 Control statements and log-

ical expressions . . . . . . . . 39

9.1 Intro

The chapter is called intermediate code generation. At the current stage in the lecture
(and the current “stage” in a compiler) we have to process as input an abstract syntax tree
which has been type-checked and which thus is equipped with relevant type information.
As discussed, key type information is often not stored inside the AST, but associated with
it via a symbol table. More precisely, the symbol table mostly stores type information for
variables, identifiers, etc., not for all nodes of the AST, since that it typically sufficient.
As far as code generation is concerned, we have at least gotten a feeling for certain aspects
of code generation, without details, namely in connection with implementing high-level
abstractions in connection with data. The layout of how certain types can be implemented
and how scoping, memory management etc. is arranged. As far as the control-part of a
program is concerned (not the data part), we also know that the run-time environment
maintains a stack of return adresses to take care of the call-return behavior of the procedure
abstraction. We have also seens, though not in very much detai, the so-called calling
conventions and calling sequences, low-level instructions that take care of “data-aspects”
of maintaining the procedure abstraction (taking care of parameter passing, etc.). All
that was done, as said, not with concrete (machine) code, but explaining what needs to



2 9 Intermediate code generation
9.1 Intro

be achieved and how those aspects (memory management, stack-arrangement etc.) are
designed.

The task of code generation is to generate instructions which are put into code segment
which is a part of the static part of the memory. That concept was discussed in the intro-
ductory part of the chapter about run-time environments. (Intermediate) code generation
is basically the task to translate procedure bodies into sequences of instructions.1

Ultimately, the generated instructions are binaries, resp. in machine code, which is plat-
form depedent. Generating platform dependent code is this part of the back-end. However,
the task of generating code is usually split into generating first platform-independent
intermediate code and afterwards, “real code”. This chapter here is about this inter-
mediate code generation.

Making use of intermediate code not just done in this lecture. Using intermediate code
as another intermediate representation internal to the compiler is commonplace. The
intermediate code may take different forms, however, and we will encounter two flavors.

Why does one want another intermediate representation as opposed to go all the way to
machine code in one step? There are a couple of reasons for that. Code generation may not
be altogether trivial. Especially, at the lower ends of the compiler, one may throw many
different and complex optimizations at the task. So, modularizing the task into smaller
subphases is good design. Related to that: doing it stepwise helps in portability. The
intermediate code still is kind of machine independent. It may resemble the instruction
set of typical hardware, or more likely resembling a subset of such an instruction set
leaving out “esotheric” specialized commands some hardwares may offer. But it’s not
the exact instruction set also in that the IR will still rely on some abstractions which
are not available on any hardware binaries. One is that the IC typically still works with
variables and so-called temporaries, where ultimately the real code operates on addresses
and registers.

If one has some “machine-code” resembling intermediate representation, the task of port-
ing a compiler to a new platform is easier. Furthermore, one can start doing certain
code analyses and optimization already on the IC, thereby making optimizations available
for all platform-dependent backends, without reimplementing the wheel multiple times.
Of course, analyses and optimizations could and should also be done on the platform-
dependent phase. For instance, crucially important for the ultimate perfomance of the
code is the good use of registers. That, however, is platform dependent: different chips
offer different register sets and support different ways of using them, reserving some reg-
isters for special use.

Also in this lecture, the intermedatiate code generation postpones register allocation for
the subsequent phase and chapter.

We said, that IR is platform independent. That does not mean, that it may not be
“influenced” by targeted platforms. The are different flavors of instruction sets (RISC vs.
CISC, three-address code, two-address code etc.), and the intermediate code has to make
a choice what flavor of instructions it plans resemble most.

1types, calling sequences



9 Intermediate code generation
9.1 Intro 3

We will deal with two prominent ways. One is a three-address code, the other one is
P-code (which could be also called 1-address code). The latter one does not resembles
typical instruction sets, but is a known IC format nonetheless. It resembles (conceptually)
byte-code.

Code comes in different forms of code, there is relocatable vs. “absolute” code, relocat-
able code from libraries, assembler code, etc. Depending on the operating system, files
containing code often carry specific file extensions. In Unix/Linux uses extensions as *.s,
*.o, and *.a for assembler code, resp. relocatable code resp. relocatable code from a
library. Absolute code is stored in files without file extension (but set as “executable” as
file permission). Windows use .exe as file extension.2

One big distriction is between code “natively” executable, i.e., on a particular (HW)
platform on the one hand, and “byte code” or related concepts on the other. The latter
is a Java-centric terminology, while the underlying concept is not. In .NET/C], there is
CIL (common intermediate language).

It’s actually sometimes called p-code (representing portable code or interpreter code. It’s
not natively executed but run on an interpreter or virtual machine (for Java byte code,
that’s of course the JVM). The terminology “byte code” refers to the fact that the op-
codes, i.e., instructions of the byte code language, are intended to be represented by one
byte. That piece of information alone, that opcodes fit into one byte, does not give much
insight, though, and there may be many different “byte code representation”. They are
often intendend to be executed on a virtual machine, but of course they can also be
used as another intermediate representation (in the sense of the topic of this chapter). A
virtual machine is a “machine” simulated in software, and the architecture can resemble
the execution mechanism of HW, or can follow principles typically not found in HW. For
example, one typical architecture is a stack machine. One find also virtual machines that
resemble register machines.

We will look into two formats, one called p-code, one called three-address intermediate
code (3AIC). As can be seen from the above remarks, the terminology is a bit unclear. P-
code normally stands for portable code, but 3AIC is also portable. P-code here resembles
(at least conceptually) Java byte code, but also the op-code of 3AIC would fit into one
byte.

As further remark concerning interpretation and “virtual machines” and virtualization in
general. The distinction between compilation and interpretation is not a matter of black
and white. Already in the introductory chapter, “full interpretation” was mentioned, where
the execution is done directly on the user syntax is rather seldom. “Directly on the syntax”
can mean on some abstract syntax, which is seen as “basically” as the programming
language syntax, just stripped from the particularities of concrete syntax. But doing
rewriting directly on that level, in particular on concrete syntax and on character string
level is an unpractical execution mechanism, mostly. Interpreting a language on a virtual
machine is already quite closer to machine execution, the virtual machine works like a
software simulated machine model, and that may be more or less low-level. On the very
lowest end, there is complete virtualization, where a whole operating system is simulated

2.exe-files include more, and “assembly” in .NET even more



4 9 Intermediate code generation
9.1 Intro

(often running multiple instances of operating system “on the cloud”). In that case, one
can generate native code.

As mentioned, we will discuss 3AIC and p-code. P-code may be called one-address-code.
A good criterion for different ICs is the format of the instructions, a better criterion at any
rate a better criterion than the “size” of the op-code (“byte”) or the fact that it’s portable
(p-code). By format one mainly refers to how many arguments (many of) the instructions
take. One, two, three, there is even zero-address code. So, that is one dimension for
classification of intermediate code. Another dimension is what kind of addressing modes
are supported. That has to do (often) with the use of registers. Not all intermediate
codes work with the concept of registers, for instance, in this lecture, the two formats are
independent from registers, and we also don’t go into details here of indirect addressing
and similar, which are often used in connection with registers, but can also be understood
independently.

As far as the different formats go: formats like 3AC and 2AC are common for nowaday’s
HW. That means, that 3AIC is a viable format (resembling current HW). 1-address code
and 0-address code is not really found as HW design, but still a viable format for interme-
diate code. Especially for intermediate code intended to run on a virtual machine. One
example is JVM and Java byte code. However, historically, there are machine designs
based on such idea. One very early was the British KDF9 computer, which used a zero-
address format and, more widely known, some designs from the Burroughs company (like
the very unique B5000). A programming language, which gives a feeling of stack-machine
programming is Forth (there is a linux/gnu version of it (gforth)). Forth, in a way,
continues to live on in the form of the well-known Postscript language (run on printers),
at least postscript is said to be inspired by Forth.

9.1.1 Generating code: compilation to machine code

• 3 main forms or variations:
1. machine code in textual assembly format (assembler can “compile” it to 2.

and 3.)
2. relocatable format (further processed by loader)
3. binary machine code (directly executable)

• seen as different representations, but otherwise equivalent
• in practice: for portability

– as another intermediate code: “platform independent” abstract machine code
possible.

– capture features shared roughly by many platforms
∗ e.g. there are stack frames, static links, and push and pop, but exact layout
of the frames is platform dependent

– platform dependent details:
∗ platform dependent code
∗ filling in call-sequence / linking conventions

done in a last step

http://www.cs.man.ac.uk/CCS/res/res18.htm#c
https://www.smecc.org/The%20Architecture%20%20of%20the%20Burroughs%20B-5000.htm
https://en.wikipedia.org/wiki/PostScript


9 Intermediate code generation
9.2 Intermediate code 5

9.1.2 Byte code generation B_frame

• semi-compiled well-defined format
• platform-independent
• further away from any HW, quite more high-level
• for example: Java byte code (or CIL for .NET and C])

– can be interpreted, but often compiled further to machine code (“just-in-time
compiler” JIT)

• executed (interpreted) on a “virtual machine” (like JVM)
• often: stack-oriented execution code (in post-fix format)
• also internal intermediate code (in compiled languages) may have stack-oriented

format (“P-code”)

CIL stands for common intermediate language (earlier known as Microsoft Intermediate
Language, MSIL). There is actually also another intermediate language called CIL, that’s
the C intermediate language. Microsoft’s intermediate language is certainly more widely
used. The C intermediate language, developed at UC Berkely, is used for instance for
developing verifying C compilers in Coq, which is an ambitious project (see CompCert).

9.2 Intermediate code

This short section basically gives a short preview of the two forms of intermediate code
we will cover in the lecture. Three-address intermediate code is covered in Section 9.3 and
p-code in Section 9.4.

Three-address code (3AC, 3AIC) is a generic (platform-independent) abstract machine
code. It uses new variables for all intermediate results. Those variables are called tem-
porary variables or temporaries. They can be seen as unbounded pool of maschine
registers. P-code is a different form, originally proposed for interpretation, but p-code is
now often translated before execution (cf. also JIT-compilation). The words stands for
“Pascal-code”, as it was used in Pascal, but also Java byte code resembles p-code. While
3AIC (and 2AIC) uses temporaries, p-code organizes the computation storing intermediate
results in a stack, use with postfix operations.

There are many variations and elaborations for both kinds. One difference could be
whether addresses are represented symbolically or as numbers (or both). Also the level
of supported abstraction and the granularity and the instruction set: the high-level op-
erations available e.g., for array-access or is already a translation in more elementary
operations needed. Are operands (still) typed or not . . .

There will various translations involving the the intermediate code languages in this
chapter (see Figure 9.1). Abstract syntax trees here are assumed tree structures after
semantic analysis, for instance with type information available. Let’s call it AST+ or just
simply AST. The chapter touches upon general problems and techniques in translating
to intermediate code, as well as translating from one form to the other. One (impor-
tant) aspect ignored for now, as we are dealing with intermediate code, that is register
allocation.

https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://sourceforge.net/projects/cil/
http://compcert.inria.fr/


6 9 Intermediate code generation
9.3 Three-address (intermediate) code

AST+

3AIC p-code

Figure 9.1: Different translations involving intermediate code

As mentioned earlier, the translation from typed ASTs to p-code corresponds to the task
of the second oblig. The target code will be some stack-oriented byte-code format. The
corresponding interpreter or virtual machine as execution mechanism is provided in the
form of a Java library.

9.3 Three-address (intermediate) code

Three-address code is an common format, not just for intermediate code, but also for
machine code. The name comes from that fact that some instructions make use of three
“addresses”. Not all operations use three, some use less, but the most general on es make
use of 2 source variables or addresses for the arguments, and one target variable or
address for the result. In particular, binary operations that do calculations use 3, like
addition or bitwise and. See equation (9.1).

We mentioned before that our intermediate code does not make use of addresses and regis-
ters (which is a common thing to do for intermediate code). That means, the instructions
don’t literally work with 3 addresses, but rather they involve 3 variables or constants. The
code also not only makes use of “ordinary” variables (like the ones that originate from
the source code), but the code generation introduces temporary variables or temporaries
for short to store intermediate results. At this phase there is no attempt to economize on
the amount of temporaries. An unbounded supply of those temporaries is assume, and
each time some intermediate result needs to be remembered, a fresh temporary is used for
that.

Of course, ultimately, that’s a wasteful use of memory. In particular, ultimately the tem-
poraries should be preferably be stored in registers, and there will be a limited amout
of them; temporaries are typically short-lived, so often after having served their purpose
storing an intermediate result, the space, like a register, can be reused to hold the next
intermediate result. Of course not just temporaries are better be kept in registers, if pos-
sible. Also ordinary variables compete for the scarce register resource, passing parameters
via registers may be a good idea, etc.

All that is a complex optimization task, and since our intermediate code is platform
independent, it’s not clear at that point, how many register there will be. Thus, there is
not too much motivation to economize on temporaries already now, which simplifies the
task of intermediate code generation.



9 Intermediate code generation
9.3 Three-address (intermediate) code 7

The 3AIC is also a linear form of intermediate code. That means, a piece of intermediate
code is an instruction list (not a (syntax) tree or a graph, or some other more structured
representation). That also means, for non-linear control flow, there are op-codes for jumps
and conditional jumps; as opposed to more structured syntax, like conditionals or loops.
Those would correspond to a tree-structured, not linear code format. A linear instruction
list, perhaps stored in an array, very much resembles the arrangement of actual machine
code, with the position of the instruction inside the list or array being an abstract form
of its address.

Jump intructions transfer the control to a specified address, the control “jumps to” the
instruction at that target address. To jump to one instruction, one could use its position
in the list to specify that. That’s ultimately also what will later happen in real machine
code.

However, one can do that more elegantly, specifying jumps and jump targets symbolically.
The “symbols” to represent jump targets (or lines of code, or abstract addresses) are called
labels. So the intermediate code allow to label instructions, giving them unique labels.
Concretely, the 3AIC here does not directly label instructions, it’s rather that there is an
extract label instruction which is part of the instruction set. Of course, it’s equivalent.
Adding a label instruction like label L means that one can use for instance jmp L to
jump effectivle to the instruction following the line label L. Jumping to a position in
a program will be translated to a real machine code instruction. Being jumped-to for a
labelled place will, of course, not be reflected by some instruction in the machine code.
Therefore, instructions like label L are also called pseudo instructions.

Jumping (and labelling) take care of the control flow. Jump statements obviously don’t
use 3 addresses, as in equation (9.1). And indeed, jumping and labelling is independent of
the general instruction format, and that means that also the one-address code or p-code
from Section 9.4 will use the same principles (and the same can be done for 2-address
code).

Remark 9.3.1 (Jumping in oblig 2). As far as oblig 2 is concerned. The instruction set
in the byte code supports jumps and conditional jumps. However, the instruction set does
not offer labels. Instead one will have to deal with jumping the more low-level way jumping
directly “addresses”, where an index in an array corrensponds to the concept of address.
That’s less convenient that doing it symbolically, but not much so. When programming
the code generator, one can (and will) of course remember the address or the index on
the byte array in some properly named variable, and that serves the same purpose. This
way, the address is, so to say, symbolically remembered in the meta-language, presumably
Java, and is not part of the programming language itself, i.e., mentioned in the byte-code
instructions.

There is some parallel between labels and temporaries. Both are symbolic representations
of addresses. Temporaries (like variables) correspond to addresses containing data, labels
represent addresses to jump to, and that point in the control flow graph. Besides that,
in both cases, the code generator assumes an unlimited reservoir of those and labels and
both are never “reused”. and each time the code generator encounters the need to store an
intermedate result or need to specify another jump target, it generates a fresh temporary
resp. a fresh jump label.



8 9 Intermediate code generation
9.3 Three-address (intermediate) code

Of course, the p-code later will not make use of temporaries. Instead it will employ an
(unbounded) stack to store intermediate results, so there will be no need to create fresh
temporaries.

The three-address-code is named after the form of its assignment, which in the most
general form looks as follows

x = y op z (9.1)

• x, y, z: names, constants, temporaries . . .
• some operations need fewer arguments

It’s a typical example of a linear IR. Lineal means that the code consists of a sequences of
extructions, there are no constructs for structured programming like loops or conditionals.
Control flow is represented by said sequences three-address instructions and jumps resp.
conditional jumps. There are other linear intermediate representations or instruction sets
(on a similar level of abstraction), like 1-address (or even 0) code, which represent stack-
machine code, and 2 address code. Three-address code is is well-suited for optimizations
and modern architectures often have 3-address code like instruction sets, especially on
RISC-architectures.

Example 9.3.2 (3AC example (expression)). Figure 9.2 shows an abstract syntax tree for
the expression 2 ∗ a + (b− 3). Listing 9.1 and 9.2 show to possible (and not very different)

+

*

2 a

-

b 3

Figure 9.2: AST

translations into three-address intermediate code.

t1 = 2 ∗ a
t2 = b − 3
t3 = t1 + t2

Listing 9.1: 3AIC

t1 = b − 3
t2 = 2 ∗ a
t3 = t2 + t1

Listing 9.2: Alternative sequence

Both use 3 temporary variables, which correspond to the 3 non-leaf nodes in the abstract
syntax tree.

We encountered the notion of temporaries already in connection with the activation
records. There, the activation records for some function needs space for various things,
like parameters, local variables, return addresses etc., but also for intermediate results.
That’s the temporary variables of the intermediate code or temporaries for short, which
we talk about here. The slide shows two versions that do the same thing. The two code
listings are not radically different. The fact that both do the same captures the fact that
the order of evaluation does not matter.



9 Intermediate code generation
9.3 Three-address (intermediate) code 9

In our code examples, though, the convention is: different variable names mean different
memory locations, so by writing a and b, there is no aliasing. Of course, if the 3AIC
uses references (resp. indirect addressing), then different variable names don’t guarantee
absence of aliasing. A related remark concerns the temporaries. The example uses three
different ones t1, t2, and t3. Using different names for the temporary indicate that they are
all different. However, that may look like a waste of memory: One could have “optimized”
it by perhaps avoiding t3 and reuse t2 or t3. One could indeed, but we discussed hat earlier:
code generation at the current stage does not try to cut down on the use of temporaries.
For each intermediate result, it uses just a new, fresh temporary. It will be the task of
later stages, to do something about it, like minimizing the number of temporaries (and put
as many of them into registers). However, the amount of registers is typically only known
at the platform-dependent stage. Most intermediate code formats (like ours) are unaware
of registers or, in other words, assume a (abstract) machine model without registers.

Using a fresh temporary each time we need one means, each temporary is assigned-to
only once (at least if we ignore loops). That restriction is sometimes called static single
assignment. Static means, there is only one line in the code (“statically”) where a variable
is assigned to. That does not guarantee “dynamic” or absolute single assignemnt: because
of loops or subroutines, a variable that is statically only assigned one, may be assigned
to more than once. Note that that SSA restriction applies to temporaries only, user-level
variables may be assigned to multiple times.

There is also the possibility, to make also the standard variables to follow the SSA regime.
This actually is a quite popular format for intermediate code, and has advantages con-
cerning subsequent semantic analyses and optimization. In its generality, SSA a bit more
complex than just using new variables all the time. Therefore we won’t go into that.

The 3AIC instruction set supports x = y op z (as shown in equation 9.1, but also
x = op z x = y can be used. They are an arrange of operators, like +,-,*,/, <, >,
and, or, operations for I/O (read x, write x, a labelling instruction label L (sometimes
called a pseudo-instruction), jumps and conditional jumps. if_false x goto L. Besides
variables, as said 3AIC makes use of temporaries t1, t2, t3 . . . . (or t1, t2, t3 . . . . It’s
assume that there is an unbounded reservoir of those.

note: “non-destructive” assignments (single-assignment)

The terminology of pseudo instruction comes from the fact that there is no real instruc-
tion connected to it. It’s just a way to refer to the corresponding line number a bit more
abstractly. So, in a similar way that temporaries are a representation of abstraction at
the current of memory locations (ultimately addresses in main memory if registers cannot
be used), labels are an representation of addresses, ultimately translated to relocatable
addresses and ultimately to addresses in the code segment.

Example 9.3.3 (Translation to 3AIC). Let’s illustrate the translation two three-address
intermediate code on a small example. See the source code from Listing 9.3.

1 read x ; // input an integer
2 i f 0<x then
3 f a c t := 1 ;
4 repeat
5 f a c t := f a c t ∗ x ;
6 x := x −1
7 until x = 0 ;



10 9 Intermediate code generation
9.3 Three-address (intermediate) code

8 wr i t e f a c t // output : f a c t o r i a l of x
9 end

Listing 9.3: Faculty (source)

The translated code is shown in Listing 9.3. The translation is pretty straightforward.
It makes use of a number of temporaries. For instance, the format for conditional jumps
insists that the condition argument is stored in a variable or temporary.3.

1 read x
2 t1 = x > 0
3 i f_false t1 goto L1
4 f a c t = 1
5 label L2
6 t2 = f a c t ∗ x
7 f a c t = t2
8 t3 = x − 1
9 x = t3

10 t4 = x == 0
11 i f_false t4 goto L2
12 write f a c t
13 label L1
14 halt

Listing 9.4: Faculty: 3AIC

There can be variations in the design of 3AI-code. There can be arithmetic operators
for int, long, float . . . . There are different ways how to represent program variables
(by names resp. symbols, or by pointing to the declaration in the symbol table, or already
(abstract) machine addresses?

There are also different ways to store and represent 3A instructions as data structure
iside the compiler. One obvious way is by a quadruples (in the most general case).
There are three “addresses” plus the operator. Alternative, a triple is possible, if it’s used
in an intermediate code generator that uniformely assumes that the target-address, the
left-hand side, s always a new temporary.

1 typedef enum {rd , gr , i f_ f , asn , lab , mul ,
2 sub , eq , wri , ha lt , . . . } OpKind ;
3 typedef enum {Empty , IntConst , S t r i n g } AddrKind ;
4
5 typedef struct {
6 AddrKind kind ;
7 union {
8 int va l ;
9 char ∗ name ;

10 } contents ;
11 } Address ;
12
13 typedef struct {
14 OpKind op ;
15 Address addr1 , addr2 , addr3 ;
16 } Quad

Listing 9.5: Possible quadruple representation in C)

3Also a constant value wouldb be allowed, in which case it is more an unconditional jump . . .



9 Intermediate code generation
9.4 P-code 11

A 3A(I)C has three addresses and one piece of information to specify the instruction
itself. That makes 4 pieces of information, a quadruple. The code illustrate how one
could represent it in C. It would look analogous to some extent in other languages. As a
reminder of the typing section: we see how the representation uses the (not-so-type-safe)
union type of C, to squeeze a few bits. We also see the use of so-called enum type for
finite enumerations.

The code is meant as illustration of how it can be done in C, but it depends obviously on
details of the specification of the intermediate code and the supported types (here called
kinds in the code).

9.4 P-code

As mentioned, one of the two formats covered in the chapter can be called p-code. We
also said that the terminolgy is not so informative. Perhaps a better name would be
one-address code. There is even zero-address code (which works similarly), but we don’t
cover it. Both one-address code and zero-address code have in common that they rely on
stack-manipulations. Very roughly, where 3AIC uses temporaries to store intermediate
results, p-code stores those on the stack. Its handling of expression is also done in a post-
fix manner. We will see details for both later, when we look how to compile to either
intermediate code format.

So we cover 3AIC and “1AIC” (p-code), there is also 2AC / 2AIC, which we will not
cover, at least not in this chapter.4 For the real code generation, we may have a look at
the problem: how to generate 2AC from 3AIC, in particular how to deal with registers
(assuming a 2AC hardware platform)

P-code is an abbreviation for portable code. Some also connect it to Pascal (like “p” stands
for Pascal). Many Pascal compilers were based on p-code for reasons of portability. Pascal
was influential some time ago, especially for computer science curricula. The so-called p-
code machine was not invented for Pascal or by the Pascal-people, but perhaps Pascal
was the most prominent language runr on a p-code architecture. So, in a way, p-code was
some LLVM or JVM of the 70ies. . .

Example 9.4.1 (P-code example (2∗a+(b−3))). Let’s see the p-code for a small, compound
expression, again 2 ∗ a + (b− 3) from Example 9.3.2 and abstract syntax tree from Figure
9.2.

1 ldc 2 ; load constant 2
2 lod a ; load value o f v a r i a b l e a
3 mpi ; i n t e g e r m u l t i p l i c a t i o n
4 lod b ; load value o f v a r i a b l e b
5 ldc 3 ; load constant 3
6 sbi ; i n t e g e r s u b s t r a c t i o n
7 adi ; i n t e g e r add i t i on

Listing 9.6: p-code

4Two-address codes have fallen more or less in disuse for intermediate code.



12 9 Intermediate code generation
9.4 P-code

The code should be clear enough (with the help of the comments on the right-hand col-
umn). This first example is concerned with expression evaluation, in particular expressions
without side effects. Expressions are dealt with in post-fix manner. The expression is
built-up from binary operators. Those work in a stack-like virtual machine as follows:
both arguments have to be on top of the stack, then executing the opcode corresponding
to the binary operators takes those top to elements and removes them them from the stack
(“pop”), connects them as argments of the operation, and the result is the the new top of
the stack (“push”).

That pattern can be seen clearly in the code 3 times (there are three operators to be trans-
lated, addition, multiplication, and substraction). Constants and variables are pushed onto
the stack by corresponding load-commands (ldo and ldc).

Loading the content of a variable with ldo, as shown in this example, is only one way to
to “load a variable”, namely loading its content. There is a second way, namely loading
the address of a variable. That is not needed for evaluating expressions, and therefore
not part of this example. Next we show the translation of assignment to p-code. For
that one needs both versions of the load-command.

Example 9.4.2 (P-code for assignments). Let’s look at how to translate the following as-
signment:

x := y + 1

The generated p-code is shown in Listing 9.7.
1 lda x ; load address o f x
2 lod y ; load value o f y
3 ldc 1 ; load constant 1
4 adi ; add
5 sto ; s t o r e top to address
6 ; below top & pop both

Listing 9.7: p-code (assignment)

The message of this example concerns the treatment of variables, in particular the fact
that variables on the left-hand side of an assignment are treated differently from those on
the right-hand side. For the programmer, the distinction may not always be too visible.
Of course, one is aware that in an assignment, like the one shown in the code, the variable
on the left hand side is assigned to, the variable on the right-hand side is read from.
Everyone knows that. We write := for assignments, to make the distinction more visible.
In languages like C and Java, that is not visible, one writes = for assignment, but it’s
not equality: it’s not symmetric in that a=b is not the same b=a, when = is meant as
assignment. Of course, everyone knows that too.

In the generated code, we see another (related) difference, which may be less obvious. For
x, the address is loaded as part of a step, for y it’s the value or content. We need the
address of x to store back the result at the end of the generated code. One also speaks of
the L-value and the R-value of a variable.

We mentioned that the stack-machine architecture leads to a post-fix treatment of evalu-
ation. That is true as long as one interprets “evaluation” as determining, in a side-effect
free manner the value of expression (like in the previous example). Now, in this example,



9 Intermediate code generation
9.5 Generating P-code 13

there are side-effects and the strict post-fix schema no longer works: the first thing to do
is load the address of x with lda, i.e., that’s not “post-fix”, that is “pre-fix” treatment.

Finally a comment to the last opcode sto: it takes arguments (on the stack), and stores,
in the example, the result of the computation to the given address (which here is the
address of x). Additionally, both top elements are popped off the stack. Consequently,
the value as the result of the commputation on the right-hand side is no longer available.
So, this translation does not correspond to the semantics of assignments in languages like
C and Java. There, things like (x := y +1) + 5 are allowed, but for a compilation of
a languages with this kind of semantics, the sto command, popping off both elements, is
not how it’s done. We see below an alternative operation, stn, which abbreviates store
non-destructively, which would be adequate if one had a semantics as in Java or C.

Example 9.4.3 (Faculty function). Let’s translate also the faculty function into p-code.
The source code was shown earlier in Listing 9.3, as part of the translation to 3AIC in
Example 9.3.3.

Figure 9.3: Faculty (p-code)

9.5 Generating P-code

After having introduced the concept of p-code in Section 9.4, including (relevant parts of)
the instruction set, we have a look at code generation; we will do the same for 3AIC in
Section 9.6. Actually, it’s not very hard. We have a look at that problem from different
angles: we make use of attribute grammars, look at some C-code implementation, and
sketch also some code in a functional language. All three angles are basically equivalent.
The focus here is on straight-line code. In other words, control-flow constructs, like



14 9 Intermediate code generation
9.5 Generating P-code

conditionals and loops, are not covered right now. Those are translated making use of
(conditional) jumps and labels. We will deal with those aspects later.

One way to describe the code generation is with an attribute grammar. So let’s therefore
fix a context-free grammar first, fixing the syntax, for which we later show appropriate
semantic rules in the attribute grammar formalism.

As said, we focus first on straight-line code, there will be no control-flow constructs such as
conditionals and the like. The atomic building blocks of straight-line code are assignments;
the syntax we will use formalizes not (just) assignments of the form x := e where e is a
side-effect free expression. The expressions of the grammar below allow assignments inside
expressions, to make it more flexible and the code generation slightly more interesting.
So the syntax allows expressions like (x:=x+3)+4. However, we need to be careful when
allowing assignments inside expressions. We touched upon an issue in that context before
before, in Section 9.4, when we gave an example of how p-code for an expression could
look like (see Example 9.4.2). In that example, the expression was side-effect free, but for
the current example, that’s not the case. That expressions like (x:=x+3)+4 make sense
at all, the semantics of an assignment x := e must be such that it results in a value and
not in “nothing”. In the corresponding type system, the type of the assignment x := e is
the same as the type of e (and not void). In the previous Section 9.4, we assumed the
semantics of assignments to not give back a value (i.e., to be of type void), but here we
have to do it otherwise. Consequently, the p-code in the example from the older section
is not what would be generated here.

exp1 → id := exp2
exp → aexp

aexp → aexp2 + factor
aexp → factor

factor → ( exp )
factor → num
factor → id

(9.2)

Example 9.5.1. Let’s look at a small example:

(x := x + 3) + 4 (9.3)

The corresponding abstract syntax tree is shown in Figure 9.4. We will use it for illustra-

+

x:=

+

x 3

4

Figure 9.4: Abstract syntax tree for (x:=x+3)+4

tion of code generation later.



9 Intermediate code generation
9.5 Generating P-code 15

Side remark 9.5.2. As a side remark: we said that the intermediate code generation takes
typically abstract syntax (or actually some later intermediate representation). Typical
abstract syntax would not contain parentheses and the distinction between factors and
terms etc. is more typical for grammars covering concrete syntax and parsing. But the
question, whether the grammar describes abstract or concrete syntax, is not too relevant
for the principle of the translation here, and after all, one can use concrete syntax as
abstract syntax trees, even if it often better design to make the AST a bit more abstract.
Anyway, we don’t bother to show the parentheses in the tree.

9.5.1 Describing p-code generation with attribute grammars

In this section we treat p-code as attribute of the grammar symbols and nodes of
the syntax trees. Generating code in that form is |is sometimes called syntax-directed
translation (SDT)5 So the technical task is to turn the syntax tree into a linear IR, here
P-code, i.e., we are doing a “linearization” of the syntactic tree structure.

not recommended at any rate (for modern/reasonably complex language): code generation
while parsing6

The use of attribute grammars is perhaps more a conceptual picture, In practice, one may
not formally or explicitly use a-grammars and corresponding tools in the implementation
(though there exists tools for working with a-grammars). Remember that in many situ-
ations, the AST in a compiler is a “just” a data structure programmed inside the chosen
meta-language. For instance, in the compila language, most will have chosen a Java imple-
mentation making use of different abstract and concrete classes, perhaps making a visitor
pattern and what not. Anyway, it’s not in a format directly represented to be handled by
an attribute-grammar tool (though also that is possible). Anyway, realizing the semantic
rules we show in a-grammar format in a programming language format, operating on the
AST tree data structure is not complex. In particular, since the attribute grammar is of
a particularly simple format: it’s uses a synthesized attribute only (which is the simplest
format). It works bottom-up or in a divide-and-conquer or compositional manner: the
code of a compound statement consist of compiling the substatements and connecting the
resulting translated code, with some additional commands. For expressions, the additional
instructions are done at the end (“post-fix”), in more general situations, one encounters
also pre-fix code (and sometimes even infix).

That captures the principle core of compilation, it better be compositional: to compile a
large program means, to break it down into pieces, compile smaller pieces and the put the
compiled pieces together for the overall result.

The principle of compositionality or divide-and-conquer is perhaps so typical or natural
for compilation in general, to appear as not even worth mentioning. That maybe so,
but the principle applies only when ignoring optimization. Optimization breaks with

5SDT is not meant synonymous with code generation by attribute grammars, though attribute grammars
can be used to describe such translations. After all, (attribute) grammars are about syntax trees. Later
we show the translation using some programming language. Since that’s an realization of the scheme
specified here using attribute grammar, also those implementations are syntax-directed translations.

6One can use the a-grammar formalism also to describe the treatment of ASTs, not concrete syntax
trees/parse trees.



16 9 Intermediate code generation
9.5 Generating P-code

the principle of compositionality, mostly. Taking two “optimized” pieces of generated
code together in a divide-and-conquer manner will typically not result in an optimized
overall piece of code. Optimization is done more globally, not compositionally wrt. the
syntax structure of the program. The improvement may refer to the execution time or
memory consumption (or even on the size of the code itself, which itself is not a semantic
criterion, but the optimization must preserve the semantics, of course). The remarks here
about compositionality of code generation and the non-compositionality of analysis and
optimization is not particular for p-code generation. The same applies to 3AIC generation
and actually to compilation in general. The compilation part is typically compositional and
therefore efficient. Analysis and optimization(s) are done afterwards and depending on how
much one invests afterwards in analysing the result and how aggressive the optimizations
are, that part may no longer be efficient. By efficient I basically mean: linear (or at least
polynomial) in the size of the input program.

When saying, analysis and optimization is not compositional (unlike code generation),
that probably should be understood as a qualified, not absolute statement. It’s mostly
not possible to invest in an absolutely global analysis, it would be too costly. It may be
“compositional” in respecting the user-level syntax in that it does analyses each procedure
individually, but tries not to make a global optimization across procedure body boundaries.
Or even simpler, the optimization focuses on stretches of straight-line code. For instance,
if one translates a conditional, there will be in the translation some jumps and labels, but
those mark the boundaries of the optimization. In a way, the two branches of a conditional
are optimized independently, in that sense the optimization is composition as far as the
user-level syntax is concerned, and one does not attempt to see if additional gains could
be achieve to analyze both branches “globally”. These issues —analysis, optimization,
and various levels of “globality” for that— will be relevant in the next chapter, where we
discuss the ultimate code generation, not intermediate code generation. Of course, a real
compiler may use differerent optimizations in various phases of its compilation process.

also: code-generation “intra-procedural” only, rest is filled in as call-sequences

The attribute grammar for intermediate code generation is actually rather simple and
straightforward, and uses one synthesized attribute pcode. But As mentioned, the
code generated here is for straight-line code only. See Table 9.1.

The op-codes are marked in red. We use ++ for “string” concatenation, joining “lists” of
instructions and ˆ to concat one since instruction. The generation is rather simple: the
only attribute, containing the generated code, is purely synthesized (which is arguably the
simplest form of AGs). It works purely bottom-up, divide and conquer. When are dealing
with expressions only, the code generation works similarly as the evaluation of side-effect
free expressions (which also works bottom-up). However, code generation works also when
dealing with assignments (something that we did not do earlier in the atrribute grammar
chapter, when doing expression evaluation). As discussed in the previous subsection, we
see also the difference between l-values and r-values (lda and lod).

Remark 9.5.3 (Linearization). Let’s address another small point here. As mentioned,
we are dealing with a linear IR: like 3AIC and other formats, p-code is a linear IR. It is a
language consisting of a linear sequence of simple commands (and uses jumps and labels
for control, even though those parts are currently not in the focus). The task of code



9 Intermediate code generation
9.5 Generating P-code 17

productions/grammar rules semantic rules
exp1 → id := exp2 exp1 .pcode = ”lda”ˆid.strval ++

exp2 .pcode ++ ”stn”
exp → aexp exp .pcode = aexp .pcode

aexp1 → aexp2 + factor aexp1 .pcode = aexp2 .pcode
++ factor .pcode
++ ”adi”

aexp → factor aexp .pcode = factor .pcode
factor → ( exp ) factor .pcode = exp .pcode
factor → num factor .pcode = ”ldc”ˆnum.strval
factor → id factor .pcode = ”lod”ˆnum.strval

Table 9.1: Attribute grammar

generation (if one assume that one deals with control-structures as well) it to translate
the non-linear tree structure into a linear one (justing jumps and labels). So, that may
be called “linearization”. Since currently we don’t focus on the control-structures, the
task is to translate an already linear language (“straight-line code”) to another linear
arrangement, the linear p-code. We do so in the AG, assuming operations like ˆ and ++ .
The respesent appending an element to a list resp. concatenating two lists. However,
strictly speaking ++ is a binary operation. We wrote in the semantic rules of the AG
things like l1 ++ l2 ++ l3. We did not say how to “think” of that (like to parse it mentally).
Is that left or right associative? Or do we mean that the reader understands that it does
not really matter, as list concatenation is associative and we mean the resulting overall
list, obviously. Sure, it should be clear. Note also, that ++ is understood as separating
two pieces of code from each other (one can think “newline” in code examples). Later,
we show an implementation in a functional language, we use the constructor Seq for
that (for sequential composition). However, we don’t implement that as concatenation
of lists but as a simple constructor. Consequently, the result of that translation (which
corrresponds to the AG here) is not technically linear, it’s still a tree (even one of quite
simple structure). Therefore, in a last step, one needs to flatten out the tree to a ultimate
linear list. See Listings ?? and ??.

Why does one do it two stages, not one? Well, it may be more efficient that way: concate-
nating lists “on the fly” in functional languages is typically not a tail-recursive procedure
and thus not altogether cheap. So one may be better off by first doing another tree-like
structure, to be flattened out afterward. It’s a common technique. And furthermore, if we
would right now also consider conditionals and loops, etc. it’s harder to find the ultimate
linear sequence of commands while processing then abstract syntax. Also for that rea-
son, one might be better off to first generate pieces of the code that are afterwards glued
together in a linear arrangement. Linearization of a similar form is done for instance in
the compiler described in [1] as part of the so-called canonization phase, massaging the
intermediate code (there some 3AIC) to get get ready for the last phase of generating
platform dependent machine code.

But apart from those fine points, the implementation from Listing 9.5.1 later reflects



18 9 Intermediate code generation
9.5 Generating P-code

truthfully the AG here.

Example 9.5.4. Let’s revisit the code snippet from Example 9.5.1, resp. equation (9.3).
Figure 9.5 shows the attributed tree. The boxed contain the attribute values, i.e., the
generated code. The resulting code in the root node is shown in Listing 9.8.

+

x:=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

Figure 9.5: Attributed tree

1 lda x
2 lod x
3 ldc 3
4 adi
5 stn
6 ldc 4
7 adi ; +

Listing 9.8: P-code for (x := x + 3) + 4

Note: here x:=x+3 has a side-effect and a return value, as in C and other languages.
Therefore, the store command used to write back the value is stn, “store non-destructively”.
This command takes the top element, stores it at address represented by 2nd slot on top,
discard the address, but not the top-value. Thats’s different from sto used earlier, which
stores analogously and forget the result, i.e., pop also the result value off the stack.

The issue of the semantics of an assignment has been mentioned earlier: does it give back
a result or not. Before, the code shown in an example was correct under the assumption
no value is “returned”. Here, we interpret it different, in accordance with languages like
C or Java. Thus, we have to use the command stn instead of sto from before.

9.5.2 Implementation in a functional language

In the following we show how the intermediate code generation resp. the AG can be
implemented straightforwardly in a functional language. Later, we will see also how the
code looks in C, which is also straightforward (though I believe the functional code is more
concise).

We start defining the two syntaxes of the two languages, the source code and the target
code. There are more or less one-to-one transscripts of the grammars we have seen.



9 Intermediate code generation
9.5 Generating P-code 19

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| Plus of expr ∗ expr
| Assign of symbol ∗ expr

Listing 9.9: Data-structure for source code expression ASTs

type i n s t r = (∗ p−code i n s t r u c t i o n s ∗)
LDC of i n t

| LOD of symbol
| LDA of symbol
| ADI
| STN
| STO

type tree = Onel ine of i n s t r
| Seq of tree ∗ tree

type program = i n s t r l i s t

Listing 9.10: Data-structures for target intermendiate code (p-code)

Side remark 9.5.5 (Symbols). For simplicity, the code in Listing 9.9 and 9.10 uses
strings to refer to variables and temporarires. More realistically, a real compiler would
avoid to work with strings for very long, as this is not very efficient (like requiring string
comparisons). Istead, strings would be represented differently, and perhaps the symbol
table would be involved. But here, for illustrating intermediate code generation, we don’t
do those smarter ways of handling symbols.

In the target syntax, there are two “stages”: a program is a linear list of instructions, but
there is also the notion of “tree”: the leaves of the trees are “one-line” instructions and
trees can be combined using sequential composition. Consequently, the translation (on the
next slide) will also have 2 stages: the first one (which is the interesting one) generates a
tree, and the second one flattens out the tree or “combs it” into a list. See also the types
of the involved functions in Listing 9.11.
val to_tree : A s t e x p r a s s i g n . expr −> Pcode . tree

val l i n e a r i z e : Pcode . tree −> Pcode . program

val to_program : A s t e x p r a s s i g n . expr −> Pcode . program

Listing 9.11: Types of the translation functions

The translation itself is shown in Listing 9.12. In particular, the function to_tree is a
rather faithfull representation of the attribute grammar we have seen earlier.
open A s t e x p r a s s i g n ; ;
open Pcode ; ;

l e t rec to_tree ( e : expr ) =
match e with
| Var s −> ( Onel ine (LOD s ) )
| Num n −> ( Onel ine (LDC n ) )
| Plus ( e1 , e2 ) −>

Seq ( to_tree e1 ,
Seq ( to_tree e2 , Onel ine ADI) )

| Assign ( x , e ) −>
Seq ( Onel ine (LDA x ) ,



20 9 Intermediate code generation
9.5 Generating P-code

Seq ( to_tree e , Onel ine STN) )

l e t rec l i n e a r i z e ( t : t r e e ) : program =
match t with

Onel ine i −> [ i ]
| Seq ( t1 , t2 ) −> ( l i n e a r i z e t1 ) @ ( l i n e a r i z e t2 ) ; ; (∗ l i s t c o n c a t ∗)

l e t to_program e = l i n e a r i z e ( to_tree e ) ; ;

Listing 9.12: Data-structures for target intermendiate code (p-code)

The code makes more visible, that operations like ++ used in the AG are binary, the AG
generates a tree rather than a sequence. Nonetheless, flattening out the tree in a second
step (linearize) is child’s play. As mentioned earlier, in connection with that AG: it
would be straightforward not to have these 2 stages: instead of using Seq for doing the
trees first, one could use directly list-append. Appending lists in functional languages is
typically not tail-recursive and one may be better off, efficiency-wise, to split it into two
stages as shown.

9.5.3 Source language AST data in C

Next we do the “same” implementation in C. We start by showing a possible way to
represent ASTs. We have seens similar representations in earlier chapters. We have also
seen ways to represent such trees in Java where we operated with concrete classes as beeing
subclasses of abstract classes. Here, the data structure uses enumeration types and structs
(see Listing 9.13). It corresponds to the implementation using inductive data types (in
ocaml) from Listing 9.9.
typedef enum { Plus , Assign } Optype ;
typedef enum {OpKind , ConstKind , IdKind} NodeKind ;
typedef struct s t r e e n o d e {

NodeKind kind ;
Optype op ; /∗ used w i t h OpKind ∗/
struct s t r e e n o d e ∗ l c h i l d , ∗ r c h i l d ;
int v a l /∗ used w i t h ConstKind ∗/
char ∗ s t r v a l /∗ used f o r i d e n t i f i e r s and numbers ∗/

} STreenode ;
typedef STreenode ∗ SyntaxTree ;

Listing 9.13: AST in C (for expressions with assignments)

Figure 9.6 shows schematically a small sample AST. The table summarizes the “attributes”
per node.

Figure 9.6: Sample AST

This sketch of a code skeleton from Listing 9.14 basically says: the code generation is a
recursive procedure, traversing a given abstract syntax tree.



9 Intermediate code generation
9.5 Generating P-code 21

node kind op val strval
x:= OpKind assign
+ OpKind Plus
x IdKind “x”
3 ConstKind 3

Table 9.2: “Attributes”

procedure genCode(T: t r e e n o d e )
begin

i f T 6= n i l
then

`` g e n e r a t e code to prepare for code for l e f t c h i l d ' ' // p r e f i x
genCode ( l e f t c h i l d of T ) ; // p r e f i x ops
`` g e n e r a t e code to prepare for code for r i g h t c h i l d ' ' // i n f i x

genCode ( r i g h t c h i l d of T ) ; // i n f i x ops
`` g e n e r a t e code to implement a c t i o n ( s ) for T' ' // p o s t f i x

end ;

Listing 9.14: Code-generation via tree traversal (schematic)

During traversal, it involves prefix-actions, post-fix actions and maybe even infix-actions
(see Figure 9.7). By actions I mean generating or emitting p-code commands. Looking at
the functional code we can see that there was no code generated in infix-position, so we
can expect to see no such thing in the C-code as well. The sketched skeleton just shows
the general shape, there may be other situations more complex that the ASTs covered
here that would call for infix code. We, at least don’t make use of it here. See Listing 9.15
later for more complete code for codeGen for expressions.

preamble code

calc. of operand 1

fix/adapt/prepare ...

calc. of operand 2

execute operation

Figure 9.7: Schematic shape of the recursive code generation

The code generation works in principle the same as in the functional implementation (and
the AG), of course. In the functional implementation from before from Listing 9.12, we
have choosen not to emit strings already. Instead we have chosen to construct an element
of a data structure representing the instructions of the p-code (we called the type instr).
Given the fact that we are not yet at the “real” code level, but at an intermediate stage,
generating a data structure is more realistic and better than generating a string. A string
would have to be parsed again etc., and operating on strings is always more error prone
(typos) than operating on constructors of a data structure.



22 9 Intermediate code generation
9.6 Generation of three-address intermediate code

Not that reparsing strings would be hard. Also for debugging reasons a compiler could
have the option to emit a “pretty-printed” version of the intermediate code (or some other
external exchange format), but a well-designed internal representation is a more dignified
and realistic way of handing things over to the next stage.

In the functional implementation, we turned the abstract syntax tree into a linear structure
(a list) in a two-stage process (cf. also the interface from Listing 9.11). Working with a
(functional) list data structure as target, doing it like that is more efficient; functional list
concatenation, which would be used in a one-stage approach, is not very efficient.
void genCode ( SyntaxTree t ) {

char c o d e s t r [ CODESIZE ] ;
/∗ CODESIZE = max l e n g t h o f one l i n e o f p−code ∗/
i f ( t !=NULL) {

switch ( t−>kind {
case OpKind :

switch ( t−>op ) {
case Plus :

genCode( t−>l c h i l d ) ;
genCode( t−>r c h i l d ) ;
emitCode ( " ad i " ) ;
break ;

case Assign :
s p r i n t f ( c o d e s t r , "%s %s , " ld a " , t−>s t r v a l ) ;
emit ( c o d e s t r i n g ) ;
getCode ( t−>l c h i l d ) ;
emitCode ( " stn " ) ;
break ;

d e f a u l t :
emitCode ( " Error " ) ;
break ;

} ;
break ;
c a s e ConstKind :

s p r i n t f ( c o d e s t r , "%s %s " , " l d c " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;
break ;

c a s e IdKind :
s p r i n t f ( c o d e s t r , "%s %s " , " lo d " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;
break ;

d e f a u l t :
emitCode ( " Error " ) ;
break ;

} ;
} ;

}

Listing 9.15: GenCode for expressions / assignments in C

9.6 Generation of three-address intermediate code

This section does the analogous thing we have done for p-code (one-address code) in
Section 9.5. We start by showing how resulting intermediate could look like, using the
same faculty example from before. When covering p-code, we did not talk about control-
flow constructs. We do the same here, focusing on straight-line code again. Treatment of
control-flow will be done in Secion 9.9: Indeed, there is not much difference between 3AIC
and p-code as far as the control-flow is concerned: both formats have to use conditional
jumps to translate conditionals, loops, and the like. Section .

We have seen examples of translations from source code to three address intermediate
code. See for instance Example 9.3.3, in particular the source code and 3AIC target code
from Listing 9.3 and 9.4. In this section, as we did for the p-code, we focus on straight-line
code, though the example shows also how conditionals and loops are treated (which we
cover later). As far as the treatment for the latter constructs is concerned, the p-code



9 Intermediate code generation
9.6 Generation of three-address intermediate code 23

generation and the 3AIC code generation works analogously anyway. In the translated
target code for the faculty, we see also here labelling commands (pseudo-instructions) and
(conditional) jumps, as in the target code when translated to p-code.

9.6.1 Implementation in a functional language

We do the same as for the p-code and show how to realize the code generation in some
functional language (ocaml). The source language, expressions in the abstract syntax tree
and assignments, are unchanged (the grammar was shown in equation (9.2). Remember
also the data structures for source code expressions from Listing 9.9.

type mem =
Var of symbol

| Temp of symbol
| Addr of symbol (∗ &x ∗)

type operand = Const of i n t
| Mem of mem

type cond = Bool of operand
| Not of operand
| Eq of operand ∗ operand
| Leq of operand ∗ operand
| Le of operand ∗ operand

type rhs = Plus of operand ∗ operand
| Times of operand ∗ operand
| Id of operand

type i n s t r =
Read of symbol

| Write of symbol
| Lab of symbol (∗ pseudo i n s t r u c t i o n ∗)
| Assign of symbol ∗ rhs
| AssignRI of operand ∗ operand ∗ operand (∗ a := b [ i ] ∗)
| AssignLI of operand ∗ operand ∗ operand (∗ a [ i ] := b ∗)
| BranchComp of cond ∗ l a b e l
| Halt
| Nop

type tree = Onel ine of i n s t r
| Seq of tree ∗ tree

type program = i n s t r l i s t

Listing 9.16: Data-structures for target intermediate code (3AIC)

The target language is represented by another data structure, shown in Listing 9.17. That
can be compared to the data structures from Listing 9.10 for p-code, from earlier. One can
also see: the 3AIC data structure covers more than we (currently) actually need. There is
branching and labels. There is also something that deals with using arrays in assignment.
More complex data structures like array accesses and indexed access will be coverered
later as well, but not right now.

The data structure for the target language does the same two layers we used for the p-
code. One “tree” representation that connects single-line instructions using Seq, and a
linear list of instructions as the final representation.
l e t rec to_tree ( e : expr ) : t r e e ∗ temp =

match e with
Var s −> ( Onel ine Nop , s )

| Num i −> ( Onel ine Nop , s t r i n g _ o f _ i n t i )
| Ast . Plus ( e1 , e2 ) −>

( match ( to_tree e1 , to_tree e2 ) with
( ( c1 , t1 ) , ( c2 , t2 ) ) −>

l e t t = newtemp ( ) in
( Seq ( Seq ( c1 , c2 ) ,

Onel ine (
Assign ( t ,



24 9 Intermediate code generation
9.6 Generation of three-address intermediate code

Plus (Mem(Temp( t1 ) ) ,Mem(Temp( t2 ) ) ) ) ) ) ,
t ) )

| Ast . Assign ( s ' , e ' ) −>
l e t ( c , t2 ) = to_tree ( e ' )
in ( Seq ( c ,

Onel ine ( Assign ( s ' ,
Id (Mem(Temp( t2 ) ) ) ) ) ) ,

t2 )

Listing 9.17: Translation to three-address code

For the code generation, we focus on the translation of the part we are currently inter-
ested in, assignments and expressions, leaving out the other complications. We see the
generation of new temporaries using a function newtemp. The implementation of that
is not shown, but is easy enough (simply using a counter that generates a new number
at each invocation and returning a corresponding temporary). Strictly speaking, such a
counter is not purely functional. That’s not a problem, most functional languages are not
purely declarative, and one can implement such a generating function and other impera-
tive things. Later, we look at a corresponding AG. Normally, an attribute grammar (as a
theoretical construct) is purely declarative or functional, which means without side-effects.
Still, we will allow ourselves in the AG a function like newtemp for convenience.

In principle, one could do a fully functional representation (here in the code as well as in
the AG later), simply adding an additional argument, for instance a integer counter that
is appropriately handed over. That does not add to the clarity to the code, so a generator
like newtemp is more concise, it would seem.

An interesting aspect of the code generator is its type, resp. its return type. It returns,
obviously, 3AIC, more precisely a “tree” of 3AIC instructions. However, it also returns an
element of type temp. This is needed, because in order to generate code for compound
statements, one needs to know where to find the results of the translation of the
sub-expressions. That can be seen, for instance, in the case for addition.

The two recursive calls on the subexpressions of the addition give back a tuple each, i.e.,
one has two pairs of information; see the correponding match-expression in the code. The
resulting code is constructed as trees, and the result is given back in temporaries t1 and
t2 (or t1 and t2 in the code). Then the last 3AIC line generated in the addition-case
is t := t1 + t2, where t is a new temporary, and the function return the pair of the code
together with this freshly generated t.

9.6.2 Describing 3AIC generation using attribute grammars

Like the one for generating p-code, the attribute grammar relies solely on synthesized
attributes. For the semantics of executing expressions and assignment, we assume that,
besides the side effect, also a value is returned. As a consequence, the attribute uses
two attributes (for the p-code, there had been only one). The functional implementation,
which is a rather faithful realization of the attribute grammar, likewise give back a pair
of results. The two attributes use are tacode, which contains the instructions. As before,
we see that as string (potentially empty). The attribute name represents the name of the



9 Intermediate code generation
9.6 Generation of three-address intermediate code 25

temporary varaible, where result resides.7 We assume, as before, a left-to-right evaluation
of expressions. The resulting attribute grammar is shown in Table 9.3.

productions/grammar rules semantic rules
exp1 → id = exp2 exp1 .name = exp2 .name

exp1 .tacode = exp2 .tacode ++
id.strvalˆ”=”ˆ exp2 .name

exp → aexp exp .name = aexp .name
exp .tacode = aexp .tacode

aexp1 → aexp2 + factor aexp1 .name = newtemp()
aexp1 .tacode = aexp2 .tacode ++ factor .tacode ++

aexp1 .nameˆ”=”ˆ aexp2 .nameˆ
”+”ˆ factor .name

aexp → factor aexp .name = factor .name
aexp .tacode = factor .tacode

factor → ( exp ) factor .name = exp .name
factor .tacode = exp .tacode

factor → num factor .name = num.strval
factor .tacode = ””

factor → id factor .name = num.strval
factor .tacode = ””

Table 9.3: Attribute grammar for 3AI code generation

As mentioned, we allow ourselves here a function newtemp() to generate a new temporary
in the case of addition, even if, super-strictly speaking, that’s not covered by AGs which
are introduced as declarative, side-effect free formalism. But doing it purely functional
(which is possible) would not add to understanding how 3AIC is generated.

9.6.3 3AIC generation in a C-like or Java-line language

Let’s look also at code generation in a C-like notation. The functionality genCodeTA from
Listing 9.18 is assumed added as method to the nodes of that abstract syntax tree.
switch kind {

case OpKind :
switch op {

case Plus : {
tempname = new temorary name ;
varname_1 = r e c u r s i v e c a l l on l e f t subt ree ;
varname_2 = r e c u r s i v e c a l l on r i g h t subt ree ;
emit ( " tempname = varname_1 + varname_2 " ) ;
r e turn ( tempname ) ; }

case Assign : {
varname = id . f o r v a r i a b l e on l h s ( in the node ) ;
varname 1 = r e c u r s i v e c a l l in l e f t subt ree ;
emit ( " varname = opname " ) ;
r e turn ( varname ) ; }

}
case ConstKind ; { re turn ( constant−s t r i n g ) ; } // emit nothing
case IdKind : { re turn ( i d e n t i f i e r ) ; } // emit nothing

}

7In the p-code, the result of evaluating expression (also assignments) ends up in the stack (at the top).
Thus, one does not need to capture it in an attribute.



26 9 Intermediate code generation
9.6 Generation of three-address intermediate code

Listing 9.18: Translation to three-address code

The code “returns” in a way the two attributes mentioned earlier. The name of the
variable, a temporary, is officially returned. The code is produced by via the emit-
function. Note, there is postfix emission only (in the shown cases).

In an object-oriented language like Java or C++, it’s also possible to add genCode
as method to the nodes of the AST. For example, define an abstract method String
genCodeTA() in the Exp-class (or-Node, resp. in all AST nodes where it’s needed.
S t r i n g genCodeTA ( ) { S t r i n g s1 , s2 ; S t r i n g t = NewTemp ( ) ;

s1 = l e f t . GenCodeTA ( ) ;
s2 = r i g h t . GenCodeTA ( ) ;
emit ( t + "=" + s1 + op + s2 ) ;
return t

}

Listing 9.19: Code generation with AST methods

Remark 9.6.1 (OO design). ASTs are trees, of course, and we have seen how one can
realize the AST data structure in object-oriented, class-based languages, like Java etc., and
probably most have chosen a corresponding representation in oblig 1. Of course, recursion
over such data structure can be done straightforwardly, by adding a corresponding method.
That’s object-orientation “101”: one adds a corresponding method to the classes, whose
instances represent different nodes in the trees, and then calls them recursively, as shown
in the code sketch.

Whether it is a good design from the perspective of modular compiler architecture and
code maintenance, to clutter the AST with methods for code generation and god knows
what else, e.g. type checking, pretty printing, optimization . . . , is a different question.

A better design, many would posit, is in this situation to separate the functionality from
the tree structure, i.e., to separate the “algorithm” from the “data structure”, not embedd
the algorithm. Such a separation can be achieved in Java-like OO languages but a design-
pattern called visitor. It allows to iterate over recurive stuctures “from the outside”. It’s a
better design in our context of compilers; it allows to separate different modules from the
central data structure and intermediate representation of ASTs (and might be useful for
other intermediate representations as well). Since this is not a lecture about Java or C++
design patterns, but about (principles of) compilers, so we leave it like at that, especially
since the “embedded solution” shown on the slide works ok as well. Some groups for oblig
1 actually did the effort to realize the print-function as visitor (at least 2020 and 2022.

Example 9.6.2. Let’s apply the code generation to the expression

(x := x + 3) + 4 .

We used the same expression before in Example 9.5.4 for the corresponding code generation
in p-code. For 3AIC, the attributed tree is shown in Figure 9.8.

The generated code is shown in Listing 9.20, where the result of the calcuation can be
found in the temporary t2.



9 Intermediate code generation
9.7 From P-code to 3A-code and back 27

+

x:=

+

x 3

4

result t2

x 3

t1 = x+3; t1

4t1 = x+3;
x = t1; t1

Figure 9.8: Attributed tree (x:=x+3) + 4

t1 = x + 3
x = 1
t2 = t1 + 4

Listing 9.20: 3AIC code for (x:=x+3)+4

9.7 From P-code to 3A-code and back

In this intermezzo we shortly have a look how to translate back and forth between the
two different intermediate code formats, 1-address-code and 3AIC. We do that mainly to
touch upon two concepts, macro-expansion and static simulation. The first is one
rather straightforward, the static simulation is a more complex topic.

Apart from the fact that those mentioned concepts are interesting also in contexts different
from the one where they are discussing here, one may still ask: why would one want to
translate 1AIC to 3AIC and back (beyond using the translations as illustrating some
concepts)?

Well, notions of 1AC and 3AC exist also independent from their use as intermediate code.
In particular, hardware may offer an instruction set in 3A-format, or at least partly in
3A-format (or 2A-format). 1A-hardware, though, is non-existant (there had been attemps
for that in the past). So, if one has an intermediate representation like the p-code or 1AIC
as presented here, then generating code for a 3AC hardware faces problems like those
discussed here. Final code generation faces additional problems like platform-dependent
optimization, and register allocation, which will not enter the picture in this section. For
the ultimate code generation, we will probably translate from 3AIC to 2AC machine code,
which is not directly covered in this section here, but anyway, our focus later will be on
register allocation.

9.7.1 P-code to 3AIC: static simulation

In this section we discuss something called static simulation. It’s not discussed in much
depth, more or less just illustrated by transforming p-code to 3AIC. Focusing on basically



28 9 Intermediate code generation
9.7 From P-code to 3A-code and back

expressions resp. straight-line code, that’s a pretty straightforward task anyway.

Cf. also the concept of basic blocks (or elementary blocks), which are blocks of code
or intermediate code without branching or other control-flow complications like jumps,
conditional jumps etc. The are considered as basic building block for static/semantic
analyses,8 Basic block, stretches of straight-line code are the nodes in control-flow graphs.

In the section we show two directions of intermediate code translations: from p-code two
3AIC here, and vice versa in Section 9.7.2. The reverse direction, from 3AIC to p-code
can be done quite trivially, by macro expansion. That’s a technique not based on static
simulation or similar approaches, it’s simply replaces syntactically each line of, here, 3AIC,
by (typically more than) one line of p-code, preserving the behavior.

That will be easy. However, as it turns out, one could better. When comparing the result
from translating directly from an abstract syntax tree to p-code via the indirect result,
first to 3AIC and then macro-expanding that to p-code, it’s clear that the direct route
results in better code.

One can actually rememdy that. One just has to be more smart about how to translate
3AIC to p-code. The macro expansion translation is correct, but not very clever. If the
translation is not purely syntactical, but the the semantics of the translated constructs
into account, one can do much better. And then we are back at doing something that one
may call static simulation.

We won’t show how to translated all of the p-language or all of the 3AIC language, we focus
on straight-line code; conceptually sequences of assignments. Other parts, like jumps and
labels don’t need much translation, since they are analogous in both languages (though
the commands are called differently).

So, how to do translation p-code to 3AIC. The difference between the two formats is
thatp-code operates on the stack which leaves the needed temporary memory implicit,
in that the different stack contants have no explicit names. But that’s what needed for
3AIC.

Now, give an straight-line p-code sequence, the translation traverses the code, i.e, the list
of instructions from beginning to end. That can be seen as “simulation”, conceptually
at least. Indeed, the implementation makes use use of an actual stack, when stepping
through the p-code.

Figure 9.9 illustrates it on a simple example x := (x+3) + 4 (which we have seen be-
fore). The code on the top of the left-hand side is the target code, the p-code instructions.
The right-hand side shows the evolution of the abstract p-code machine, when executing
the p-code on the left. In particular, the stack as the crucial part is shown in its evolution,
not after every single line having been executed, but at crucial intermediate stages. One
such stage is after having done adi, for instance the first such instance. As discussed,
the stack machine uses the stack for intermediate results, that’s exactly what happens
when executing adi (or similar operations): the operands are popped of the stack, and
the intermediate result is stored on the stack (“push”). Without stack, the 3AIC needs
to store that intermediate result somewhere else, and that’s of course a (new) temporary.

8We will encouter control-flow graphs and elementary block in the chapter for code generation. But the
concept can (and is) equally applied to intermediate codes like 3AIC or p-code.



9 Intermediate code generation
9.7 From P-code to 3A-code and back 29

Figure 9.9: From P-code ⇒ 3AIC: illustration

Note also: the semantics of the abstract syntax is assumed to be that an assignment (like
x := x+3 in the example) gives back a value, like on C or Java. That is reflected in the
p-code by using stn, the non-destructive storing, as discussed earlier. In the translation
to 3AIC, the right-hand side is stored in t1, and that is used in the last line t2 := t1
+ 3.

Side remark 9.7.1 (Terminology). Concerning terminology: The term “static simula-
tion” seems like an oxymoron, a contradicton in itself. Simulation sounds like running
a program, and static means, at compile time, before running a program. And, due to
fundamental limitations (undecidablity of the halting problem), the compiler in general
cannot simulate a program (for reasons of analysis or, here specifically, for translating it to
a different representation). However, here we are in the quite restricted situation: straight-
line code (especially no loops), which means the program terminates anyway, actually, the
number of steps it does is known, it’s the number of lines. So it’s a finite problem, there
are no issues with undecidability. Being finite, one can execute “mentally” one command
after the other and know what will happen when running the program. That’s what the
compiler does for the translation and one can call it static simulation. Actually and as
mentioned, the term “static simulation” is not very widely used in compiler construction,
that’s why I put it into quotation marks.

The other mentioned techniques, like abstraction interpretation and symbolic execution,
are well-established techniques and frameworks. Like static analysis here, they work by
“mentally” executing the code step by step to achieve their result. They are used though
for semantic analysis, not for compiling or translating one code representation into another,
at least not directly. In a very general way, of course, all semantic analyses to some extent,
statically “simulate” the code (the code on AST level, or intermediate code, or whatever).
After all, the semantic analysis phase, generally, analyses the given code to predict what
might happen at run-time, at least approximately, and the predictions helps to generate
the code or generate better code, or optimize the given code by transforming it. This
prediction is based to mentally “execute” the given code, one could say simulate the code
execution. This “simulation” aspect is more felt or less in different techniques. Even
data-flow analysis can be understood loosely as simulating, on an abstract level, the given
program. Loosely insofar, that the data flow analysis typically does not need to follow the
order of the statements as they appear in the program, but can treat them in a different



30 9 Intermediate code generation
9.7 From P-code to 3A-code and back

orders. Therefore, the aspect of “simulation” or “execution” is typically less felt for data-
flow analysis. We will look at data flow analysis in the following chapter for so-called live
variable analysis. That’s an important kind of data flow analysis, and also typical in the
sense, that many other kind of data flow analyses work similarly. Another reason why the
execution aspect feels not so pronouncedv in data flow analysis and likewise in abstract
interpretation is that they work on "abstractions"; they abstract away from details of the
concrete program and its behavior. Those techniques simulate or executes the behavior
therefore on an (more or less) abstract level; the term “abstract interpretation” directly
expresses that. Being abstract in the sense of ignoring details. As a consquence, the
analytic predictions those techniques yield via “simulation” or via “abstractly executing
the program” are not precise, but approximative.

The latter point is a crucial difference to what we do here! Translating from one (inter-
mediate) code representation to a another one cannot ignore details or abstract away from
anything. The transformation has to preserve the semantics, obviously.

9.7.2 P-code ⇐ 3AIC: macro expansion

For the reverse direction, we also focus on illustrating the general technique, restricting
ourselves to straight-line code again. The direction from 3AIC to p-code is simpler, at
least when doing it in a simplistic | way. It does not need any static simulation of the
architecture, i.e., considering the program’s semantic, it can work simply on the syntactic
structure of the input program. It simply expands each line by a corresponding sequence
of p-code instructions. The is illustrated on the basic 3AIC instruction on the next slide
and afterwards on the previous example.

Listing ?? shows how the expansion from one line of 3AIC assignments involging adding
up the source arguments.
lda a
lod b ; or `` ldc b ' ' i f b i s a c o n s t
lod c : or `` ldc c ' ' i f c i s a c o n s t
adi
sto

Listing 9.21: Macro for general 3AIC instruction: a := b + c

Let’s illustrate it on a small example, actually one we have seen before.

Example 9.7.2 ((x:=x+3)+4). The user level code in this example is

(x := x + 3) + 4

from equation (9.3) again. We had earlier translated the line into p-code as well as in
3AIC (see Listing 9.8 and Listing 9.20). The two resulting intermediate code programs
are repeated here in Listings 9.22 and 9.24.



9 Intermediate code generation
9.7 From P-code to 3A-code and back 31

t1 = x + 3
x = t1
t2 = t1 + 4

Listing 9.22: Source 3AIC
(seen before)

;−−− t1 = x + 3
lda t1
lod x
ldc 3
adi
sto
;−−− x = t1
lda x
lod t1
sto
;−−− t2 = t1 + 4
lda t2
lod t1
ldc 4
adi
sto

Listing 9.23: P-code via
3AIC by
macro expan-
sion

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

Listing 9.24: Direct p-code
(seen before)

The p-code from Listing 9.23 is generated by line-by-line macro-expansion from the
3AIC of Listing 9.22. Clearly, the directly translated code is quite shorter (and more
efficient), it’s 7 instructions vs. 13 instructions. One important factor in that “loss” in the
indirect translation is that the macro-expansion is “brainless”. That’s makes the expansion
simple and efficient, but at the price is that the resulting code is not efficient when being
executed. We will, in the following at least hint how to do it better. In general, however,
generating efficiently non-efficient (but correct) code that is afterwards optimized is not
per se a bad idea. That is commonplace in many compilers (even if compilers might not
compiler back-and-forth 1AIC and 3AIC). Anyway, the “better” translation we will look at
improves on one piece of inefficiency (in the example). The 3AIC contains a line x = t1.
After that x and t1 contain obviously the same value. The macro expansion “mindlessly”
expands this line, even though one does not need to have two copies of the value around.
More generally, the translation does not keep track of which values are stored where, it
works purely line-by-line and syntactically. That can be improved, in “static-simulation”
style.

In a preview of code generation in the last chapter: similar information, which value is
stored where, in particular in which register and which main-memory address, that style of
information tracking will be employed in that context later as well. As mentioned earlier,
translating via macro expansion is correct, though it can be improved (“optimized”). We
sketch a bit how that can be achieved.

It can be done better (static simulation)

As we have seen, the macro expansion leads to inefficient code. It is quite longer. A more
deeper and more serious deficiency (but related) is, that it uses too many temporaries.
That’s could lead to a higher memory usage, but also, and that is probably worse, too
much memory traffic, potentially needlessly copying values to different places involving
memory. If that would be the result of the translation, that would be seriously unwelcome.
Of course, it’s perhaps not too common to design the intermediate code generatar to
first produce p-code and afterwards 3AIC as another intermediate code, paying a hefty



32 9 Intermediate code generation
9.7 From P-code to 3A-code and back

efficiency for this detour. But then again, intermediate codes like Java byte code resemble
p-code. If one produces executable code (for instance also JIT), the compiler may take
this detour.

Besides that, intermediate code is not the end of story. Code can and should be optimized,
the intermediate code or the ultimately generated code (or both). So, indeed, if one had
directly the more compact 3AIC directly, not via macro-expansion, also that should be
optimized, the less efficient one just have more potential for optimization. So with good
optimization in place, it may not even make much difference which version of the 3AIC one
has at some point. In particular concerning the generous use of temporaries in the macro-
expanded code: one problem we have not looked into yet is register allocation. We
will do that to some extent for code generation later (not intermediate code generation).
That’s a task crucial for efficiency, and the temporaries of the intermediate code are
generate freely anyway, without yet loosing sleep over the fact that too many temporaries
might come at a cost. Later phases, including register allocation, will deal with with the
problem.

What we do here is something else: we sketch how to do the translation more cleverly
than a plain macro expansion, in a form of static simulation. Instead of “brainlessly”
translating the given linear structure, the 3AIC, into another linear structure (p-code),
we static simulation steps through the code and transforms it into a fancyer structure, a
tree. In effect, in the example from before, it reconstructs the abstract syntax tree that
resulted in the p-code. In more general settings, it’s unrealistic to obtain the original
syntax tree (or one possible original syntax tree) from a linear intermediate code. So the
message is not that using static simulation here allows do decompile intermediate code to
source code. But in the small example here it effectively does. The message is more that
static simulation use some data structures, collecting information while steping through
the code.

The information or data structure here is a tree labelled or attributed with two
pieces of information the operator to produce the corresponding value and the
name of the variables/temporaries containing the result. That effectively, in
the example, is nothing but the abstract syntax tree (resp. the attributed syntax
tree).

Example 9.7.3. Using the (only roughle sketched) idea on the code from Listing 9.22, we
obtain the tree representation from Figure 9.10 Note, the instruction x = t1 from 3AIC

+

+

x 3

4

t2

x,t1

Figure 9.10: Tree

does not lead to more nodes in the tree, it recycles the node it has already introduced.



9 Intermediate code generation
9.8 More complex data types 33

With this tree (which corresponds to the AST), the code generator can work analogously
to the one for the direct translation from source code to p-code. Consequently, the result
for the indirect translation is identical to the directly generated p-code, at least in the
example (see Listing 9.24)

9.8 More complex data types

Next we drop one of the simplifications we have done so far, concerning the involved data.
We have a look at how to lift the other simplification, lack of control-flow commands in
Section 9.9 later. As far as the data is concerned, we have treated only variables (and
temporaries) for simple data types, but not compound ones like arrays, records, etc. For
those some additional address calculations needed, and that may (or not) be supported
by the intermediate code. Also, we have not looked at reference data (pointers). To
deal with that adequately and efficiently, intermediate languages support additional ways
to access data, i.e., additional addressing modes. A taste of that we have seen in the
p-code: a variable can be loaded in two different ways, depending on whether the variable
is used as l-value or r-value. The two commands are lod and lda, load the variable’s
value or load the variable’s address.

Table 9.4 lists 2 new basic addressing modes both for 3AIC and p-code.

3AIC p-code
&x address of x (not for temporaries!) ind i indirect load
*t indirectly via t ixa a indexed address

Table 9.4: Basic new addressing modes

The concepts underlying the commands here are typically also supported by standard
hardware. There may be special registers for indexed access, to make that form of access
fast. Indexed access (here in p-code) is an access which has three arguments: the address
of some place (in memory), and an off-set, given by 2 numbers, say n and s. The offset
refers to the nth slot away from the base address, and s is a scale factor, specifying the size
of each slot. That should remind us to the way that arrays are layed out in memory; we
had discussed that earlier. Indeed, HW-supported indexed access is one important reason,
that arrays are a very efficient data structure. We will illustrate the new constructions on
arrays (but also records) in the following.

In 3AIC, we don’t have (currently) indexed addressing, we have a C-like situation, with
access to the addresses of variables. The &x operation corresponds to the lda instruction
in p-code.

Loading indirectly (in 3AIC and p-code) means: do not load the content of the variable
(nor load its address): load the content of the variable (or here the temporary), interpret
the loaded value as address, and then, load from there. Similarly when using *t on the
left-hand side of a 3AIC assignments.



34 9 Intermediate code generation
9.8 More complex data types

9.8.1 Array access

Let’s use the new instructions in 3AIC (and afterwards in p-code) to access array-data,
which requires some address calculations. Let’s use concretely the following assignment
(in C-notation):

x[10] = 2 (9.4)
The update of the 10th slot in the array a can be done by simple address calculations in
combination with the new addressing modes.

t1 = &x + 10
∗ t1 = 2

Listing 9.25: Address calculations for
a[10]=2 (3AIC)

One thing one should not forget. Earlier, we sketched how 3-address code can be repre-
sented inside a compiler. Now, with alternative address modes, the 3-address code data
structure (earlier represented for example as quadrupel), needs to be extended: informa-
tion concerning the address mode needs to be incorporated.

The compilation is straightforward. The code also shows, that (at least in our 3AIC) there
is no indexed access. The off-set, in the example 10 is calculated by 3AIC instructions in
a form of “pointer arithmetic”.

Let’s revisit the example in p-code. There, the translation will make use of an indexed
access command ixa, which is a tailor-made command for the required kind of address
calculation.

(a) ind (b) ixa

Figure 9.11: Addressing modes in p-code

The effect of the two introduced commands ixa and ind is shown in the transitions Figure
9.11, stepping from the stack content on the left-hand side to the stack on the right-hand
side. The two commands correspond to a situation, where a array expression is written-to
(ind) resp. read-from (ixa). The difference corresponds to the notions of l-values and
r-values that we have seen before (but not in the context of array accesses). Also on the
next slide, we see the difference between the two flavors of array-accesses (l- vs- r-value
usage).

• ixa i: integer scale factor (here factor 1)
lda x
ldc 10
ixa 1 // f a c t o r 1
ldc 2
sto

Listing 9.26: Address calculation for a[10]=2 (p-code)



9 Intermediate code generation
9.8 More complex data types 35

In the two pictures, the a is mnonic for a value representing an address. In the code ex-
ample: The ixa command expects two argument on the stack (and has as third argument
the scale factor as part of the command. To make use of the command, we first load the
address of x loaded and afterwards constant 10. Executing then the ixa 1 command
yields does the calculation in the box, which is intended as address calculation. So the
result of that calculation is (intended as) an address again. To that address, the constant
2 is stored (and the values discared from the stack: sto is the “destructive” write).

Let’s look a bit more into array accesses and corresponding address calculations. In
particular, remember that arrays are typically treated as reference data, I.e., at the source-
code level, an array-typed variable does not contain the content of the array itself, but a
reference to the array.
i n t a [ SIZE ] ; i n t i , j ;
a [ i +1] = a [ j ∗ 2 ] + 3 ;

Listing 9.27: More complex array access in C

Listing 9.27 is not just more complex than the previous array example in that the slots in
the array require a computation. It also uses a read as well as a write access to an array.
The offset to an entry in the array in general needs to be calculated with a scale factor,
wich depedsn on the size resp. the type of the array elements. For instance, a[i+1] (with
C-style array implementation)9, the calculation is done by

a + (i+1) * sizeof(int)

where a here is meant to stand directly for the base address.

One possible was is to assume 2 additional 3AIC instructions, resp. to design the interme-
diate code in such a way that it support such instruction. After all intermediate code is
just a step towards machine instructions, not programs use instruction set of a particular
HW. And perhaps the ultimate hardware supports some complex indexing modes.

As 2 new instructions10 we assume the following
t2 = a [ t1 ] ; f e t c h value o f array element

a [ t2 ] = t1 ; a s s i g n to the a d d r e s s o f an array element

Listing 9.28: Instructions for array accesses in 3AI code

With those, we can translated the array access as follows:

a [ i +1] = a [ j ∗ 2 ] + 3 ;

Listing 9.29: Source code (repeated)

t1 = j ∗ 2
t2 = a [ t1 ]
t3 = t2 + 3
t4 = i + 1
a [ t4 ] = t3

Listing 9.30: 3ACI

We have mentioned that IC is an intermediate representation that may be more or less
close to actual machine code. It’s a design decision, and there are trade-offs either way.

9In C, arrays start at a 0-offset as the first array index is 0. Details may differ in other languages.
10Still in 3AIC format. Apart from the “readable” notation, it’s just two op-codes, say =[] and []=.



36 9 Intermediate code generation
9.8 More complex data types

Like in this case: obviously it’s (slightly) easier to translate array accesses to a 3AIC which
offers such array accesses itself (like on this slide). It’s, however, not too big a step to do
the translation without this extra luxury. In the following we see how to do exactly that,
without those array-accesses at the IC level (both for 3AIC as well as for P-code). That’s
done by macro expansion, something that we touched upon earlier. The fact that one
can “expand away” the extra commands shows there are no real complications either way
(with or without that extra expressivity).

One interesting aspect, though, is the use of the helper-function elem_size. Note that
this depends on the type of the data structure (the elements of the array). It may also
depend on the platform, which means, the function elem_size is (at the point of inter-
mediate code generation) conceptually not yet available, but must provided and used when
generating platform-dependent code. As similar “trick” we will see soon when compiling
record-accesses (in the form of a function field_offset.

As a side remark: syntactic constructs that can be expressed in that easy way, by forms
of macro-expansion, are sometimes also called syntactic sugar.

t3 = t1 ∗ elem_size ( a )
t4 = &a + t3
t2 = ∗ t4

Listing 9.31: Expanding t2=a(t1)

t3 = t2 ∗ elem_size ( a )
t4 = &a + t3
∗ t4 = t1

Listing 9.32: Expanding a(t2)=t1

The macro-expanded result for a[i+1] = a[j*2] + 3 then looks as follows
t1 = j ∗ 2
t2 = t1 ∗ elem_size ( a )
t3 = &a + t2
t4 = ∗ t3
t5 = t4 +3
t6 = i + 1
t7 = t6 ∗ elem_size ( a )
t8 = &a + t7
∗ t8 = t5

Listing 9.33: Macro-expanded version in 3AIC

Let’s also show how to expand the two array access version to p-code.

ld a t2
ld a a
lo d t1
ixa elem_size ( a )
ind 0
s t o

Listing 9.34: Expanding t2=a(t1) in
p-code

ld a a
lo d t2
ixa elem_size ( a )
lo d t1
s t o

Listing 9.35: Expanding a(t2)=t1 in
p-code

lda a
lod i
ldc 1
adi
ixa elem_size ( a )
lda a
lod j
ldc 2
mpi
ixa elem_size ( a )
ind 0
ldc 3
adi
sto



9 Intermediate code generation
9.8 More complex data types 37

Listing 9.36: Macro-expanded version of a[i+1] = a[j*2] + 3 in p-code

Extending grammar & data structures

Let’s extend the earlier grammar from equation (9.2) to cover also array accesses.

exp → subs = exp2 | aexp
aexp → aexp + factor | factor

factor → ( exp ) | num | subs
subs → id | id [ exp ]

(9.5)

Extending the language (here with arrays) means extending the AST. That means we
have to extend the tree definition from Listing 9.13. Actually, the extension is quite small:
Compared to the the tree struction from Listing 9.13, the only addition is a new “code”
Sub in the enumeration Optype.
typedef enum { Plus , Assign , Sub} Optype ; /∗ Sub i s new ∗/
/∗ o t h e r d e c l a r a t i o n as b e f o r e ∗/

Listing 9.37: AST in C: additional OpType

Figure 9.12 shows example AST in pictorial form.

+

:=

a[]

+

i 1

2

a[]

j

Figure 9.12: Syntax tree for (a[i+1]:=2)+a[j]

Code generation for p-code

Listing 9.38 shows how one can generate code for the “array access” grammar from before
(in C). Compared to the corresponding procedure for code generation from Listing 9.15,
the procedure genCode has one additional argument, a boolean flag. That has to do
with the discinction we want to make (here) whether the argument is to be interpeted as
address or not. And that in turn is related between so called L-values and R-values and
the fact that the grammar allows “assignments” (written x := exp2) to be expressions
themselvves. In the code generation, that is reflected also by the fact we use stn (non-
destructive writing). Of course, already without arrays, there had been the distinction
between L-values and R-values. Nonetheless, the code generation from Listing 9.38 could
be achieved without the extra argument isAddr. ms

Error:
thinkms Error: Think about the explanations, l-value etc.



38 9 Intermediate code generation
9.8 More complex data types

void genCode ( SyntaxTree t , int isAddr ) {
char c o d e s t r [ CODESIZE ] ;
/∗ CODESIZE = max l e n g t h o f 1 l i n e o f P−code ∗/
i f ( t != NULL) {

switch ( t−>kind ) {
case OpKind :

{ switch ( t−>op ) {
case Plus :

i f ( i s A d d r e s s ) emitCode ( " Error " ) ; // new c h e c k
e l s e { // unchanged

genCode ( t−>l c h i l d , FALSE ) ;
genCode ( t−>r c h i l d , FALSE ) ;
emitCode ( " ad i " ) ; // a d d i t i o n

}
break ;

case Assign :
genCode ( t−>l c h i l d ,TRUE) ; // `` l −v a l u e ' '
genCode ( t−>r c h i l d , FALSE ) ; // ``r−v a l u e ' '
emitCode ( " stn " ) ;
break

case Subs :
s p r i n t f ( c o d e s t r i n g , "%s %s " , " lda " , t−>s t r v a l ) ;
emitCode ( c o d e s t r i n g ) ;
genCode ( t−>l c h i l d . FALSE ) ;
s p r i n t f ( c o d e s t r i n g , "%s %s %s " ,

" i x a elem_size ( " , t−>s t r v a l , " ) " ) ;
emitCode ( c o d e s t r i n g ) ;
i f ( ! isAddr ) emitCode ( " ind 0 " ) ; // i n d i r e c t l o a d
break ;

default :
emitCode ( " Error " ) ;
break ;

}
break ;

case ConstKind :
i f ( isAddr ) emitCode ( " Error " ) ;
e l s e {

s p r i n t f ( c o d e s t r , "%s %s " , " l d s " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;

}
break ;

case IdKind :
i f ( isAddr )

s p r i n t f ( c o d e s t r , "%s %s " , " lda " , t−>s t r v a l ) ;
e l s e

s p r i n t f ( c o d e s t r , "%s %s " , " lod " , t−>s t r v a l ) ;
emitCode ( c o d e s t r ) ;
break ;

default :
emitCode ( " Error " ) ;
break ;

}
}

}

Listing 9.38: GenCode, additional argument isAddr

9.8.2 Access to records

Let’s have also a short look to records. This time we don’t show how to extend the abstract
syntax further or how to extend the genCode implementation in detail

For dealing with records, one may consult also the remarks when discussing record types
resp. the memory layout for different data types (in connection with the run-time envi-
ronment). Records are not much more complex that arrays, it’s only that the different
slots are not uniformely sized. Thus one cannot simply access “slot number 10” (using
indexed access or pointer arithmetic). Luckily, however, the offsets are all statically known
by the compiler, and with that, one can access the corresponding slot.

One complication is: the offset may be statically known, before running the program, but
actually not yet right now, in the intermediate code phase. It typically may be known
only when having decided for the platform. That’s still at compile-time, but lies “in the



9 Intermediate code generation
9.8 More complex data types 39

future” in the phased design of the compiler. But it’s not hard to solve that. Instead of
generating a concrete offset right now, one injects some “function” (say field_offset)
whose implementation (resp. expansion) will be done later, as part of fixing platform-
dependent details. It’s similar what we used already in the context of the array-accesses,
which made use of a function elem_size.
typedef struct Rec {

int i ;
char c ;
int j ;

} Rec ;
. . .

Rec x ;

Listing 9.39: Sample struct type declaration

Figure 9.13: Layout for structs or records

Records/structs in 3AIC

As arrays (and objects etc), records are typically are implicitly references. As for arrays,
we can just use &x and *x to do the proper access. Assume a simple read access to x.j
where x is the record. Actually, should better say, x is a variable that contains as value a
reference to the the array . . . .
t1 = &x + f i e l d _ o f f s e t ( x , j )

Listing 9.40: simple record access x.j

The second example shows read and write record access, i.e., treating a struct as l-value
and as r-value, using the address modes of three-address intermediate code.
t1 = &x + f i e l d _ o f f s e t ( x , j )
t2 = &x + f i e l d _ o f f s e t ( x , i )
∗ t1 = ∗ t2

Listing 9.41: Access to structs left and right: x.j := x.i

Field selection and pointer indirection in 3AIC Next we cover pointer indirection, ac-
tually in connection with records (which is a very common situation). In C-like languages,
that’s the way one can implement recursive data structure (which makes it an impor-
tant programming pattern). Of course, in languages without pointers, which may support



40 9 Intermediate code generation
9.9 Control statements and logical expressions

inductive data types for instance, those structures need to be translated similarly. The
C-code in Listing 9.42 shows a typical example, a tree-like data structure.

Listing 9.43 shows how to access those trees, one on the left-hand side, one on the right-
hand side of an assignment. The notation -> is C-specific. It’s used for the very common
situation to access fields of a struct (or union) which is referenced by a pointer as in Listing
9.43. Here the notation is used to “move” up or down the tree.

typedef struct treeNode {
int v a l ;
struct treeNode ∗ l c h i l d ,

∗ r c h i l d ;
} treeNode
. . .

Treenode ∗p ;

Listing 9.42: Some tree data structure
(using structs)

p −> l c h i l d = p ;
p = p−>r c h i l d ;

Listing 9.43: Assignments involving
fields

Listing 9.44 and 9.45 show how the two lines in C can be translated to three-address
intermediate code, resp. to p-pcode. Both make use of field_offset(x,j) to calculate
the off-set. In Listing 9.44, there is no need for the address operator & (unlike in earlier
examples), since p contains is already the address.

t1 = p + f i e l d _ o f f s e t (∗ p , l c h i l d )
∗ t1 = p
t2 = p + f i e l d _ o f f s e t (∗ p , r c h i l d )
p = ∗ t2

Listing 9.44: 3AIC

lod p
ldc f i e l d _ o f f s e t (∗ p , l c h i l d )
ixa 1
lod p
sto
lda p
lod p
ind f i e l d _ o f f s e t (∗ p , r c h i l d )
sto

Listing 9.45: p-code

9.9 Control statements and logical expressions

So far, we have dealt with straight-line code only. The main “complication” were com-
pound expressions, which do not exist in the intermediate code, neither in 3AIC nor in
p-code. That required the introduction of temporaries resp. the use of the stack to store
those intermediate results.

In general (intra-procedural) “control” is more complex than straight-line code thanks
to control-statements. Those include conditionals, switch or case constructs, different
forms of loops (while, repeat, for . . . ), and also breaks, gotos, exceptions . . . .

Side remark 9.9.1 (Transfer of control). Intra-procedural control flow means, moving
inside one procedure or function. The opposite is inter-procedural, between two different
procedures, and that form of transfer is done via calls and returns (i.e. calling sequences).
Most of the control-statements here, like loops and conditions, do not catapult control
outside the procedure. For exceptions, however, when uncaught inside the procedure,
execution continues no longer inside the procedure, but outside (or the program termi-
ates). That would corresponds more to a special case of returning from a procedure (after



9 Intermediate code generation
9.9 Control statements and logical expressions 41

“breaking out” of the procedure body). If not altogether forbidden by the language, it’s
seriously frowned upon to jump accros procedure boundaries, much more frowned upon
that the plain use of goto, it just makes no sense and is guaranteed to make a mess.

The core addition to deal with control statements here is the use of labels. Labels can be
seen as “symbolic” respresentations of “programming lines” or “control points”. Ultimately,
in the final binary, the platform will support jumps and conditional jumps which will
transfer control (= program pointer) from one address to another, “jumping to an address”.
Since we are still at an intermediate code level, we do jumps not to real addresses but to
labels (referring to the starting point of sequences of intermediate code). As a side remark:
also assembly language editors will in general support labels to make the program at least
a bit more human-readable (and relocatable) for an assembly programmer. Labels and
goto statements are also known in (not-so-)high-level languages such as classic Basic (and
even Java has goto as reserved word, even if it makes no use of it).

Besides the treatment of control constructs, we discuss a related issue namely a particular
use of boolean expressions. It’s discussed here as well, as (in some languages) boolean
expressions can behave as control-constructs, as well. Consequently, the translation of that
form of booleans, require similar mechanisms (labels) as the translation of standard-control
statements. In C-like languages, including Java, that’s know as short-circuiting.

Side remark 9.9.2 (Booleans). As a not-so-important side remark: Concretely in C,
“booleans” and conditions operate also on more than just a boolean two-valued domain
(containing true and false or 0 and 1). In C, “everything” that’s not 0 is treated as
1. That may sounds not too “logical” but reflects how some hardware instructions and
conditional jumps work. Doing some operations sets “ hardware flags” which then are used
for conditional jumps: jump-on-zero checks whether the corresponds flag is set accordingly.
Furthermore, in functional languges, the phenomenon also occurs (but typically not called
short-circuiting), and in general there, the dividing line between control and data is blurred
anyway.

important “technical” device: labels B_block

• specifically named (= labelled) control flow points
• nodes in the control flow graph
• generation of labels (cf. also temporaries)

Side remark 9.9.3 (Gotos). Concerning gotos: gotos (if the language supports them)
are almost trivial in code generation, as they are basically available at machine code
level. Even if very easy to translated, they are still an abstraction, since often there are
restrictions, like not jumping out or into a procedure. And they refer to control points
at the source level, one cannot just jump to an address or store and manipulate a jump
target in a variable, like doing address-arithmetic or pointer-arithmetic.

The “considered-harmful” qualification goes back to a famous (or infamous?) paper or
letter by Dijkstra “Go To Statement Considered Harmful”. Actually, when submitted
the title of that piece was phrase differently, but the editor, Nikolaus Wirth, suggested a

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf


42 9 Intermediate code generation
9.9 Control statements and logical expressions

juicier one (Nikolaus Wirth is the guy behind Pascal, among other things). That letter
was kind of the opening salvo or one very famous early salvo in what came known as the
“structured programming wars”. . .

Let’s first fix some abstract syntax, extending the previous version. The additions are
not very fancy, just some syntax for conditionals and for loops. Abstract syntax is in
tree-form, and the task will be to turn it to a linear representation, since we are working
with linear intermediate code formats. In principle, the task should be clear, working
heavily with conditional jumps to represent conditinals and loops in the abstract syntax;
see later Figures 9.14a and 9.14b

Side remark 9.9.4 (Traces and schedules). scheduling

if -stmt → if ( exp ) stmt else stmt
while-stmt → while ( exp ) stmt

(9.6)

Figure 9.14 shows the structure of the control-flow graph of the two structured com-
mands. They should be clear enough.

However, and more importantly for the current discussion: the pictures can also be read
as containg more information than the CFG: The graphical arrangement hints at the fact
that ultimate, the code is linear. Crucial here are conditional jumps, but those are one-
armed commands. That means, one jumps on some condition. But if the condition is
not met, one does not jump. That is called fall-through. In the picture, it’s hinted at
insofar that the boxes are aligned strictly from top to bottom, it’s a linear arrangement of
stretches of straight-line code (so called basic block) and the arrows are just illustrating
the jumps resp. fall-throughs. A graphical illustration of a (control-flow) graph structure
would not need to do that, a graph consists of nodes and edges, no matter how one arrange
them for illustrative purposes.

Here the two graphs use always the true-case as fall-through. Of course, the underlying
intermediate code can support different forms of conditional jumps (like jump-on-zero and
jump-on-non-zero) which may swap the situatiom. Our code will work with jump-on-
false which explains the true-as-fall-through depiction.

Anyway, the pictures are intended to remind us that we are generating code for linear
intermediate code languages, and in particular, the graph should not be interpreted (with
its true and false edge) should not be misunderstood to think we still have two-armed
jumps.

As said, the “graphical” representation can also be understood as control flow graph. The
nodes contain sequences of “basic statements” of the form we covered before (like one-
line 3AIC assignments) but not conditionals and similar and no procedure calls (we don’t
cover them in the chapter anyhow). So the nodes (also known as basic blocks) contain
staight-line code.

In the following we show how to translate conditionals and while statements into inter-
mediate code, both for 3AIC and p-code. The translation is rather straightforward and



9 Intermediate code generation
9.9 Control statements and logical expressions 43

(a) Conditional (b) While

Figure 9.14: Tracing conditionals and while-loops

actually practically identically for both cases, as both forms making use of labels and
conditional jumps.

To do the translation, we need to enhance the set of available “op-codes” (= available
commands). We need a mechanism for labelling and a mechanism for conditional jumps.
Both kinds of statements need to be added to 3AIC and p-code, and in both variants,
they basically work the same, except that the actual syntax of the commands is different.
But that’s details.

For conditionals if (E) then S1 else S2 and while loops while (E) S, the 3AIC is given
in Listing 9.46, resp. in Listing 9.47.

<code to e v a l E to t1>
i f _ f a l s e t1 goto L1
// goto f a l s e branch
<code f o r S1>
// f a l l through to t r u e branch
goto L2
// hop over f a l s e branch
label L1

<code f o r S2>
label L2

Listing 9.46: Conditional (3AIC)

label L1
// label the loop header
<code to e v a l u a t e E to t1>
i f _ f a l s e t1 goto L2
// jump to a f t e r the loop
<code f o r S>
goto L1 // jump back
label L2
// label the loop e x i t

Listing 9.47: While (3AIC)

For comparison, we show also the corresponding p-code in Listing 9.48, resp. in Listing
9.49. We see that both translations work basically the same, which isnot surprising, as
both linear intermediate code forms have equivalent commands for handling the control
flow, namely labelling and jumps to labels, in particular conditional jumps. For p-code,
the needed codes are listed in Table 9.5.

<code to e v a l u a t e E>
f j p L1
// got f a l s e branch
<code f o r S1>
// f a l l through to t r u e branch
ujp L2
// hop over f a l s e branch
lab L1
<code f o r S2>
lab L2

Listing 9.48: Conditional (p-code)

lab L1
// l a b e l the loop header
<code to e v a l u a t e E>
f j p L2
// jump to a f t e r the loop
<code f o r S>
ujp L1 // jump back
lab L2
// l a b e l the loop e x i t

Listing 9.49: While (p-code)



44 9 Intermediate code generation
9.9 Control statements and logical expressions

ujp unconditional jump (“goto”)
fjp jump on false
lab label (for pseudo instructions)

Table 9.5: 3 new op-codes for p-code

9.9.1 Boolean expressions

Next we discuss boolean expressions. One may ask, why this is covered in the context of
control statements, after all, we have covered how compound expressions are translated,
for instance using temporaries in three-address intermediate code.

Booleans are special, as of course they are connected to control-flow. For conditional and
loops, the control flow, i.e., where the program execution continues depends on the value
a the boolean condition. That gives booleans a special place.11

Besides that (but connected to that), boolean expression can also evaluated in a way that
does not correspond to standard expression evaluating. To there are actually two ways how
to treat boolean expression, i.e., two ways how to generate code for boolean expressions.
One is to generate code analogous to the principles we covered earlier. The alternative
discussed here is known as short-circuiting.

ultimate representation in HW: no built-in booleans (HW is generally untyped), but “arith-
metic” 0, 1 work equivalently & fast bitwise ops which corresponds to logical ∧ and ∨ etc.
comparison on “booleans”: 0 < 1?. boolean values vs. jump conditions

Let’s look at C, a language which supports short-circuiting evaluation (Java as well). The
notation is C-specific, and a popular idiom for nifty C-hackers. For non-C users it may
look a bit cryptic.
i f ( ( p!=NULL) && p −> v a l ==0)) . . .

Listing 9.50: Typical idiom in C, relying on short circuiting

A “popular” error in C-like languagues are nil-pointer exceptions, and programmers a
well-advised to check pointer accesses whether the pointer is nil or not. In the example,
the access p -> val would derail the program if p were nil. However, the “conjuction”
checks for nil-ness, and the nifty programmer knows that the first part is checked first.
And not only that, if it evaluates to false (or 0 in C), the second conjuct is not executed
(to find out if it’s true or false), it’s jumped over. That’s known as circuit evaluation.

That such circuiting is possible (at source-code level), the semantics must fix evaluation
order, typically from left to right. Treating boolean expressions like that also make then
no longer behave as the usual logical constructs. For instance, for logical conjuctions, one
would expect a∧b = b∧a. That’s not longer the case. But actually it’s not so much the fault
of short-circuiting or not only, it’s in combination with the fact that boolean expressions
11In languages like C, one can also use integers and other non-boolean data in conditionals, so it’s not

only data officially being declared as boolean that can influence the control-flow.



9 Intermediate code generation
9.9 Control statements and logical expressions 45

can have side-effects. The pointer idiom from Listing 9.50 has no side-effect of the form
x++ or similar. However, the right-hand confuction in the pointer dereferencing pattern
can have a side effect in the form of a null-ponter exception. That’s precisely why the
conjuct on the left-hand side of the conditions checks whether that would happen, and if
so, the short-circuiting evaluation jumps over it, avoiding the crash.

Talking about “logic”, the short-circuited boolean operators can be “explained” as fol-
lows:

a and b , if a then b else false
a or b , if a then true else b

(9.7)

That’s of course not C (or similar languages), as conditionals are statements and cannot
be used as expressions. But the pattern captures the idea of short circuiting and shows the
mentioned dependency of control-flow on booleans, exploiting that dependence for capture
short-circuiting.

To produce intermediate code for short-circuted boolean expression is not very hard. We
have discussed how conditionals can be translated using labels and conditional jumps, so
the conditional patterns from (9.7) gives a clear way to do it.

We will show it or at least illustrated it on a small example, and we do that for pcode.
For that we make use of

2 new op-codes: equ, and neq

lod x
ldc 0
neq // x!=0 ?
f j p L1 // jump , i f x=0
lod y
lod x
equ // x =? y
ujp L2 // hop over
lab L1
ldc FALSE
lab L2

Listing 9.51: Pcode for (x!=0) && (x==y)

The p-code might not be the very best representation, for instance, one may come up
with a different solution that does not load x two times. A side remark: we are still at
intermediate code. Optimizations and the use of registers have not yet entered the picture.
That is to say, that the above remark that x is loaded two times might be of not so much
concern ultimately, as an optimizer and register allocator should be able to do something
about it. On the other hand: why generate inefficient code in the hope the optimizer will
clean it up.

Let’s also look at how to translated short-circuiting into 3AIC. Conceptually, it’s not
different from the treatment in p-code.

Example 9.9.5 (Short circuiting in 3AIC). The source code is a compound boolean expres-
sion involving “and” and “or”.



46 9 Intermediate code generation
9.9 Control statements and logical expressions

i f a < b | |
( c > d && e >= f )

then
x = 8

e l s e
y = 5

endif

Listing 9.52: Source code

t1 = a < b
if_true t1 goto 1 // s h o r t c i r c u i t
t2 = c > d
i f _ f a l s e goto 2 // s h o r t c i r c u i t
t3 = e >= f
i f _ f a l s e t3 goto 2
label 1
x = 8
goto 3
label 2
y = 5
label 3

Listing 9.53: 3AIC

Let’s slightly modify the statement grammar from earlier from equation (9.6), basically
adding a break statement (see equation 9.8)). Expressions are dealt with in a rather
simplistic manner, supporting only true and false,

stmt → if -stmt | while-stmt | break | other
if -stmt → if ( exp ) stmt else stmt

while-stmt → while ( exp ) stmt
exp → true | false

(9.8)

A possible data structure in C for abstract syntax trees for such statements is shown in
Listing 9.54.12

typedef enum {ExpKind , I f k i n d , Whilekind ,
BreakKind , OtherKind} NodeKind ;

typedef struct s t r e e n o d e {
NodeKind kind ;
struct s t r e e n o d e ∗ c h i l d [ 3 ] ;
int v a l ; /∗ used w i t h ExpKind ∗/

/∗ used f o r t r u e v s . f a l s e ∗/
} STreeNode ;

type STreeNode ∗ SyntaxTree ;

Listing 9.54: AST in C for statements

Example 9.9.6 (Translating conditionals). Let’s use the following conditional statement to
illustrate the code generation for such constructs.
i f ( t r u e ) while ( t r u e ) i f ( f a l s e ) break e l s e o t h e r

Listing 9.55: Nested control structures

Note, the code may look ambigous (remember the dangling-else problem). But that’s a
parsing issue, and that’s behind us. What is meant is shown in the abstract syntax tree
in Figure 9.9.6.

A corresponding possible p-code is shown in Listing 9.56.
12In style it resembles the C data structures we have seen earlier in Listing 9.13 and its extension from

Listing 9.37, but those were for expressions. The expressions included side effects, but there were no
control-flow complications, including no short-ciruiting. Consequently, those AST were translated to
straight-line code.



9 Intermediate code generation
9.9 Control statements and logical expressions 47

Figure 9.15: Syntax tree

ldc t r u e
f j p L1
lab L2
ldc t r u e
f j p L3
ldc f a l s e
f j p L4
ujp L3
ujp L5
lab L4
Other
lab L5
ujp L2
lab L3
lab L1

Listing 9.56: P-code

9.9.2 Code generation

Let’s look at how to generate intermediate code like the one from Example 9.9.6. We
have seen versions of the genCode-function already. There had been a “plain” version for
expressions in Listing 9.15 and the one from 9.38 (with an additional argument isAddr).
Now we adapt genCode to deal with statements and the control structures, including the
break statement.

Now we face a similar problem than lead to the addition of additional argument in Listing
9.38. To translate the control structures, the while and the if, involve conditional jumps.
To translate a branch of conditional and loops involves generating code containing (con-
ditional) jump statements to a label. Also a break statement occuring in a loop bode or
a branch of a condition will be translated to a jump to some label.

The problem is, the jump target is outside the branch or body being translated. In the
syntax tree, it refers to some code higher up in the tree. One can see it as information
not from the statement being translated but from its context.13 As similar phenomenon
was in the genCode procedure from Listing 9.38: the question whether a variable was
13Context in the same manner that well-typedness of a of an expression containing variable is something

that is declared elsewhere, not as part of the expression, i.e., is declared in the expression’s context,
often before. That’s a basic reason why non altogether trivial type checking cannot be context-free.



48 9 Intermediate code generation
9.9 Control statements and logical expressions

interpreted as value or if its address was mean is information belonging to the context of
the variable.

That led back then to give that information as additional argument to the procedure.
In the case of Listing 9.38, it base a simple boolean value, stating whether the case for
variable should treat a variable as address or not. Here we do the analogous thing.

We add as additional argument to genCode the label where to jump to, for
instance in case of a break statement. A variation of the same idea is to hand over
two labels, one that represents the “true” and one the “false” case. That may be
conceptually clearer, though the generated code will work with one-armed jumps
and fall-throughs only, because that’s what’s supported by the intermediate code.

To do so, we assume that we have a label generator (say genLabel(). Like for tempo-
raries, it can be used to generate fresh labels when needed. And when is it needed? Of
course when generating code for conditionals and while looks, and the code generated for
the while-body resp. the arms of the conditionals are handed over the appropriate jump
target(s).

has to deal with one-armed if-then as well: test for NULL-ness

Side remark 9.9.7 (Labels and jumps and control-flow graphs). The label can (also) be
seen as designating nodes in the control-flow graph. I.e., when genCode generates
labels while traversing the AST, it implicitly generates a CFG.

The labels and the nodes of the control-flow graph may not be 100% in a one-to-one rela-
tionship. For instance, looking at the sample (p-)code from Listng 9.56, we see a situation
where there are two subsequent lines marked lab 3; lab 1. That’s not harmful, but
uses two labels for the same control-flow point or same address. So it can be that the code
generator happens to generate two different labels as jump-target to the same node in a
control-flow graph. But just because the node carries two different labels does not mean
that there are two different nodes, of course. In that sense, nodes and labels generated by
procedures like genCode are not absolutely alone, but this is just a very minor thing. It’s
still conceptually true: nodes in the control flow graph correspond to the labels (fine-print
applies).

While talking about code generation: it’s also possible not to have the code generator
implicitly generate some control flow graph in that one can think of the labels as the
nodes more or less. Instead a compiler could introduce control-flow graphs explicitly
as another form of intermediate representation, perhaps a graph-representation of
intermediate code, which would afterwards be linearalized. The code-generation here, in
a way, does the control-flow graph on-the-fly.

As a final remark: we will actually cover control-flow graphs later. They will be used in
the context for data-flow analysis (which is a very common application for control-flow
graphs). However, the way we proceed is: we assume a linear code (with labels and jumps)
and before doing the analysis, we first extract the CFG from the linear code. As said,
other compilers might officially have a CFG data structure before going to a linear code
arrangement, so no extraction of the graph from the code would be needed.



9 Intermediate code generation
9.9 Control statements and logical expressions 49

Now to the implementation of the code generation, see Listing 9.57 Listing. The type
declaration for the abstract syntax trees was shown earlier in Listing 9.54
void genCode ( SyntaxTree t , char∗ label ) {

char c o d e s t r [ CODESIZE ] ;
char ∗ lab1 , ∗ lab2 ;
i f ( t != NULL) switch ( t−>kind ) {

case ExpKind :
i f ( t−>v a l ==0)

emitCode ( " l d c f a l s e " ) ;
e l s e emitCode ( " l d c t r u e " ) ;
break ;

case I fKind :
genCode ( t−>c h i l d [ 0 ] , label ) ;
lab1 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " f j p " , lab1 ) ;
emitCode ( c o d e s t r ) ;
genCode ( t−c h i l d [ 1 ] , label ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) {

lab2 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , lab2 ) ;
emitCode ( c o d e s t r ) ;

}
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab1 ) ;
emitCode ( c o d e s t r ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) {

genCode ( t−>c h i l d [ 2 ] , label ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab2 ) ;
emitCode ( c o d e s t r ) ;

}
break ;

case WhileKind :
lab1 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab1 ) ;
emitCode ( c o d e s t r ) ;
genCode ( t−>c h i l d [ 0 ] , label ) ;
lab2 = genLabel ( ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " f j p " , lab2 ) ;
emitCode ( c o d e s t r ) ;
genCode ( t−>c h i l d [ 1 ] , label ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , lab1 ) ;
emitCode ( c o d e s t r ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab2 ) ;
emitCode ( c o d e s t r ) ;
break ;

case BreakKind :
s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , label ) ;
emitCode ( c o d e s t r ) ;
break ;

case OtherKind :
emitCode ( " Other " ) ;
break ;

default :
emitCode ( " Error " ) ;
break ;

}
}

Listing 9.57: Code generation for statements (p-code)

The code being generated is p-code, though actually the important message of that pro-
cedure is not that; we know that the treatment of labels and jumps is done analogously
for 3AIC. The code also resembles earlier C-code implementation of p-code generation,
basically a recursive procedure with a post-fix generation of code for expression evaluation.
We have seen that before.

Of course, now we have to make jumps and use labels. As mentioned the (small) challenge
we have is: sometimes one has to inject a jump-command to some label which, at that
point in the traversal. This is needed (for instance) when doing a break-statement in a
loop. The natural way to deal with it is that the recursive procedure takes a label as
additional argument, that is used to jump-to when processing a break. This argument
is handed down the recursive calls. There are alterntaive ways to deal with this (mini-
)challenge. Later we also have a look at an alternative ways, making use of two labels as
argument.



50 9 Intermediate code generation
9.9 Control statements and logical expressions

Conditionals The conditional has to deal with 3 elements: the boolean expression (which
can be a statement and even contain breaks) and the two branches. For the conditional:
if a break occurs, we need to jump to the argument label, that’s what the label is intro-
duced for, actually. For the two branches (and the condition): All three take the original
argument label as break-target. We have, however, to take care of the linear arrange-
ment. The control flow graph looks simple enough for a conditional like this, but the code
is arranged linearly, and we don’t have two-armed conditionals in the target code (only
fall-throughs in the else case).

lab1 is the label for the else-branch. It’s the conditional jump target after evaluating the
boolean condition and reaching the end without a break. Therefore, it’s a branch-on-false.
We don’t know the target yet, therefore we generate a new label hand it over as argument.
The jump is “forward” in a way, which means, we generate the jump code fjp <lab1>
before we generate the code where we jump to. That’s why we need the label as additional
argument.

lab2 is a label needed to hop over the else branch. There’s a distinction whether there
is an else branch or not (that’s done via a check for null-pointer (note that the check is
done two times). The label lab2 is needed only in case there is actually an else case.

It might actually be the case that we don’t need lab2 and use label instead.

While The while works similar. But because we have potentially to jump back (by an
unconditional jump at the end of the loop body), we need a label for that and that’s lab1.
lab2 is the break label for the body also generated. It somehow is the “same” point as
label.

Alternative code generation for boolean expressions So far, we have sketched code
generation in connection with short-circuiting boolean expressions by some examples. In
the following we show, also slightly sketchy, how the short-circuiting can be integrated
into the genCode procedures which we have looked at repeatedly. We do so only for
the p-code, but it can be done analogously for the 3AIC. We look at short-circuiting
boolean expressions when they are uses in control-flow constructions, i.e., as the boolean
condition for conditionals or loop. For that we focus on conditionals, only, i.e., we revisit
the the IfKind case in the code from Listing 9.57. In that older version, there was no
short-circuiting. Now, in Listing 9.58, we want to include short-circuiting, and the part is
handled by a separate sub-procedure genBoolCode; see Listing 9.59

Note that genBoolCode takes two labels are arguments, one for the true-case one for
the false-case. Note also, that there is no general break label as third argument. We
had introduced that in Listing 9.57 as jump-target “after” the surrounding code in case a
break is executed. Basically, we assume that there are no breaks allowed inside boolean
expressions. It would be easy to add that to Listing 9.59. as well to treat a possible
break-case, but the code is a sketch anyway and not all switch-cases are shown. In case
the genBoolCode does not have a break-label as third argument (as in the shown code),
of course, it’s not good enough to assume that the programmer is not so stupid to use
breaks in boolean conditions. If that’s forbidden, it should be checked by the semantic
analysis phase and if that is violated, an error message should be generated. That’s



9 Intermediate code generation
9.9 Control statements and logical expressions 51

better than letting the compiler stumble upon it during the intermediate code generation
phase (for instance not having a break-case in genBoolCode). If the genBoolCode
is programmed in C in a similar style as genCode from Listing 9.57, there might be a
default case at the end of the case switch, which at least generates some “error”. But,
as said, it’s better handled in the semantic analysis phase. But having the code generator
generating an “error code” now is still better than a situation where the intermediate
code generator generates executable code (resp. proper intermediate code that will result
afterwards in executable code), where the behavior is unclear (perhaps the code crashes,
or does something unexpected, or generates code as if there is no break). And the excuse
“the user should not do that and the code generator assumes that no one does such a
thing” is actually no excuse at all. . .

On the other hand, there seems indeed no legitimate reason why someone would wish
to execute an explicit break in an boolean condition. Some would even say, don’t use
side effects in the boolean condition of a conditional or a loop, though it’s quite common
practice in C-like languages (also in connection with the short-circuit semantics and the
fact that assignments give back values). Indeed, the short-circuiting treatment of booleans
is similar to a break. If, for instance, in an “or” boolean expression, the left subexpression
gives a true, then there is no need to evaluate the right sub-expression, this the execution
hops over the corresponding code: it’s like executing a “break” to jump after the rest of
the expression and continue there.

case I fKind :
lab_t = genLabel ( ) ;
lab_f = genLabel ( ) ;
genBoolCode( t−>c h i l d [ 0 ] , lab_t , lab_f ) ; // b o o l e a n c o n d i t i o n
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab_t ) ; // i f −branch
emitCode ( c o d e s t r ) ;
genCode ( t−>c h i l d [ 1 ] , l a b e l ) ;
lab_x = genLabel ( ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) { // does t h e r e e x i s t s an e l s e branch ?

s p r i n t f ( c o d e s t r , "%s %s " , " ujp " , lab_x ) ;
emitCode ( c o d e s t r ) ;

}
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab_f ) ; // e l s e −branch
emitCode ( c o d e s t r ) ;
i f ( t−>c h i l d [ 2 ] ! =NULL) { // does t h e r e e x i s t s an e l s e branch ?

genCode ( t−>c h i l d [ 2 ] , l a b e l ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab_x ) ; // p o st −s t a t e m e n t l a b e l ( i f 2 arms )
emitCode ( c o d e s t r ) ;

}
break ;

case WhileKind :

Listing 9.58: Alternative code generation (conditionals)

Anyway, Listing 9.59 shows a few cases, the one for “and” and “or”, and also one com-
parison operator. The situation for "or" is also shown in Figure 9.16 (where lt stands for
lab_t in the code etc.).
void genBoolCode ( s t r i n g lab_t , lab_f ) =

. . .
switch . . . {

case " | | " : {
S t r i n g lab_x = genLabel ( ) ;
l e f t . genBoolCode( lab_t , lab_x ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab_x ) ;
emitCode ( c o d e s t r ) ;
r i g h t . genBoolCode( lab_t , lab_f ) ;

}

case "&&" : {
S t r i n g lab_x = genLabel ( ) ;
l e f t . genBoolCode( lab_x , lab_f ) ;
s p r i n t f ( c o d e s t r , "%s %s " , " l ab " , lab_x ) ;
emitCode ( c o d e s t r ) ;
r i g h t . genBoolCode( lab_t , lab_f ) ;

}



52 9 Intermediate code generation
9.9 Control statements and logical expressions

case " not " : { // h e r e j u s t a l e f t t r e e
l e f t . genBoolCode( lab_f , lab_t ) ;

}

case "<" : { // example f o r a b i n a r y r e l a t i o n
S t r i n g t_1 , t_2 , t_3 ; //
t_1 = l e f t . genIntCode ( ) ;
t_2 = r i g h t . genIntCode ( ) ;
t_3 = genLabel ( ) ;
emit4 ( t_3 , t_1 , " l t " , t_2 ) ;
emit3 ( " f j p " , t_3 , lab_f ) ;
emit2 ( " ujp " , lab_t ) ;

}

Listing 9.59: Alternative genBoolCode, short circuiting

left

right

lf

lt

false

true

true

false

lx

Figure 9.16: Short circuiting booleans, case “or”



Bibliography
Bibliography 53

Bibliography
[1] Appel, A. W. (1998). Modern Compiler Implementation in ML. Cambridge University

Press.

[2] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.



54 Index
Index

Index
3AC

quadruple, 10

abstract interpretation, 27
activation record, 8
addressing mode, 4, 33
array access, 34
attribute grammar, 14, 15

B5000, 4
byte-code, 2, 3

canonization, 17
circuit evaluation, 44
CISC, 2
code generation

intermediate, 2
compositionality, 15
control-flow graph, 27, 42

enum type, 11

Forth, 4

goto, 41

intermediate code, 2
linear, 7
register, 4

interpreter, 3

JVM, 3, 11

L-value, 12
label, 41
linear intermediate code, 7
linearization, 17
LLVM, 11

one-address code, 3
optimization, 15

P-code, 2
p-code, 3
Pascal, 11
Postscript, 4
pseudo instruction, 7, 9

R-value, 12
register machine, 3

RISC, 2

short-circuiting, 41
simulation

static, 27
SSA, 9
stack machine, 3
static simulation, 27
static single assignment, 9
symbolic execution, 27
syntactic sugar, 36

temporary, 8
temporary variable, 8
three-address code, 2, 22
traces and trace scheduling, 42
two-address code, 2

union type, 11

virtualization, 3

zero-address code, 3


	Contents
	Intermediate code generation
	Intro
	Generating code: compilation to machine code
	Byte code generation

	Intermediate code
	Three-address (intermediate) code
	P-code
	Generating P-code
	Describing p-code generation with attribute grammars
	Implementation in a functional language
	Source language AST data in C

	Generation of three-address intermediate code
	Implementation in a functional language
	Describing 3AIC generation using attribute grammars
	3AIC generation in a C-like or Java-line language

	From P-code to 3A-code and back
	P-code to 3AIC: static simulation
	P-code  3AIC: macro expansion

	More complex data types
	Array access
	Access to records

	Control statements and logical expressions
	Boolean expressions
	Code generation



