
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen

INF 5110: Compiler construction
Spring 2023 9. 2. 2023Series 2

Topic: Context free grammars (Exercises with hints for solution)

Issued: 9. 2. 2023

This exercise set covers more than one lecture. It’s about grammars, and partly for the
lectures about parsing. We might not be able to cover it within 2 hours.

Exercise 1 (First- and follow sets) Compute the First and Follow -sets for the grammar
Figure 1.

exp → term exp ′

exp′ → addop term exp ′ | ε
addop → + | −
term → factor term ′

term ′ → mulop factor term ′ | ε
mulop → ∗
factor → (exp) | number

Figure 1: Expression grammar (left-recursion removed)

Solution:

Listing 1: First sets

1 f o r all X ∈ ΣT ∪ {ε} do
2 F i r s t [X] := {X}
3 end ;
4

5 f o r all non-terminals A do
6 F i r s t [A] := {}
7 end
8 whi le there are changes to any F i r s t [A] do
9 f o r each production A→ X1 . . . Xn do

10 k := 1 ;
11 cont inue := true
12 whi le cont inue = true and k ≤ n do
13 F i r s t [A] := F i r s t [A] ∪ F i r s t [Xk] \ {ε}
14 i f ε /∈ F i r s t [Xk] then cont inue := f a l s e
15 k := k + 1
16 end ;
17 i f cont inue = true

www.uio.no
http://www.ifi.uio.no

Series 2 (+ Hints for solutions) 9. 2. 2023

18 then F i r s t [A] := F i r s t [A] ∪ {ε}
19 end ;
20 end

We have learnt algorithms to do that. They are repeated in this exercise for easy reference
in Listing 1 and 2.

Listing 2: Follow sets

1 Follow [S] := {$}
2 f o r all non-terminals A 6= S do
3 Follow [A] := {}
4 end
5 whi le there are changes to any Follow−s e t do
6 f o r each production A→ X1 . . . Xn do
7 f o r each Xi which i s a non−t e rmina l do
8 Follow [Xi] := Follow [Xi]∪(F i r s t (Xi+1 . . . Xn) \ {ε})
9 i f ε ∈ F i r s t (Xi+1Xi+2 . . . Xn)

10 then Follow [Xi] := Follow [Xi] ∪ Follow [A]
11 end
12 end
13 end

But one can also informally try to figure it out (at the danger that one forgets some symbols,
especially when dealing with nullable symbols and ε-productions, one has to watch out for those).
In any case, the first-sets are simpler. Furthermore, the definition of the follow sets depends on
determining the first-sets. Therefore, in such an exercise, one always starts with the first-sets,
and only then attempts the follow-sets.

For the first sets: the main complication are nullable symbols, and the grammar has those,
so we need to watch out.

In the “recursive definition” of the algorithm for the first sets one should notice that the
definition defines the first set not just for non-terminals, but for terminals and ε, as well!

Here’s a “run” for the first-sets (the non-terminals are abbreviated in the obvious manner to
save space). Pass 4 is not shown, nothing would change there compared to pass 3 and the algo
finishes.

non-term pass 1 pass 2 pass 3

e (,number
e′ ε,+,−
e′ {ε} ε,+,−
a +
a +,−
t (,number
t′ ε,∗
t′ ε ε,∗
m ∗
f (
f (,number

Table 1: “Run” of the first-set algo

Here’s the “collapse” of the result, i.e., that’s the end result.

2

Series 2 (+ Hints for solutions) 9. 2. 2023

non-term First

exp (,number
exp ′ ε,+,−
addop +,−
term (,number
term ′ ε,∗
mulop ∗
factor (,number

As a side remark: In the result, the primed non-terminals term ′ and exp′ are the ones contain-
ing ε in the first set, indicating that they are nullable. That’s not a coincidence. The grammar
we are dealing with is (one variant of) the expression grammar, namely one on which the algo
for left recursion removal has been applied. The algo introduces new terminals with appropriate
rules. By convention and to be a bit systematic, for a non-terminals A with left recursion, a
new non-terminal A′ is added decorated with a prime, and the corresponding massaged rules
contain an ε-production. In the current example, the new symbols are term ′ and exp′.

As another side remark: the table arranges the productions of the grammar in the order as
appearing in the grammar. It’s also assumed in the shown solution, that algo goes through each
production in the order as shown in the table and in the grammar. That’s not a necessity, the
sketched algorithm formulates the loop-construct for one pass as “for each production do . . . ”,
it does not require a particular order. Actually, the order illustrated in the table is not the best
one, treating the productions in reverse order would lead to quite faster termination.

So far for the first sets. The algo for the follow sets is similar in spirit to the first-set
calculation, it’s likewise a “saturation” algorithm. But the “table” used to simulate the run
is organized slightly differently, because the slots now correspond to the right-hand sides of
the productions, not the left-hand sides alone. The initialization of the algo start by having
Follow(exp) = {$}, all the rest is the empty set. As a general rule, we never add any ε to the
follow-set, they simply don’t belong there. However, we need to check if ε is in the considered
First-set, as that plays a role.

We should also remember that we need in the construction not directly First(X) but (corre-
sponding) definition for sequences of symbols First(X1 . . . Xk). By “corresponding” it is meant
that “in spirit”, it’s the same definition, only applied to sequences. The lecture provides the
definition of the first set of a word (but not in pseudo code form). Basically it’s an iterated appli-
cation of the definition of the first-set for one symbol (and taking into account nullable symbols
in the analogous way that the definition/code of first-sets of a symbol treats that already (when
dealing with the right-hand side of a production). So it’s nothing really new.

In the table, F stands for the follow set. I write also here += for the operation increasing
the current value of a given set (representing Follow[X] := Follow[X] ∪{. . .}).

In the productions on the right-most column, I indicate by color the longest “post-fix” of
the right-hand side which is nullable (that can be seen from the result of the first-sets). That’s
helpful, because those situations require special treatment by the algorithm. For example, in
the situation

′
exp → addop term

′
exp ,

exp′ is nullable, but the longer term exp ′ is not.1 To treat the non-terminal addop in the
corresponding case is easier as the postfix after it is not nullable. To treat the non-terminal
term is slightly more complex, as the exp′ is nullable. One should not forget: to treat exp′ leads
to a post-fix of ε, which also counts as nullable, therefore the “special treatment” applies to exp′,
as well.

1Neither is addop term exp′, of course.

3

Series 2 (+ Hints for solutions) 9. 2. 2023

production init pass 1 pass 2

exp → term exp′ $ F(term) = {+,−} ∪ {$}
F(exp′) = {$}

F(term) += {)}
F(exp′) += {)}

exp′ → addop term exp′ F(addop) = {(,number}
F(term) = {+,−,$} ∪ {$}
F(exp′) = F(exp′)

exp′ → ε F(ε) = not a case
addop → + + is a terminal, nothing’s done
addop → − same
term → factor term ′ F(factor) = {∗} ∪ F(term)

F(term ′) = F(term) = {$,+,−}
F(factor) += {)}
F(term ′) += {)}

term ′ → mulop factor term ′ F(mulop) = {(,number}
F(factor) = {∗} ∪ F(term ′) = {∗,+,−,$}
F(term ′) =

term ′ → ε not a case
mulop → ∗ ∗ is a terminal
factor → (exp) F(exp) = {)}
factor → number terminal

The “run” of the algo resp. the table used to represent the run shows the difference in the
structure of the follow-calculation. In contrast to the first-algorithm, there there are 3 loops.
The outer loop, which correspond to the colums (the “passes”). The second loop going through
all grammar productions, and finally, for each production, the inner loop going through the
symbols on the right-hand side one by one.

non-term Follow

exp $,)
exp′ $,)
addop (,number
term $,),+,−
term ′ $,),+,−
mulop (,number
factor $,),+,−,∗

Table 2: Result: follow sets

Exercise 2 (Nullable) Describe an algorithm that finds all nullable non-terminals without
first finding the first-sets.

Solution: It should be clear that there is an algo, already from the fact that in the lecture
we discussed one (in different representations). Apart from that: taking the original definition
of nullability: from that one it’s not immediately clear, because the definition states a condition
like

A⇒∗ ε .

However, given a grammar, one can intuitively make a “graph search”, taking a non-terminal,
and then look at “chains of productions” (which corresponds to a graph traversal) and see if one
hits on ε without passing through a terminal. Doing that for all non-terminals would answer
the question.

That’s not the smartest way to do it, however, and that’s not the way we handled the first-
and follow-sets algorithmically (perhaps also compare the ε-closure). Very generally, one is better
off to calculate “simultaneously” the first- and follow-sets, resp. in the task here, calculate the

4

Series 2 (+ Hints for solutions) 9. 2. 2023

question of nullability simultaneously for all non-terminals (not one by one). That may (very
roughly) be compared to, for instance the idea behind Dijsktra’s shortest-path algo (covered for
instance in INF2220 (old numbering)): Also that algo works calculating shortest path for all
pairs of nodes not simply for the one particular pair one might be interested in (and iterate that
for all pairs).

Anyhow: a good solution to the task here is to do better than the nullability-one-by-one
solution.

One way of doing it is: we arrange for a data structure nullable, which is a set of non-
terminals (perhaps concretely some collection data structure), containing all non-terms of the
given grammar which are nullable. To be more precise: that set contains all nullable non-terms
when the algo terminates. During the run of the algo, it contains “the current knowledge or
estimation” which of the non-terms are already known to be nullable. It’s a crucial characteristic
of this kind of algorithm (like the follow/first calculations as well, and many others) that the
“estimation grows only in one direction”, meaning that during the run of the algo, the current
knowledge of nullable symbols, i.e, the corresponding set data structure, only grows. In each
stage (or “pass” or iteration), the algo potentially adds further symbols, when detecting nulla-
bility of further symbols so far not (yet) known to be nullable. The algo terminates, if now new
symbols are detected meaning basically that the set of nullable symbols does not grow any more
(it stabilizes).

The input of the algo is a grammar in BNF. Output is the set of nullable non-terminal
symbols, kept in, say nullable. The general structure is (as for the first and follow algos,and
similar ones):

1 i n i t i a l i z e nullable
2 while not s t a b i l i z e d
3 i n c e a s e nullable (l ook ing at the grammar , product ion a f t e r product ion)
4 end
5 return nullable

It is important to realize: going through the grammar “production after production” (or “ter-
minal after terminal” or whatever) does not mean, that, after having done one sweep through
all the productions, one is done. That is typically not the case. One stops if, going repeatedly
through the productions, it turns out that no new info can be learnt (“stabilization”, “satura-
tion”), then we terminate. See also how we filled in the tables with the “rounds” or “passes”
when calculating the first- and follow-sets.

1. Initialization: start with the empty set.

2. Repeat, until no more elements are added: if there’s a non-terminal A with

A→ . . . B1B2 . . . Bn

where all Bi are already (at the current stage) members of nullable, then add A to nullable.

Note that a rule like A→ ε is covered for n but the recipe in the body of the loop, for n = 0.
Alternatively, more in line with the data structure of the first-algo: we could arrange the

data structure in such a way that one has an boolean array, indexed by the non-terminals. It’s
of course the same.

Exercise 3 (Associativity and precedence) Take the binary ops +, −, ∗, / and ↑. Let’s
agree also on the following precedences and associativity

op precedence associativity

+,− low left assoc.
∗,/ higher left. assoc.
↑ highest right. assoc

5

Series 2 (+ Hints for solutions) 9. 2. 2023

Write an unambiguous grammar that captures the given precedences and associativies (of course,
directly with a BNF grammar, without allowing yourself specifying those requirements as extra
side-conditions).

Solution: We have learned in the lecture how it works, at least for the operators except the
exponentiation.

The “flat grammar”, simple, elegant, but with utter disrespect for associativity and prece-
dence could look as follows (it’s not required for the task):

exp → number | (exp) | exp op exp
op → + | − | ∗ | ↑

The ok grammar (without exponentiation) presented in the lecture and script looked as
follows

exp → exp addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗
factor → (exp) | number

Now we have to include the exponentiation. In the same way we did for the terms and factors:
we need a new non-terminal, here say expon, and furthermore, we need to get it right-associative.
Therefore, the rule for factor is formulated using right-recursion: the factor occurs on the right,
not on the left (as for term and exp)

exp → exp addop term | term
addop → + | −
term → term mulop term | factor

mulop → ∗
factor → expon eop factor | expon

eop → ↑
expon → (exp) | number

Here’s an example CST (concrete syntax tree) for the expression.

3 + 5/3 ∗ 2 + 4↑ 2↑ 3

6

Series 2 (+ Hints for solutions) 9. 2. 2023

Exercise 4 (Tiny grammar) For the grammar given answer the following questions:

• Is the grammar unambiguious?

• How can we change the grammar, so that TINY allows empty statements?

• How can we arrange it that semicolons are required in between statements, not after
statements?

• What’s the precedence and associativity of the different operators?

program → stmts
stmts → stmts ; stmt | stmt
stmt → if -stmt | repeat-stmt | assign-stmt

| read -stmt | write-stmt
if -stmt → if expr then stmt end

| if expr then stmt else stmt end
repeat-stmt → repeat stmts until expr
assign-stmt → identifier := expr
read -stmt → read identifier
write-stmt → write expr

expr → simple-expr comparison-op simple-expr | simple-expr
comparison-op → < | =

simple-expr → simple-expr addop term | term
addop → + | −
term → term mulop factor | factor

mulop → ∗ | /
factor → (expr) | number | identifier

Solution: [of Exercise 4]

ambiguity: One might be aware that many properties of context-free grammar (not to mention
context-free languages . . .) are “hard”, even undecidable. Whether or not a grammar is

7

Series 2 (+ Hints for solutions) 9. 2. 2023

unambiguous is one of them: that is in general undecidable (and that immediately makes
also the question if a context free language has an unambiguous grammar undecidable). Of
course, for this particular grammar the question can be expected to have a definite answer
(if only for the reason that otherwise the question would be meaninglessly hard . . .).
Still, those remarks about general undecidability could warn the reader that ambiguity of
grammars is not a trivial matter (and in particular there’s no algorithm that definitely
can check the issue). That also might imply that showing that this particular grammar is
unambiguous (should that be the case) is not easy: we would have to find an argument,
that each word of terminals of the TINY-language has a unique parse tree, and there are
infinitely many. That sounds hard (especially since we have not covered that question in
the lecture). It seems more easy, should that be the case, to prove that the grammar is
ambiguous. All we need is one word with 2 different parse trees. However, this general
“smart” meta-consideration will lead us down the wrong path right here, the answer will
be that the grammar seems unambiguous (but we won’t make an attempt in proving it).

That makes it a priori plausible that the given grammar is ambiguous, we only are re-
quested to nail down at least one “part” which causes ambiguity (there may be more than
one reason, but we only need to find one).

Before doing so, and as a side remark: there are doable approaches which allows (indi-
rectly) to prove unambiguity in some cases: for instance, if one could show that a given
grammar is LL(k) or LR(k) or one of such classes, then we indirectly know the grammar
is unambiguous.

Now: what’s the reason for ambiguity? There might be the “usual suspects”. Since the
grammar is for a “real” (toy) language and not an arbitrary artificial grammar, we should
concentrate on those usual suspects.

As we learned, a common source of ambiguity in grammars of programming languages is
that, especially for binary constructs, the “grouping” is not fixed by the grammar (which
then gives ambiuity for the parse tree). Typically that involves question of “associativity”
or “precedence” (as discussed with the previous exercise). Another example we had, though
not with plain binary operators but related nonetheless, is the phenomenon of “dangling
else”.

The dangling else is not a problem here.

Now, what about associativity. The grammar seem to make use of the techniques we used
in the lecture, splitting up expressions into factors and terms. So, that part takes care of
precedence and associativity of multiplication, addition, etc.

Now, remains the suspicious comparison expressions (comparing two simple expressions).
At first sight that might look having problems with associativity. However: it would be
ambiguous if we had a production for expressions like

exp → exp comparison-op exp (1)

or the simple expressions would be done like that:

simple-expr → simple-expr comparison-op simple-expr (2)

or similar arrangements. would lead to ambiguity.

So, since the grammar is not of any of the forms, it is very plausible that it’s unambiguous.

Additional remarks: If one had an different version, for instance with a production of the
form of equation (1) or (2), and thus the answer would be that the grammar is indeed
ambiguous, in that case a good answer would give one example of an expression and give
2 different parse trees for that.

8

Series 2 (+ Hints for solutions) 9. 2. 2023

As a rather esoteric side remark: Technically, the question actually is not whether parts
of the grammar are ambiguous (for instance the part starting with the expression non-
terminal in the changed version), but if the overall grammar is ambiguous. So in principle,
the grammar could be unambigous, even if expressions were parsed ambiguously, namely in
the (weird) case when expressions can never be derived from the start symbol. Such gram-
mars with unreachable parts or parts that can never be derived into a word of terminals
are obviously “defective” in that there should never be “useless” symbols or productions
in a grammar.

Anyway, the TINY grammar (and all decent grammars) does not suffer from such defects.
Given an ambiguous grammar, pointing out and explaining the ambiguity (or lack thereof)
for expressions is an answer good enough.

Empty statements: That’s trivial, we simply add stmt → ε. This will make it possible to
write statement sequences like ;;;;;.

Semicolon as terminator, not separator: We could do

stmts → stmts stmt ; | stmt ;

See also the language specification for the oblig, where the grammar is written in EBNF,
not BNF.

Associativity and precedence:

op precedence associativity

∗,/ highest left
+,− medium left
<,= lowest non-associative

We can also think of semicolon and its associativity. Except that it’s not really counted
among operators, typically.

Associativity and precedences for expressions and statements becomes more tricky if one
deals with languages which “mixes” them. For instance, as is C-like languages, that every
statement is also an expression. Then we have to think of

1 5 + x = 5

If for instance in Java

1 public class Stmtasexpr {
2 stat ic int x = 23 ;
3 public stat ic void main (St r ing [] arg) {
4 // x= 5 + x = 5;
5 x = 5 + (x = 5) ;
6 }
7 }

9

