UNIVERSITETET I OSLO
Institutt for Informatikk

Reliable Systems
Martin Steffen

INF 5110: Compiler construction

Spring 2023

Topic: Chapter 4: grammars

Issued: 9. 2. 2023

Series 3

Exercise 1 (LL(1)) Check if the following grammar is LL(1)?

S — (S)S | e

Exercise 2 (Ambiguity) Given the following grammar.

exp — exp+exp | (exp) | if exp then exp else exp | var

var —

9. 2. 2023

1. Try to come up with an unambiguous grammar for the language of the given grammar,

where

(a) addition is left-associative, and where

(b) if z then y else z + y is meant to mean if x then y else (z +v) .

2. Why don’t we have a dangling else problem here?

Exercise 3 (Ambiguity) Given the following grammar.

erp —

op — + | =Ix|/[T]<]=

Do the following thingsE]

expopexp | (exp) | number

1. The grammar is pretty ambiguous. Make an unambiguous grammar capturing the same
language, under the following side conditions

precedence assoc
0 highest (3) right
x, / level 2 left
+, — level 1 left
<, = 0 non-associative

IThere’s a certain amount of repetition here, we won’t go through everything during class-time, but a proposal

for solution will be available.

www.uio.no
http://www.ifi.uio.no

Series 3 9. 2. 2023

2. Give recursive-descent procedures for each non-terminal to check the grammar (using also
loops, if advisable). Divide the terminals representing op in an appropriate manner

3. Based on the previous point: add tree-building code into the procedures in such a way
that sequences of exponentiations 1 are treated appropriately in the sense that the tree
reflects the intended right-associativity.

4. Take the unambiguous grammar done in the first point, remove left-recursion, and do
left-factorization (without destroying unambiguity).

5. Check whether the resulting grammar is LL(1).

