
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen

INF 5110: Compiler construction
Spring 2023 12. 4. 2023Series 7

Topic: Run-time environments (Chapter 7) (Exercises with hints for solution)

Issued: 12. 4. 2023

Exercise 1 (Run-time environment) Draw a possible organization for the runtime environ-
ment of the following C program, for the following two situations. See corresponding figures
from the lecture as inspiration (for example, the slide entitled “Stack gcd”, approximately at
slide 8.18):

1. after entry into block A in function f.

2. after entry into block B in function g.

1 int a [1 0] ;
2 char ∗ s = ” h e l l o ” ;
3

4 int f (int i , int b [])
5 { int j=i ;
6 A:{ int i=j ;
7 char c = b [i] ;
8 // . . . ;
9 }

10 return 0 ;
11 }
12

13 void g (char ∗ s)
14 { char c = s [0] ;
15 B:{ int a [5] ;
16 // . . . ;
17 }
18 }
19

20 main ()
21 { int x=1;
22 x = f (x , a) ;
23 g (s) ;
24 return 0 ;
25 }

www.uio.no
http://www.ifi.uio.no

Series 7 (+ Hints for solutions) 12. 4. 2023

Solution: We are concentrating on the run-time environment of a C-like language, so we
concentrate on the stack of activation records (or stack frames) plus space for the global data.
Not included in the picture is the static part which contains the “code” as it is typically not
considered as part of the run-time management, as least not in languages with a very clear
separation of “data” and “code” as here in C. Also not considered here is the heap. The
example piece of data in the form of the array a[10]. Arrays are often allocated on the heap,
but this one has a fixed size 10 and is global and is allocated on the stack. Likewise, arrays are
reference data. So the formal parameter b passes the reference to the arry by value, the array
is not copied.

To solve the exercise, we need to

• figure out, depending on the “kind” of user data, where it’s allocated (globally vs. on a
stack frame). By “kind” I mean both the type of the data as well as it’s role (such as
formal parameters of a procedure or locally defined variable of a particular type). The
example has data of various different types and in different roles. Furthermore,

• we need a grip on the general layout of an AR, i.e., the additional information needed to
“make the RTE work”. In a C-like language, that includes the following:

– return address, the

– control link, as well as the

– frame pointer, and the

– stack pointer.

It’s important to realize that for a C-like language, i.e. without nested procedures and related
complications, no access links (aka static links are needed. They should not show up in the
ARs. It’s important to connect the frame pointer “fp” the control link: the frame pointer is the
“anchor” or “fix point” of a stack frame, i.e., the point of reference from which the other slots
have a known offset. In other words: the frame pointer represents the frame, and the control
link, sometimes called the dynamic link, points to the “caller’s AR” which is represented by the
corresponding “anchor” in turn. That means, the control link of the current frame (pointed at
by the frame pointer) points at the previous control link etc., i.e., the control links form a chain.
In the concrete example here, the frame of the main function does not indicate any control link,
so we simply let the control link of the AR of f to point some place “inside” the frame of for
the main function. See the “purple section” in Figure 1.1

In the graphical representation of the layout, pointers to a slot points to the “bottom” of it.
In the picture thus, it’s intended to point at the control link.

The other important standard slot in a stack frame is, obviously, the return address. It’s
needed so that the execution (with its instruction pointer) find its “way home from the callee
to the caller” upon return. To do that, the caller’s value of the instruction pointer has to be
saved somewhere, and due to the LIFO nature of function calls, it’s saved on a/“the” stack.
The so-called calling convention of an architecture tells how and where to place that return
address in the stack frame. At any rate, it should be kept “close” to the frame pointer (or at
least at a fixed off-set), and in the conventions in the lecture, it’s the slot following the frame
pointer/control link.

1It is to be expected, that also the “purple” stack frame for the main function has a “standard” stack frame
layout. That would include a slot for a return address and a slot for a control link. It should be arranged in such
a way, that the return address is not just “nil”, but a designated address that deals with program termination in
a dignified way (more dignified at least than trying to execute a nil-pointer). Those details are not part of the
discussion in Louden or of this exercise.

2

Series 7 (+ Hints for solutions) 12. 4. 2023

a[0]. . . a[9]

s: ”hello”

x:1

i:

b[] :

control link
fp

return addr.

j:1

i:1

c:
sp

...

calls m → f

a[0]. . . a[9]

s: ”hello”

x:0

s:

control link
fp

return addr.

c:’h’

a[0]...a[4]
sp

...

calls m → g

Figure 1: RTE after entering block A (left) resp B (right)

Another point in the memory layout of the RTE concerns the string literal "hello" and
the corresponding variable s in the example.2 The variable s is declared globally, so the string
literal ends up there.3 The same holds for the slots of the array a.

See also the “blue arrows”. They don’t represent “standard slots” in the activation records,
but the use of “reference data”.

Exercise 2 (Activation records (Pascal)) Draw the stack of activation reords for the fol-
lowing Pascal program, showing the control and access links, after the second call to procedure
c. Describe how the variable x is accessed from within c.

1 program env ;
2

3 procedure a ;
4 var x : integer ;
5

6 procedure b ;
7 procedure c ;
8 begin
9 x := 2 ;

10 b ;
11 end ;
12 begin (∗ b ∗)
13 c ;
14 end ;
15

16 begin (∗ a ∗)
17 b ;
18 end ;
19

20 begin (∗ main ∗)
21 a ;

2The quotation marks technically don’t belong to the string literal, but using those marks is the conventional
way to demarcate such literals in texts like here in this exercise.

3As a side remark: string literals are often treated special. Even in situations where a variable containing
them were not defined globally as in the example, the string literal itself would often end up in some global part
of the memory where the local variable contains a pointer to it. String literals can be of arbitrary size (but of
statically known size) and thus are often considered best placed outside the stack frame.

3

Series 7 (+ Hints for solutions) 12. 4. 2023

22 end .

Solution: A crucial thing here is that we are dealing with “Pascal”, not “C”, respectively the
fact that we have nested procedures, which are procedures defined inside others. That’s different
from the set-up of the previous exercise, where no nesting of procedures was allowed (which
reflects the situation in C). Why is that a problem? We are dealing typically with languages
with static, lexical scoping (for variable declarations). In general, a procedure or function is
well allowed to use variables declared outside the procedure, which means, they are declared
in the scope(s) surrounding the function definition. Those are variables in a procedure body
neither corresponding to the procedure’s formal parameters nor the local variable declarations.
Hence they are sometimes called non-local variables (more precisely: “procedure-non-local”, to
distinguish them from the procedure-local ones; there are also distinctions between process-local
vs. process-non-local declarations etc.).

In a C-like setting, without nested procedures, the only non-local variables are the global
ones. Now, however, besides local variables (whose values are are kept in the corresponding
AR/stack frame) and global ones, there are non-local variables which are not global, as explained.

If a function body uses such a non-local (but non-global either) variable, the question is:
where to get its value from? The static binding is clear (according to the rules of lexical scoping):
the variable which is “meant” has been declared at the closest enclosing scope. Being non-global,
as we assume, it has been declared as local to some procedure inside which the procedure we are
currently considering has been defined (directly or indirectly). That, however, only clarifies the
“static situation” of lexical scoping. When considering the run-time environment, the question
is where, at run-time, to find the value of a non-local variable, i.e. how to access its content.
Statically, we know in which surrounding function the variable has been declared, but that it
the static aspect only. What is needed is the activation record, i.e., the incarnation of that
surrounding function, which gives the value to the non-local function. In a language with nested
functions (but without higher-order functions), we know that the data of a function call (=
the call’s activation record) cannot outlive the activation of the function itself. That allows the
stack-allocation of activation records, which are therefore also known as stack frames.

A non-local variable in a stack frame of a function with a has two aspects:

1. static, in which surrounding function is the non-local variable declared and

2. which is the “relevant” activation record, where to find the current value.

Due to the stack-discipline of the AR allocation, the answer to the last question is: the activation
record is still found on the stack,

and it’s the “most recent” stack frame of the surrounding function; a pointer
to that stack frame is the access link (or static link).

That’s the general picture. Now to the concrete setting. The first thing to do is to get an
overview of the call graph. The program is not really meaningful, the functions b and c call each
other without “exit”, which will lead to a stack overflow. But the task asks about the second
call to c. So, the call-sequence is as follows:

a→ b→ c→ b→ c

The variable in question is x, which is declared in a. Informally, it’s rather simple. We are inside
the stack-frame for c. It’s clear that what is asked for is the value of x as being set inside a.
However, the exercise asks to delineate the access links that make that happen.

So, the access link for the stack frame of the second call to c points to last stack frame of
the statically surrounding function, which is the latest stack frame of b. See Figure 2.

4

Series 7 (+ Hints for solutions) 12. 4. 2023

Figure 2: Pascal RTE: control and access links (dynamic and static links)

Exercise 3 (Access chaining vs. display) An alternative to access chaining in a language
with local procedures is to keep the access links in an array outside the stack, indexed by the
nesting level. This array is called the display. For example, the run-time stacks of the program
chain and the corresponding stack picture on the slide entitled “access chaining” at approx.
slide 8-36 from the lecture would now look as Figure 3 resp. Figure 4.

Figure 3: RTE with display (1)

1. Describe how a display can improve efficiency of nonlocal references from deeply nested
procedures.

2. Redo the previous Exercise 2 from this sheet, using a display.

Solution: For access links, there is the phenomenon of access link chaining. The difference in
static nesting levels from where a variable is declared to where it is use translates to the number
of “hops” one has to follow at run-time to find the appropriate stack frame where to look up
the current value (not the declaration) of the variable in question. Note that the number of
link-followings is statically determinable, but the links themselves are not known (they point
to frames of the run-time stack . . .) and have to be followed at run-time. For each access of
such nested variables, there will be a number of indirections to be performed. It’s clear that if
a significant amount of variable accesses relates to non-local ones with deep link chains, that

5

Series 7 (+ Hints for solutions) 12. 4. 2023

Figure 4: RTE with display (2)

may result in a serious performance penalty. A display then allows a “two-stop” access: look-up
the display in an indexed way (which is fast) and follow that address. That may be faster, but
of course the display needs to be maintained at run-time. But then again: also the static links
need to be maintained within the stack frames, which also does not come for free.

Now, the display is here described as indexed by the nesting level.
A solution is given in Figure 5. The picture may seem a bit confusing.4 Actually it contains

two states of the display wrapped into one. This “overlay” is done for the boldface arrows
(starting from the slots 2 and 3 of the display, for the activation records for the second activations
for b and c). The green arrows are the access links (taken from a previous picture) and are
therefore not needed anymore. They are just still shown for better comparison.

Figure 5: RTE with display

Exercise 4 (Virtual function tables and memory layout for classes) Draw the memory
layout of objects of the following C++ classes, together with the virtual function tables.

1 class A
2 { public :
3 int a ;

4For an exam, it’s not a good picture, better make two.

6

Series 7 (+ Hints for solutions) 12. 4. 2023

4 virtual void f () ;
5 virtual void g () ;
6 } ;
7

8 class B : public A
9 { public :

10 int b ;
11 virtual void f () ;
12 void h () ;
13 } ;
14

15

16 class C: public B
17 { public :
18 int c ;
19 virtual void g () ;
20 }

Solution: The principles of VFT for standard OO languages (with late binding and class
inheritance) have been discussed in the lecture. One needs to know what late binding is and
what “standard” methods are. In Java that’s the non-static ones, here they are marked as
virtual. In practical settings and real programs, the water can be further muddied by method
overloading. We do not consider that, especially not in this exercise.

The concept of a VTA is pretty simple. It’s just a (often) smart way of helping the run-time
system to find the method bodys of methods of an instance of the class. The table keeps an
overview of that information per class. Each object contains a point to the class it is an instance
of. The class corresponds also the the run-time type of the object.5

See Figure 6. The virtual tables are shown to the right. All three classes support f and g.
The table indicates from which calls the code for the method is to be taken. For instance at the
bottom, representing a call to an instance of class C: if f is called, it’s to be taken as defined in
B (inheritance), if g is called, the one from C is meant (overriding).

(vt in the picture)

Figure 6: Virtual function table

5Note that in C++-like languages, class names play the role of types. One can distinguish run-time types from
static types. It’s not either-or, in Java, C++, one can distinguish, especially for class types, the notion of static
type from dynamic (run-time) types. Here, we are speaking about run-time types.

7

Series 7 (+ Hints for solutions) 12. 4. 2023

Exercise 5 (Parameter passing) Give the output of the following program (written in C
syntax) using the 4 parameter passing methods discussed in in the lecture.

1 #include <s t d i o . h>
2 int i = 0 ;
3

4 void p(int x , int y)
5 { x += 1 ;
6 i += 1 ;
7 y += 1 ;
8 }
9

10 main ()
11 { int a [2] = {1 ,1} ;
12 p(a [i] , a [i]) ;
13 p r i n t f (”%d %d\n” , a [0] , a [1]) ;
14 return 0 ;
15 }

Solution: The example procedure has 2 formal parameters, x and y, and makes use of a
non-local variable i. Unlike in the exercises concerning the static links, the non-local variable is
not defined in a surrounding procedure (which is not possible in C anyway), but globally. The
variables are not only accessed in the function body, but changed.

The function has no return value, the result is “passed back” via the side effect of changing
the array. Another ingredient in the example is that the actual parameter are array expressions
and that there are two arguments (not just one). The array expression arguments will play a
role for the call-by-name case, the fact that we have two arguments is problematic specifically
for the call-by-value-results case.

As a side remarks: arrays are “by-reference” data structures. That fact does not play a role
in this exercise here, as the arguments to the function is not the array, but expressions of the
form a[i], which represent integers.

Call-by-value: That’s the easiest case, as usual. The values of the two actual parameters are
copied into the procedure body. Concretely, upon call, a new stack frame is allocated
(“push”) with space for the two formal parameters x and y wherein the values of the
actual parameters are copied, i.e., a pair of 1’s. Whatever the function body does with
those, it’s done on a copy. Therefore, the original arguments are unaffected. That gives
the result (1, 1).

Call-by-reference: Now, no copy is done in the new frame, but references to the arguments.
What is specific in this example is: the two arguments are identical (here a[i]). They
are not evaluated in the call, instead the address of a[i] is taken which happens to be
the same for both arguments. That it’s the same address is independent also from the
fact where the array is allocated. We have seen that arrays may be stack allocated or else
on the heap, or also sometimes in the static area when they are global and their size is
statically known. Independent from all of that, both arguments have the same address.

It should also be noted (as a side remark, on a variation of the shown code): in a call
of the form p(a[i],a[j]), both arguments may represent the same address, namely if i

and j happen to be the same. That i = j may of course not be clear at compile time,
but the point is: the discussion here does not depend on the fact that the two arguments
are literally identical. That will play a role for “call-by-name” scheme later, but here it’s
about addresses. The situation, where two different “names for data” (like p[i] and p[j],
but also in case of variables containing references etc.) refer to data at the same address
is called aliasing : p[i] and p[j] are aliases if i and j have the same value. In languages

8

Series 7 (+ Hints for solutions) 12. 4. 2023

with reference data (objects, etc.), aliasing is not statically determinable in general (of
course in this example here, it’s obvious).

Aliasing for immutable data (as in functional/declarative languages) is not “problematic”,
problems sometimes starts if there’s aliasing in combination of side-effects. This is exactly
what is done in the example. Note: the programmer of the procedure uses two different
formal parameters (one is not allowed to use 2 times x anyhow) and may conceptually
have intended to independently update them “both” by one and might not have forseen
that the function is used in a way that leads to aliasing (in a call-by-reference setting). If
that were the programmer’s intention, then the unforseen, accidential aliasing by the user
(= caller of the function) “broke” the code.

Anyhow, the corresponding slot in the array is incremented thus 2 times, resulting in the
pair (3,1). Note further, that the variable i is irrelevant when evaluating the body of
the function.

Call-by-value-result This parameter-passing scheme one has fallen from grace. Besides the
reasons we said in the lecture, the example here is especially confusing.

The general principle of call-by-value-result is

1. parameter-passing when calling is done like call-by-value (nothing’s wrong with that
part), and

2. passing the result back when returning: “by reference” (it’s this part which is trou-
blesome).

So instead of the more dignified use of a function in the form x1 := f(x2), this parameter-
passing mechanism uses calls of the form f(x) where the result ends up in x. It also means
that calls of the form f(e) where e is not a variable are either forbidden, or, if allowed, any
result is lost. In this example here, the function is called with an array-access as argument,
in which case the result is not lost, but is expected to be stored back into the adequate
array slot.

Now to the example: since the call-parameters are passed by value, x and y in the body
start out with the values (1, 1), no aliasing here, since x and y are different variables. Both
are then increased independently in the body, resulting in (2, 2), and i is increased as well,
giving 1. At the end of the procedure, the results in x and y are stored back to their origin.

One problem mentioned in the lecture is: if both are stored back, then: in which order is
that done. In the situation as here, as the arguments are aliases, both return values will
be stored back into the same memory location, and only one can “win”, the last one which
is written is “the” return value. In this particular example here, this problem is actually
not really visible, as x and y happen to have the same value at the end of the procedure,
but that’s just by happenstance.

The second problem was not directly mentioned in the lecture, and that has to do with
the specific fact that the arguments are not just aliases, but the actual parameters are
arrayexpressions a[i]. Upon return, the return value(s) are handed back to to the address
of a[i] (which can be determined by address calculation: base address of a + i times some
scale factor). However, i has changed during the call. The question therefore is, whether
to take the address of a[i] at call-time or at return-time. Depending on that choice,
the result is either (2, 1) (address of a[i] at call time) or (1, 2) (address of a[i] at exit).

These unclarities make hopefully clear why the mechanism is a bit shady. Though of
course examples like this one are tailor-made to be specifically confusing...

9

Series 7 (+ Hints for solutions) 12. 4. 2023

Call-by-name: On the one hand, the situation for call-by-name can get equally complex or
confusing than the call-by-value-result. That’s despite the fact that the “conceptual ex-
planation” of call-by-name is rather straightforward, namely: the parameters are passed
by simple textual substitution6 If we do that for the procedure, the body expands to

1 a [i] = a [i] + 1 ;
2 i = i + 1 ;
3 a [i] = a [i] + 1

i is globally declared and has a value of 0 at the beginning.7 So we increase first a[0] in a
first step, and afterwards a[1], resulting in (2, 2).

The results are summarized in Table 1.

by-value by-reference by value-result by-name

(1, 1) (3, 1) (2, 1) / (1, 2) (2, 2)

Table 1: Summary of results

Exercise 6 (Parameter passing) Give the output of the following program (written in C
syntax) using the 4 parameter passing methods discussed in the lecture.

1 #include <s t d i o . h>
2 int i = 0 ;
3

4 void swap (int x , int y)
5 {
6 x = x + y ;
7 y = x − y ;
8 x = x − y ;
9 }

10

11 main ()
12 { int a [3] = {1 ,2 , 0} ;
13 swap (i , a [i]) ;
14 p r i n t f (”%d %d %d %d\n” , i , a [0] , a [1] , a [2]) ;
15 return 0 ;
16 }

Solution: Here, we keep the answer shorter, for the concepts and further explanations, see
the previous exercise (and/or the lecture/book). The body of the function is intended to “swap”
integer values in a fancy way, by doing some calculations (and assuming no MAXINT overflow
happens . . .). The actual parameters are an integer variable (which is non-reference data) and
a[i] which is a non-reference integer as well, but of course a itself is a reference data type and
determining a[i] involves address caluclation depending on the value of i (as in the previous
exercise).

Call-by-value: Call-by-value has no side-effect. The body swaps the values for x and y, but
that has no effect on the actual parameters.

6That may be a simple explanation of parameter passing, but still it might be complex to implement and
might lead to counter-intuitive or confusing behavior.

7While textual substitution is the parameter passing mechanism here, still the rules of lexical/static binding
apply. So in general we would have to face the problem to find out where a variable such as i here has been
declared. This particular “complication” does not really apply here, as there is only one global declaration of i,
so no confusion (via dynamic binding or “variable capture”) is possible here.

10

Series 7 (+ Hints for solutions) 12. 4. 2023

Call-by-reference: No aliasing this time! Thus, the swapping works as intended on the actual
parameters, which means they are swapped.

Call-by-value-return: As there is no aliasing, in principle that makes also that easier. How-
ever, one argument is i, which is used as index for a[i] which the body of the function
changes. Consequently, the same problem as in the previous exercise needs to be consid-
ered: when to determine the address a[i] for passing back the value: upon entry or upon
exit of the function.

When doing it upon entry, one avoids a “re-indexing” when storing back the result and
under this (plausible) assumption call-by-value-result behaves like call-by-reference (since
no aliasing).

Actually, also when doing it upon exit, it may seem that it’s ok, because the body of the
function has not changed anything. But still bad things may happen: note that upon
return, we are storing back the results in a particular order (more “dignified” would be
actually to store them back at once). One plausible way of storing the results back is:
from left-to-right wrt. the formal parameters. That means: when storing back the second
parameter, the first one i has already received its returned value, which is 1 in the example.
So

for the second formal parameter, the execution of the body and the “half-way
return” of the first result did indeed change the i.

Therefore: if now is the time to determine the address of a[i], right before actually doing
it (and not perhaps before seen at all variables at once), the result is stored not back to
a[0] but at a[1]. It’s a truly awful way of parameter passing . . .

Call-by-name: Again, substitution is easily done

1 i = i + a [i] ; // i = 1
2 a [i] = i − a [i] ; // a [1] = 1 − a [1] = 1−2 = −1
3 i = i − a [i] ; // i = 1 − (−1) = 2

Basically, mutable data and here, especially “indexed data”, where the values are accessed
simply don’t work together with call by name at all, the result can be thorougly confusing.
That’s why Louden claims that call-by-name is not used anymore. It should be noted
that declarative languages, like Haskell (or Miranda), which shy away from side effects
more or less completely (“purely” functional languages), they put call-by-name to good
use (the variant there is called lazy-evaluation, which is an optimization of call by name,
but the mechanism is the same). One can generally say: a substitution-based explanation
of parameter passing works only in functional setting.8

The results are summarized in Table 2.

by-value by-reference by value-result by-name

(0, [1, 2, 0]) (1, [0, 2, 0]) (1, [0, 2, 0]) / (1, [1, 0, 0]) (2, [1,−1, 0])

Table 2: Summary of results for i and 3 elements of a

8As mentioned shortly before: the actual implementation if such a language is typically not directly based on
“textual substitution” of, for instance, ASTs.

11

